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Application of grid convergence index in FE computation
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Abstract. This paper presents an application of the grid convergence index (GCI) concept based on the Richardson extrapolation to a selected
simple problem of a cantilever beam loaded with vertical forces at the tip end. The GCI method, popular in computational fluid dynamics,
has been recently recommended for finite element (FE) applications in solid and structural mechanics. Based on the results obtained usually
for three meshes, the GCI method enables one to determine, in an objective manner, the order of convergence to estimate the asymptotic
solution and the bounds for discretization error. The example shows that the characteristics of the convergence depend on the selection of
the quantity of interest, which can be local or a global functional such as the deflection considered here. The results differ for different FE
formulations, and the difference is bigger when the nonlinearities (e.g., due to plastic response) are taken into account.
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1. Introduction

Computer simulations and numerical analysis are used in
many branches of science and technology, such as aviation,
civil engineering, and information technology. The increas-
ing importance of numerical methods reflects the increasing
use of the adjective “computational” in the names of various
fields, such as computational fluid dynamics (CFD). Individ-
ual applications of numerical methods differ in the level of
accuracy with which a numerical model is able to reflect the
physical process. At one extreme is the mathematical model-
ing of computer chips, with expected 100% accuracy for all
the ones and zeros in the output signal. At the opposite end
is a complex mathematical modeling of weather phenomena
in the universal conviction of a much lesser ability to predict
the real process, especially in the longer term. There are also
differing opinions on the usefulness and reliability of such
applications in solid and structural mechanics, from very op-
timistic [1] to extremely skeptical [2]. An analysis with the
help of complex numerical models is particularly applicable
where there is no closed analytical solution (e.g., because of
the complexity of the geometry) and where, for various rea-
sons (e.g., economical), the experiments are impossible or
insufficient. In all such cases, the question arises about the
ability of such analysis to correctly predict the results of a
physical process in question.

This paper is a continuation of the publication [3] focused
on applications of nonlinear numerical models in civil engi-
neering and related branches of technology. The work [3] is
devoted to the verification and validation procedure of nu-
merical models while stressing the differences between these
concepts. Verification and validation is now considered the
most objective method of assessing the reliability of nonlinear
simulations. The literature contains many inconsistent opin-
ions on the possibility of creating a unified verification and
validation procedure defined in isolation from the specifics of

the considered problem. There are also some extremely skep-
tical opinions that totally negate the possibility of validating
numerical models [2, 4].

The current paper is focused on the mesh refinement study
as a part of the verification procedure. According to exist-
ing standards for verification and validation [5–7], verifica-
tion, which uses comparison of computational solutions with
highly accurate (analytical or numerical) benchmark solutions,
should precede validation, which is based on a comparison of
the numerical solution with the experimental data [3]. The
first recommended procedure within the verification process
is the mesh refinement study [7]. Its main objective is to eval-
uate the error of discretization and to check if the developed
mesh is sufficiently refined. The analytical solution for the
mathematical model, which would help establish the error of
discretization, is usually unknown for practically important
problems. The entire process of verification is empirical us-
ing the “a posteriori” approach, where the reasoning is based
on the experience coming from repeated calculations. The
mesh refinement study is conducted based on a comparison
of the results for a minimum of two but usually three mesh-
es. Among many estimators offered in the literature (e.g. [8])
there is a consistent method called the grid convergence index
(GCI), which is popular in CFD for determining discretization
error. In his recent paper, Schwer [9] recommended applica-
tion of the GCI for finite element (FE) calculations in solid
and structural mechanics. The subsequent sections provide a
short description of the GCI method and a simple example of
its application.

2. Concept of the grid convergence index

Developed by Roache [10], the GCI applies the old concept
of the Richardson extrapolation [11]. Based on the results ob-
tained usually for three grids (meshes), the approach applied
in the GCI method enables one to determine in an objective
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manner the order of convergence to estimate the asymptot-
ic solution and the bounds for discretization error. The term
“grid” is more common in CFD, whereas the term “mesh” is
used in FE analyses. The following section provides a short
description of the GCI method, followed by a summary [12].

In CFD, it is assumed that when the grid is successively
refined with the number of cells increasing and with the cell
dimensions and time step decreasing, the spatial and tempo-
ral discretization errors should asymptotically approach zero
[12]. The discretization error does not include the computer
round-off error, which nowadays is considered small enough
to be neglected.

The concept is based on the following assumption [10,
12] about the nature of the discretization error

E = fh − fexact = Chp + H.O.T. (1)

where E is the discretization error defined as the difference
between the result for current mesh density fh, characterized
by parameter h, and the exact solution fexact. On the right side
of Eq. (1), C is a constant, the exponent p defines the order
of convergence, and H.O.T. means higher-order terms. The
parameter h is usually defined by a dimension characterizing
the cell (FE) with smaller values for successively finer mesh-
es. The exact solution fexact in practice means an asymptotic
solution for a mesh with element dimension h approaching
zero. As it is shown later, this solution can differ from the
exact solution for the mathematical model due to some ap-
proximations and limitations applied in the FE formulation
[9] and can be different for different FE formulations [9].

The presented consideration can also be extended to un-
structured grids or meshes generated using non integer mesh
refinement or irregular coarsening [10]. The publication [12]
recommends using unstructured grids for CFD calculations,
with an effective grid refinement ratio defined as

ref =

(

N1

N2

)
1

D

, (2)

where Ni is the total number of grid points used for the i-th
grid and D is the dimension of the domain. Here, for the sake
of simplicity, we consider regular meshes with the same node
spacing in all xyz directions. Also, we consider successively
finer meshes, which are generated by dividing the node spac-
ing in all directions into halves. In this way, h is divided by
two. For example, for a 3D mesh built of solid (brick) ele-
ments, every element is divided into eight smaller elements.
Such refinement for regular structural meshes can be easily
obtained using most of the commercial graphical preproces-
sors. The following derivation is focused on the typical sit-
uation where the error bound is supposed to be determined
based on the finest mesh solution. The formula for the esti-
mation based on coarse meshes (which are faster and can be
preferably used for repeated calculations) can be found in [12].

A straightforward way for estimating the order of conver-
gence is to read it as a slope on the logarithmic plot of the
error versus mesh density parameter (log(E) vs. log(h)). Ne-
glecting H.O.T . in Eq. (1) and taking the logarithm of both
sides gives [12]

log (E) = log (C) + p log (h) . (3)

When using the constant mesh refinement ratio r such that

hi =
hi+1

r
(4)

and where hi represents the finer mesh, the order of conver-
gence can be estimated directly by obtaining results for three
successive meshes f3, f2, and f1. The quantity f is the re-
sult of calculation characterizing the response of the system;
it can be a local value (e.g., stress) or a global one given by
a functional (e.g., displacement). Repeating Eq. (1) for three
meshes, we can eliminate the constant C and H.O.T . The
order of convergence is given by

p =

ln

(

f3 − f2

f2 − f1

)

ln (r)
. (5)

Verification of the calculations requires that solutions for
all considered meshes should be in the asymptotic range of
convergence [12]. The asymptotic range of convergence re-
quires that the ratio between the errors E and the mesh spac-
ing hp is constant

C = E/hp. (6)

Checking if the solutions are within the asymptotic range is
a part of the GCI procedure.

Following [12], now we introduce the Richardson extrap-
olation, which here serves as a higher-order estimate of the
evaluated quantity. A quantity f calculated for a mesh char-
acterized by parameter (mesh size) h can be expressed using
Taylor’s theorem as

f = fh=0 + g1h + g2h
2 + g3h

3 + . . . (7)

where fh = 0 is the asymptotic solution for h approaching 0;
the unknown functions g1, g2, and g3 are independent of the
mesh characteristics h; and hn > hn+1. Let us assume that
f1 and f2 are the second-order approximations of fh = 0 cal-
culated for two mesh characteristics h1 and h2, with the mesh
refinement ratio defined by Eq. (4) and h1 representing finer
mesh. The second-order approximation means that g1 = 0 in
the expansion (7). Repeating Eq. (7) for two considered mesh-
es h1 and h2 and neglecting third-order and higher terms, we
obtain the estimate of the asymptotic solution [12]

fh=0
∼= f1 +

f1 − f2

r2 − 1
, (8)

where, according to Eq. (4), r = h2/h1. For example, for
the second-order approximation and the mesh refinement ratio
r = 2

fh=0
∼=

4

3
f1 −

1

3
f2. (9)

It has been proven that Eqs. (8) and (9) give fourth-order
estimates [10, 12] (assuming that f1 and f2 are the second-
order approximations). In practice, the Richardson extrapola-
tion is generalized for any, also non integer, p-th order ap-
proximations and the mesh refinement ratio r

fh=0
∼= f1 +

f1 − f2

rp − 1
(10)
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and is considered as p + 1 order approximation [12]. Moving
f1 to the left side of Eq. (10) and dividing both sides by
fh = 0 gives

A1 =
f1 − fh=0

fh=0

∼=
f1 − f2

fh=0

1

rp − 1
, (11)

where A1 defines the relative error for the solution f1. Re-
placing unknown fh = 0 with calculated f1 on the right side
of Eq. (10), we get an approximation of the relative error A1

A1 = E1 + O(hp+1, E2
1), (12)

where O(hp+1, E2
1 ) represents H.O.T. and E1 is the esti-

mator of the relative error A1

E1 =
ε

rp − 1
(13)

with the quantity ε defining relative difference between sub-
sequent solutions

ε =
f1 − f2

f1

. (14)

As pointed out in [12], the quantity (14) should not be used
directly as an error estimator because it does not take into ac-
count r or p. In addition, for example, for the mesh refinement
ratio r close to 1.0 it can give a very small, underestimated
error.

The GCI is defined as [10, 12]

GCI =
Fs |ε|

rp − 1
100%, (15)

where Fs is a safety factor. The recommended CFD values of
the safety factor Fs are [12]

Fs = 3.0 when two meshes are considered and
Fs = 1.25 for three or more meshes.
Given in a percentage manner, the GCI (15) can be con-

sidered as a relative error bound showing how the solution
calculated for the finest mesh is far from the asymptotic val-
ue. It gives a prediction on how much the solution would
change with a further refinement of the mesh. The smaller the
value of the GCI, the better. This indicates that the comput-
ed solution is within the asymptotic range. The safety factors
Fs given above were arbitrarily set based on the accumulated
experience on CFD calculations [10]. The safety factor rep-
resents 95% confidence for the estimated error bound. That
assumption can be expressed as the following statement [9]:
There is 95% confidence that the converged solution is within
the range [f1(1 − GCI12/100%), f1(1 + GCI12/100%)].

To properly calculate the GCI, it is important to have all
calculations fi in the asymptotic range of convergence. Based
on Eq. (6), it can be checked by comparing if the values of
two GCIs computed over three meshes satisfy [12]

GCI23 = rpGCI12. (16)

3. Example of mesh refinement study

The example study of mesh refinement is presented here for a
simple problem depicted in Fig. 1. A cantilever beam with a
100 × 200 mm rectangular cross-section and 1000 mm length
is loaded at the tip end with vertical forces, with the resultant

value P . The loading is distributed uniformly among all the
nodes along the beam’s edge as shown in Fig. 1. The material
is bilinear elastic-plastic with elastic modulus E = 10 GPa,
Poisson ratio ν = 0.3, yield stress σy = 20 MPa, and tangent
modulus ET = 2 GPa. The objective of the calculation is to
find the tip-end deflection f for different levels of loading. The
problem is solved using commercial FE programs ABAQUS
[14] and LS-DYNA [13] and three FE meshes shown in Fig. 2.
Each mesh is built of solid FEs with the same spacing in xyz

directions. Figure 2 indicates mesh characteristics hi defined
by dimensions of the FEs. The finer meshes are built using
constant refinement ratio r = 2. Table 1 shows the results
of calculations repeated for three levels of loading (10 kN,
20 kN, and 40 kN) and for two FE formulations for eight-node
solid elements applied in each of the solvers. The symbols
C3D8 and C3D8R indicate eight-node linear bricks applied in
program ABAQUS [14], where R means reduced integration
with hourglass control. ELFORM 1 and ELFORM 2 indicate
similar FE formulations implemented in LS-DYNA, that is,
constant stress solid element and fully integrated S/R solid,
respectively [13]. The results with asymptotic solutions giv-
en in Table 2 are compared in Fig. 3 through 5. According
to Fig. 3, which shows deflections for loading P = 10 kN,
we can see that when the beam is within the elastic range
the solutions for finer meshes are very close and that asymp-
totic solutions are practically identical. For a purely elastic
response, we can compare the computed results with the an-
alytical solution for deflection of the cantilever beam due to
bending and shear [15]

fanalytical =
Pl3

3EJy

(

1 +
3β

l2

)

, (17)

where β = α
EJy

GA
, and α = 1.25 is the correction coefficient

for the rectangular section. The formula (17) gives the val-
ue fanalytical = 5.156 mm for the considered beam, which
is very close to the computational solutions obtained for the
most refined mesh (see Table 1).

As indicated in Fig. 4 and 5 for loads of 20 kN and 40 kN,
respectively, the differences among solutions are bigger when
the material nonlinearity is taken into account and there is a
plastic zone in the beam, such as shown in Fig. 6.

Fig. 1. Example problem – cantilever beam loaded with forces at the
tip end
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Fig. 2. Three FE meshes considered for mesh refinement study

Table 1

Results of FE calculations for three levels of loading and two FE
formulations

Deflection f [mm]
Load
[kN]

Mesh
h

[mm]
C3D8 C3D8R ELFORM 1 ELFORM 2

10
1 12.5 5.0997 5.1272 5.1238 5.1002

2 25 5.0875 5.1577 5.1720 5.0880

3 50 5.0545 5.5422 5.4000 5.0540

20
1 12.5 10.9760 11.0604 11.0490 10.9850

2 25 10.8967 11.1273 11.1330 10.9060

3 50 10.6505 11.9177 11.5030 10.6570

40
1 12.5 45.0233 45.5003 45.9750 45.6490

2 25 44.5698 45.9487 46.1470 45.1870

3 50 43.1959 48.5291 46.8300 43.7510

Fig. 3. Results for load P = 10 kN

Fig. 4. Results for load P = 20 kN

Table 2
Calculation of grid convergence index

Load
[kN]

FE
element

formulation

Order
of convergence

p (5)

Asymptotic
solution

fh=0 (10)

GCI12 (15)
[%]

GCI23 (15)
[%]

GCI23 /rpGC12 (16)

10

C3D8 1.431 5.107 0.177 0.478 1.002

C3D8R 3.656 5.125 0.064 0.803 0.994

ELFORM 1 2.242 5.111 0.315 1.477 0.991

ELFORM 2 1.479 5.107 0.167 0.467 1.002

20

C3D8 1.634 11.014 0.429 1.342 1.007

C3D8R 3.563 11.054 0.070 0.821 0.994

ELFORM 1 2.139 11.024 0.279 1.220 0.992

ELFORM 2 1.656 11.022 0.418 1.326 1.007

40

C3D8 1.599 45.247 0.620 1.899 1.010

C3D8R 2.525 45.406 0.259 1.476 0.990

ELFORM 1 1.715 45.848 0.248 0.810 0.995

ELFORM 2 1.684 45.836 0.553 1.795 1.010
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Fig. 5. Results for load P = 40 kN

Fig. 6. Contours of effective plastic strain obtained for ELFORM 1
mesh #1 and for load P = 40 kN

Table 2 presents convergence parameters calculated based
on the data gathered in Table 1. The following are calculated
for each mesh, FE formulation, and loading lever: the order
of convergence p (5), the asymptotic solution fh=0 (10), the
GCI for the solutions 1 and 2 GCI12 (15) and for the solu-
tions 2 and 3 GCI23 (15), and finally the ratio defined by Eq.
(16), which provides the check to ensure the calculated so-
lutions are within the asymptotic range. Table 2 shows some
clear tendencies. The FE formulations with reduced numerical
integration (C3D8R and ELFORM 1) have a higher conver-
gence order and lower GCI. When the material nonlinearity
is taken into account and there are plastic strains in the mod-
el, all parameters characterizing convergence are worse and
there are bigger differences among the solutions obtained for
different FE formulations and the FE programs. The fourth
column of Table 2 provides asymptotic values fh=0, which
can be considered as the best approximation, and the fifth
column gives GCI12, which can be considered as the error
bound. The highest order of convergence p = 3.656 and the
lowest GCI12 = 0.064 are for the FE formulation C3D8R and
for the elastic response for P = 10 kN. The lowest order of

convergence p = 1.431 was registered for the FE formulation
C3D8 and for the elastic response for P = 10 kN. The high-
est GCI12 = 0.620 is for the FE formulation C3D8 and for
P = 40 kN.

4. Conclusions

The mesh refinement study is the first procedure in the veri-
fication of numerical models. It should answer the questions
of whether the mesh is refined enough and what the error
bound is for the quantities of interest. A further analysis is
warranted. Many studies have been reported where FE analy-
sis was applied for solid or structural mechanics without any
information about the mesh refinement study or discretiza-
tion error. The situation is much better in the field of CFD,
where many of the professional journals (e.g., ASME Fluids
Engineering Journal [9]) require discretization error estima-
tion.

This paper presents an application of the CGI concept
based on the Richardson extrapolation to a selected simple
problem of a cantilever beam loaded with vertical forces at
the tip end. The example shows that the characteristics of
the convergence (e.g., the order of convergence, asymptotic
value, and GCI) depend on the selection of the quantity of
interest, which can be local or a global functional such as
the deflection considered here. The results differ for differ-
ent FE formulations, and the difference is bigger when the
nonlinearities (e.g., due to plastic response) are taken into
account. When there is an elastic response, all FE formula-
tions provide basically the same asymptotic values; however,
there are different orders of convergence and error bounds de-
fined by the GCI. When material nonlinearity is also present,
the asymptotic solutions differ for different FE formulations.
Because the asymptotic solution is influenced inherently by
FE formulation, it cannot be considered as the solution of
the mathematical model. The computational performance of
eight node solids in the inelastic calculations is dependent on
the formulation applied in the considered code. This refers
to the several aspects such as approximation of volume in-
tegration and how locking or zero energy modes are pre-
vented.

The GCI concept presented in this paper provides a com-
prehensive and objective procedure for discretization error es-
timation that can be successfully used in structural and solid
mechanics applications of FE analysis.
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