
BULLETIN OF THE POLISH ACADEMY OF SCIENCES

TECHNICAL SCIENCES, Vol. 61, No. 1, 2013

DOI: 10.2478/bpasts-2013-0023

VARIA

A new CUDA-based GPU implementation

of the two-dimensional Athena code

A. WASILJEW and K. MURAWSKI∗

Faculty of Physics, Mathematics and Informatics, University of Maria Curie-Skłodowska,

1 M. Curie-Skłodowskiej Sq., 20-031 Lublin, Poland

Abstract. We present a new version of the Athena code, which solves magnetohydrodynamic equations in two-dimensional space. This

new implementation, which we have named Athena-GPU, uses CUDA architecture to allow the code execution on Graphical Processor Unit

(GPU). The Athena-GPU code is an unofficial, modified version of the Athena code which was originally designed for Central Processor

Unit (CPU) architecture.

We perform numerical tests based on the original Athena-CPU code and its GPU counterpart to make a performance analysis, which

includes execution time, precision differences and accuracy. We narrowed our tests and analysis only to double precision floating point

operations and two-dimensional test cases. Our comparison shows that results are similar for both two versions of the code, which confirms

correctness of our CUDA-based implementation. Our tests reveal that the Athena-GPU code can be 2 to 15-times faster than the Athena-CPU

code, depending on test cases, the size of a problem and hardware configuration.

Key words: CUDA-based GPU implementation, two-dimensional Athena code, magnetohydrodynamic equations.

1. Introduction

High resolution numerical methods for solving equations of

magnetohydrodynamics (MHD) are computationally expen-

sive due to complexity of these equations. Some of the MHD

problems may even require more sophisticated approach as

for example with two-component plasma [1]. Despite these

difficulties there are a number of implementations for solv-

ing MHD equations, such as in Zeus [2], Flash [3], Plu-

to [4], Nirvana [5], Surya [6], and Athena [7] codes. Most

of them use MPI standard [8] to make parallel execution

feasible. In such case a simulation domain is divided in-

to patches, each of which is treated separately, being as-

signed to a different node (processor). Each node performs

computations on its own domain. One of the nodes syn-

chronizes execution and gather results from other nodes.

This common approach is often used by multiprocessor plat-

forms, supercomputers or clusters. Although these comput-

ing systems are very powerful, they are also very expen-

sive.

With the introduction of NVIDIA’s Compute Unified De-

vice Architecture (CUDA) graphic processors became good

alternatives for expensive general purpose computations. CU-

DA allows to perform computations on graphic processors

without using any graphic pipeline. This approach brings

graphic processor unit (GPU) computational power to the sci-

entific community who is not familiar with graphic pipeline

programming. Over the past few years GPUs became very

fast as far as their theoretical performance in arithmetic oper-

ations per second is concerned. It is showed by NVIDIA that

a modern GPU is much more powerful (over 1 TFlops/s) than

a CPU (about 130 GFlops/s), with overwhelming theoretical

memory bandwidth (over 160 GB/s) [9].

Graphic processors are highly specialized in processing

large amount of data in parallel, which requires that the task

for a GPU must be highly parallelized to optimize its per-

formance. As a result, not each problem can be efficiently

implemented on graphic processors. Finite-volume numerical

schemes, devoted to solving fluid equations, seem to be good

candidates for a GPU task [10]. These schemes often use large

amount of data at the grid cells, and values in each cell can

be updated in time. There are a few known examples of MHD

codes which use GPU/CUDA [11, 12].

We aim to implement a GPU support with C for CUDA

into the existing Athena-CPU code [7]. Our paper is struc-

tured as follows. In the next section we overview the existing

Athena-CPU code [13]. In Sec. 3 we describe a new version

of the code that is implemented in C for CUDA. We conclude

this paper by a presentation of the main results in Sec. 4.

2. General characteristic of the existing

Athena-CPU code

The Athena-CPU code [14] solves MHD equations which we

write here for the ideal case in the following form:

∂

∂t











ρ

ρv

B

E











+∇·



















ρv

ρvv + I

((

p +
B

2

2

)

− BB

)

vB − Bv
(

E + p +
B

2

2

)

v − 1

µ
B (v ·B)



















= 0.

(1)

∗e-mail: kmur@kft.umcs.lublin.pl

239

A. Wasiljew and K. Murawski

Here ρ is mass density, v denotes the flow velocity, p is

the gas pressure, B is the magnetic field which must satis-

fy the solenoidal constraint, ∇ · B = 0, µ is magnetic field

permeability and

E =
p

γ − 1
+

ρv2

2
+

B
2

2µ
(2)

is a total energy density, with γ denoting the specific heat

ratio. We set and hold fixed γ = 5/3.

Note that electric field E = −v×B, enters the induction

equation as

∂B

∂t
+ ∇× E = 0. (3)

The Athena-CPU code adopts combination of Corner

Transport Upwind (CTU) algorithm with Constrained Trans-

port (CT) [14]. The former is used to update cell averaged

values while the latter is implied to correct and update mag-

netic field components to satisfy the solenoidal condition. This

condition is crucial for all MHD numerical schemes [15]. The

CTU algorithm was devised as a two-dimensional (2D) variant

of Piecewise Parabolic Method (PPM) of Collela and Wood-

ward [16]. Conserved values in each cell are first updated to

a half time-step. Then these new values are used to calculate

the corrected numerical fluxes, which are adopted to update

cell averaged components to a full time-step. For simplicity

reasons we will further refer to cell averaged components as

the cell centered values. This scheme is well documented by

the authors of the original Athena code [13]. As we were

porting the existing code for CUDA architecture, we briefly

report here on the CPU implementation.

The Athena-CPU code is organized as shown in Fig. 1.

The core of the code is the main loop, which is marked by

the box with dashed line. As we are adopting a 2D version

of the Athena 3.1 code, the most important is a one time-

step integration function, called integrate2d(). This is the

most computationally expensive function which must be used

for iteration over all cells within the computational box. The

block in Fig. 1, containing the integrate2d() function, is

named “Main integration”. The input data for this block is

the actual state of conserved variables in each cell at a given

time-step and the output specifies the updated state for each

cell at a new time-step.

The initial data is prepared and stored in the Grid struc-

ture. Cell centered conserved values are stored in the array

of the Cons1D structure. This array is located under address

pointed by U component of Grid. Values for magnetic field

components located on interfaces between two neighbouring

grid cells are stored in separate arrays pointed by B1i and

B2i variables within the Grid structure.

In the first two steps of the integrate2d() function left

and right states of the conserved state are computed at inter-

faces. These states are stored in 2D arrays named Ul x1Face,

Ur x1Face, Ul x2Face, and Ur x2Face. There are few meth-

ods available for evaluating the interface states in the Athena-

CPU code. We mention the second-order piecewise linear

method (PLM) as it is the only choice in the Athena-GPU

code. The PLM method uses linear interpolation in the prim-

itive variables for spatial reconstruction. The magnetic field

components, located at interfaces, are stored in temporary ar-

rays pointed by B1 x1Face and B2 x2Face. Left and right

states as well as magnetic field components are used to com-

pute the one-dimensional fluxes in the x- and y-directions.

These fluxes are stored in 2D arrays x1Flux and x2Flux. In-

tegration over domain cells is performed twice for each flux,

which has negative impact on a performance of the code. Ad-

ditionally, this code requires a lot of intermediate data allo-

cated in 2D arrays, which may result in some problems while

porting this code for a GPU.

Fig. 1. Simplified flow chart of the Athena-CPU code

In the next two steps the z-component of electromagnet-

ic field is evaluated and then the magnetic fields components

B1 x1Face and B2 x2Face are updated, using the CT scheme

for a half time-step [13]. This needs the additional interme-

diate step, which integrates Ez from cell-centered to corner-

centered quantities. This step requires two additional 2D tem-

porary arrays pointed by emf3 cc (cell-centered) and emf3

(corner-centered) variables. These steps are implemented by

3 separate loops, iterating through all numerical cells.

Steps 5 and 6 of the main integration method advance left

and right states of the conserved variables, stored in arrays

Ul x1Face, Ur x1Face, Ul x2Face, and Ur x2Face, by a

half time-step, using the x1Flux and x2Flux fluxes, which

240 Bull. Pol. Ac.: Tech. 61(1) 2013

A new CUDA-based GPU implementation of the two-dimensional Athena code

we were already evaluated in the first two steps. In each step

there is also the additional loop which adds source terms to

conservative fluxes along the y- and x-directions. Note that

we do not treat the gravity source term in the Athena-GPU.

Step 7 is only needed by the CT algorithm to integrate

emf to a corner in one of the final steps. It is implemented as

one separate loop over numerical grid, which evaluates a cell

centered value of Ez , stored back in the emf3 cc array.

Step 8 recomputes the fluxes x1Flux and x2Flux for

which corrected left- and right-states of the conserved quan-

tities are used. These quantities are evaluated during steps 5

and 6. This part of the code is implemented by two separate

loops over all cells. In the original Athena-CPU code, there

are a few different solvers for computing the fluxes. Howev-

er, in the Athena-GPU code we limit ourselves to the Roe

solver [17]. When the Roe solver fails, the fluxes are comput-

ed using HLLE solver [18].

Step 9 is simply implemented by two loops iterating over

each numerical cell, integrating electromagnetic field to cell

corners, and then updating magnetic field components for a

full time-step with the use of the CT scheme.

The following step is used to update cell centered con-

served variables using fluxes evaluated in step 8. These values

are stored back in the Grid structure. Last step is adopted to

cell centered magnetic field components, using updated val-

ues from step 9. Final steps are implemented by 3 separate

loops, iterating over the whole numerical grid.

After updating the conserved quantities, a time-step is

evaluated from the CFL condition (Fig. 1). Before the inte-

gration function is called, the code sets boundary conditions

along all edges of the simulation region. These conditions are

realized by setting values of ρ,v, p,B within ghost cells. A

user can implement open, periodic and reflected conditions as

well as specifies his/her own boundary conditions.

Note that there are many temporary arrays which must

be allocated before main integration loop starts. These arrays

need to have the same dimensions as numerical grid which

may result in large memory consumption. There are also a

lot of intermediate steps, which are implemented in separate

loops. Each loop iterates over a numerical grid, next loop

could not start until previous is working. In the next section

we show that this consists a challenge while porting a code

for CUDA architecture.

3. GPU implementation into the Athena

code

Athena-GPU code is not a part of official Athena code re-

lease. That is why some functionalities such as different types

of spatial reconstruction, switches for floating point precision

in the code and gravity are not used. We selected basic code

configuration which simplified porting the Athena-CPU code

for a GPU and it included:

1. double precision floating point arithmetic

2. disabled H-correction

3. only MHD is dealt with

4. adiabatic equation of state

5. Roe’s and HLLE Riemann solvers

6. second order spatial reconstruction (PLM)

7. gravity-free case

8. 2D numerical grid

9. no MPI is used

The very first step when implementing a grid-based code

for a GPU is to look at structures which preserve all the data

required for the computation. One of the most important task

is to prepare such C structures that can be allocated in graph-

ic card memory. We also need to copy data between CPU

host and GPU device memories. The Athena-CPU code us-

es extensively multi-dimensional arrays within data structures,

while the CUDA architecture adopts only one-dimensional ar-

rays. To solve this issue we implemented new data structure,

called Grid gpu. This structure contains only 1D arrays point-

ed by its components B1i, B2i, B3i, and U. These compo-

nents represent the same data as in the Grid structure, but the

memory alignment was flattened to one dimension. Thus the

Grid gpu structure can be stored in the graphic card memo-

ry. We implemented new methods to copy data between Grid

and Grid gpu, which convert multi-dimensional arrays from

Grid to one-dimensional arrays in Grid gpu. We also intro-

duced new functions which can allocate device memory for a

numerical grid and other working variables.

Fig. 2. A simplified flow chart of the Athena-GPU code. The main

loop of the code is denoted by dashed line. Green blocks correspond

to functions which are executed on GPUs

Bull. Pol. Ac.: Tech. 61(1) 2013 241

A. Wasiljew and K. Murawski

The next step, while porting any existing CPU code for a

GPU architecture, is to identify parts of the CPU code, which

are computationally expensive and should be reimplemented

for a GPU. Figure 2 illustrates a simplified flow chart of the

Athena-GPU code in which some computations are mapped

on a GPU. The operations performed on a GPU and the new

function which evaluates a time-step, written in C for CUDA,

are marked by green blocks. Some parts of the code which are

denoted by yellow blocks are GPU specific operations which

do not exist in the Athena-CPU code. The remnant parts of

the Athena-CPU code were left intact. The Grid structure is

taken from the Athena-CPU implementation and is used for

a computational domain setting.

At the beginning of the Athena-GPU code we set two ad-

ditional steps. After setting up a numerical grid and initial

data stored in host memory, we allocate the device memory

and make a copy of Grid. From this stage all calculations

are performed by a GPU. Because of high latencies, which

exert a strong impact on the code performance, it is essen-

tial to make as few memory transfer operations between the

host and device as possible. That is why we only transfer data

from the device to host, when we need to store intermediate

simulation results at given time intervals.

The Athena-GPU implementation is based on a set of dif-

ferent kernel functions. Those functions are enclosed by ordi-

nary C functions, which are used in parts of the Athena-CPU

code. To launch the kernel functions we used one-dimensional

threads blocks of constant size BLOCK SIZE that is specified at

the compilation stage. The total number of blocks is evaluated

with the use of a grid size. In an algorithm which is based on

a finite-volume method the plasma quantities can be updated

independently in every numerical cell. We make each thread

in a given kernel working in a particular numerical cell. Some

kernels work on entire 2D grid and some of them work only

on a single row or column. This requires the index of a grid

element on which each thread is working on. Depending on

the dimension of processed data we implemented two types

of indexes which are calculated according to listing 1.

i n t i = blockIdx . x ∗ blockDim . x + threadIdx . x ;

i f (i < is | | i > ie) r e t u r n ;

i n t ind = (blockIdx . x ∗ blockDim . x) + threadIdx . x ;

i n t j = ind / sizex ;

i n t i = ind % sizex ;

i f (i < is | | i > ie | | j < js | | j > je) r e t u r n ;

Listing 1: Index evaluation for 1D (top) and 2D (bottom) cases

Variables blockIdx.x, blockDim.x and threadIdx.x

are predefined in C for CUDA and sizex is the number of

cells in the x-direction. Variables is, ie, js and je are used

for setting limits of cell indexes, which are necessary to pre-

vent accessing memory from outside of the allocated compu-

tational grid. Index evaluation is fairly simple, but accessing

global memory in a non-coalesced way decreases the perfor-

mance. Our implementation stands as the simplest solution

and it could be further optimized.

The core of the Athena-CPU code is the integrate2d()

function which consumes most of CPU time. In the

GPU implementation we renamed this function by

integrate 2d cuda() and mapped it on a GPU. As in the

original code, the first two steps evaluate left- and right-

states at cell interfaces. These states are stored in 2D arrays

named Ul x1Face dev, Ur x1Face dev, Ul x2Face dev

and Ur x2Face dev. Suffix dev indicates that these arrays

are allocated in device memory. They have the same size as

the computational grid and are stored in memory as one-

dimensional memory blocks. The most important function at

this stage is lr states cu 1b dev() (listing 2). This is the

kernel function enclosed within a loop iterating over all rows

(columns) of the numerical grid. Each thread in this kernel

evaluates left- and right-states in primitive variables at a given

cell. Cell index is evaluated based on kernel execution con-

figuration. The main body of this function is essentially the

same as in the Athena-CPU code, starting from step 2 to 9. In

step 2, the eigenvalues in primitive variables must be calculat-

ed by device function named esys prim adb mhd cu dev()

(Listing 3). This function has the same implementation as in

the Athena-CPU code, but has slightly different parameters

list in declaration.

__global__ vo id lr_states_cu_1b_dev(Prim1D∗ W , Real∗ Bxc ,

Real dt , Real dtodx , i n t is , i n t ie , i n t j←֓
, i n t sizex ,

Prim1D∗ Wl , Prim1D∗ Wr , Real Gamma)

{
/ / C e l l i n d e x e v a l u a t i o n

i n t i = blockIdx . x ∗ blockDim . x + threadIdx . x ;

i f ((i < is) | | (i > ie)) r e t u r n ;

i = j∗sizex+i ;

. . .

/ / De f ine working p o i n t e r s used f u r t h e r i n c a l c u l a t i o n s

Real∗ pW_dev = (Real∗)&(W [i]) ; / /W[i]

Real∗ pW_dev_1 = (Real∗)&(W [i−1]) ; / /W[i−1]

Real∗ pW_dev_2 = (Real∗)&(W [i + 1]) ; / /W[i +1]

/∗−−− Step 1 . ←֓
−−

∗ Compute e i g e n s y s t e m in p r i m i t i v e v a r i a b l e s .

∗ Below i s t h e d e v i c e f u n c t i o n , compi led as i n l i n e ! ←֓
∗ /

esys_prim_adb_mhd_cu_dev(W [i] . d , W [i] . Vx , W [i] . P ,

Bxc [i] , W [i] . By , W [i] . Bz , ev , rem , lem , Gamma) ;

/∗−−− Step 2 . t o S tep 9 . a s i n t h e Athena−CPU code ←֓
−−−−−−−

∗ /

}

Listing 2: The lr states cu 1b dev() function

__device__ vo id esys_prim_adb_mhd_cu_dev(c o n s t Real d ,

c o n s t Real v1 , c o n s t Real p ,

c o n s t Real b1 , c o n s t Real b2 , c o n s t Real b3 ,

Real ∗eigenvalues ,

Real ∗rem , Real ∗lem , Real Gamma)

Listing 3: Device function declaration, esys prim adb

mhd cu dev()

Steps 3 and 4 of the original algorithm are implemented

by a set of four kernel functions. The first is emf 3 dev()

which calculates cell centered values of the z-component of

electromagnetic field and stores the result in the emf3 cc dev

242 Bull. Pol. Ac.: Tech. 61(1) 2013

A new CUDA-based GPU implementation of the two-dimensional Athena code

array. Here we used shared memory for transferring the Gas

data from the global memory (listing 4). Then each access to

U shared[threadIdx.x] is faster and at the end the result

can be written back to the global memory.

__global__ vo id emf_3_dev (Real ∗emf3_cc_dev , Gas ∗U , i n t ←֓
is , i n t ie , i n t js , i n t je , i n t sizex)

{
/ / E va l u a t e i nd e x

i n t ind = (blockIdx . x ∗ blockDim . x) + threadIdx . x ;

i n t j = ind / sizex ;

i n t i = ind % sizex ;

i f (i < is | | i > ie | | j < js | | j > je) r e t u r n ;

__shared__ Gas U_shared [BLOCK_SIZE] ;

U_shared [threadIdx . x] = U [ind] ;

/ / Use U sha red [t h r e a d I d x . x] f o r e v a l u a t i o n of ←֓
emf3 cc dev [j∗ s i z e x + i]

. . .

}

Listing 4: The emf 3 dev() function – shared memory usage

Step 4 in the Athena-CPU code is implemented

by the integrate emf3 corner() function and an-

other three loops, which integrate electromagnetic field

to the grid cell corners and then update the inter-

face magnetic fields, using CT for a half time-step.

In the Athena-GPU code we implemented respectively

the following functions: integrate emf3 corner dev(),

updateMagneticField 4a dev, updateMagneticField

4b dev, updateMagneticField 4c dev, which evaluate

B1 x1Face dev and B2 x2Face dev. Their implementation

is straightforward and requires only appropriate cells index-

ing.

The next two steps correct transverse flux gradi-

ents and add MHD source terms, one for the x-

direction and the other for the y-direction. Kernel func-

tions are basically similar in each direction. The function

correctTransverseFluxGradients dev() corrects fluxes

and uses shared memory optimization. We limit the number

of read operation from the global memory by using shared

memory blocks as presented in Listing 5. Each block has its

own shared memory block and each thread uses one cell of

the shared memory, indexed by threadIdx.x.

__global__ vo id correctTransverseFluxGradients_dev(Cons1D←֓
∗Ul_x1Face_dev ,

Cons1D ∗Ur_x1Face_dev , Cons1D ∗x2Flux_dev ,

i n t is , i n t ie , i n t js , i n t je ,

i n t sizex , Real hdtodx2 , Real hdtodx1)

{
/ / Index e v a l u a t i o n

i n t ind = (blockIdx . x ∗ blockDim . x) + threadIdx . x ;

i n t j = ind / sizex ;

i n t i = ind % sizex ;

i f (i < is | | i > ie | | j < js | | j > je) r e t u r n ;

__shared__ Cons1D x2Flux_dev_shared [BLOCK_SIZE] ;

__shared__ Cons1D x2Flux_dev_shared_1[BLOCK_SIZE] ;

__shared__ Cons1D x2Flux_dev_shared_2[BLOCK_SIZE] ;

__shared__ Cons1D x2Flux_dev_shared_3[BLOCK_SIZE] ;

__shared__ Cons1D Ul_x1Face_dev_shared[BLOCK_SIZE] ;

__shared__ Cons1D Ur_x1Face_dev_shared[BLOCK_SIZE] ;

/ / Load d a t a t o s h a r e d memory

x2Flux_dev_shared [threadIdx . x] = x2Flux_dev [ind+sizex←֓
−1];

x2Flux_dev_shared_1 [threadIdx . x] = x2Flux_dev [ind−1];

x2Flux_dev_shared_2 [threadIdx . x] = x2Flux_dev [ind+sizex←֓
] ;

x2Flux_dev_shared_3 [threadIdx . x] = x2Flux_dev [ind] ;

Ul_x1Face_dev_shared [threadIdx . x] = Ul_x1Face_dev [ind] ;

Ur_x1Face_dev_shared [threadIdx . x] = Ur_x1Face_dev [ind] ;

. . .

/ / Pe r fo rm c a l c u l a t i o n s u s i ng i nde x t h r e a d I d x . x i n ←֓
s h a r e d b l o c k

. . .

/ / S t o r e back t o g l o b a l memory

Ul_x1Face_dev [ind] = Ul_x1Face_dev_shared[threadIdx . x] ;

Ur_x1Face_dev [ind] = Ur_x1Face_dev_shared[threadIdx . x] ;

}

Listing 5: The correctTransverseFluxGradients dev()

function – shared memory usage

MHD source terms are added in the addMHDSourceTerms

dev() function, where we also used shared memory defined

in Listing 6. Because there is a limited shared memory amount

for each thread block (depending on hardware capabilities) we

need to set BLOCK SIZE carefully, not to exceed physical lim-

its for the target graphic card.

__global__ vo id addMHDSourceTerms_dev (Cons1D ∗←֓
Ul_x1Face_dev ,

Cons1D ∗Ur_x1Face_dev ,

Gas ∗U , Real ∗B1i , i n t is , i n t ie , i n t js , i n t je ,

i n t sizex , Real hdtodx2 , Real hdtodx1)

{
/ / E va l u a t e i nd e x

i n t ind = (blockIdx . x ∗ blockDim . x) + threadIdx . x ;

i n t j = ind / sizex ;

i n t i = ind % sizex ;

i f (i < is | | i > ie | | j < js | | j > je) r e t u r n ;

/ / De c l a r e s h a r e d b l o c k

__shared__ Real dbx [BLOCK_SIZE] ;

__shared__ Real B1 [BLOCK_SIZE] ;

__shared__ Real B2 [BLOCK_SIZE] ;

__shared__ Real B3 [BLOCK_SIZE] ;

__shared__ Real V3 [BLOCK_SIZE] ;

__shared__ Gas U_shared [BLOCK_SIZE] ;

__shared__ Gas U_shared_1 [BLOCK_SIZE] ;

__shared__ Cons1D Ul_x1Face_dev_shared[BLOCK_SIZE] ;

__shared__ Cons1D Ur_x1Face_dev_shared[BLOCK_SIZE] ;

/ / Load s ha r e d d a t a

U_shared [threadIdx . x] = U [ind−1];

U_shared_1 [threadIdx . x] = U [ind] ;

Ul_x1Face_dev_shared [threadIdx . x] = Ul_x1Face_dev [ind] ;

Ur_x1Face_dev_shared [threadIdx . x] = Ur_x1Face_dev [ind] ;

/ / Pe r fo rm c a l c u l a t i o n s u s i ng s h a r e d d a t a b l o c k s

. . .

/ / S t o r e d a t a t o g l o b a l memory

Ul_x1Face_dev [ind] = Ul_x1Face_dev_shared[threadIdx . x] ;

Ur_x1Face_dev [ind] = Ur_x1Face_dev_shared[threadIdx . x] ;

}

Listing 6: Shared memory blocks in the addMHDSource

Terms dev() kernel function – shared memory usage

Step 7 is implemented in the Athena-GPU by the two

separate kernel functions named dhalf init dev() and

cc emf3 dev() which replace four loops from the Athena-

CPU code. Both of them evaluate emf3 cc dev just as in the

Athena-CPU is evaluated emf3 cc. It is noteworthy that in

case of the cc emf3 dev() function we use device shared

memory (listing 7).

Bull. Pol. Ac.: Tech. 61(1) 2013 243

A. Wasiljew and K. Murawski

__global__ vo id cc_emf3_dev (Real∗ dhalf_dev , Cons1D ∗←֓
x1Flux_dev ,

Cons1D ∗x2Flux_dev , Real ∗B1_x1Face_dev , Real ∗←֓
B2_x2Face_dev ,

Real ∗emf3_cc_dev , Grid_gpu ∗pG , Gas ∗U ,

i n t is , i n t ie , i n t js , i n t je , i n t sizex ,

Real hdtodx1 , Real hdtodx2)

{
/ / E va l u a t e i nd e x

i n t ind = (blockIdx . x ∗ blockDim . x) + threadIdx . x ;

i n t j = ind / sizex ;

i n t i = ind % sizex ;

/∗ Check bounds ∗ /

i f (i < is | | i > ie | | j < js | | j > je) r e t u r n ;

/ / De f ine s h a r e d b l o c k s

__shared__ Real d [BLOCK_SIZE] ;

__shared__ Real M1 [BLOCK_SIZE] ;

__shared__ Real M2 [BLOCK_SIZE] ;

__shared__ Real B1c [BLOCK_SIZE] ;

__shared__ Real B2c [BLOCK_SIZE] ;

__shared__ Cons1D x1Flux_dev_shared [BLOCK_SIZE] ;

__shared__ Cons1D x1Flux_dev_shared_1[BLOCK_SIZE] ;

__shared__ Cons1D x2Flux_dev_shared [BLOCK_SIZE] ;

__shared__ Cons1D x2Flux_dev_shared_1[BLOCK_SIZE] ;

__shared__ Gas U_shared [BLOCK_SIZE] ;

/ / Load s ha r e d memory

x1Flux_dev_shared [threadIdx . x] = x1Flux_dev [ind] ;

x1Flux_dev_shared_1 [threadIdx . x] = x1Flux_dev [ind + 1] ;

x2Flux_dev_shared [threadIdx . x] = x2Flux_dev [ind] ;

x2Flux_dev_shared_1 [threadIdx . x] = x2Flux_dev [ind+sizex←֓
] ;

U_shared [threadIdx . x] = U [ind] ;

d [threadIdx . x] = dhalf_dev [ind] ;

/ / Pe r fo rm c a l c u l a t i o n s

. . .

/ / S t o r e back r e s u l t t o g l o b a l memory emf3 cc dev [i nd]

. . .

}

Listing 7: Shared memory blocks in the cc emf3 dev()

kernel function

In step 8 we calculate fluxes from corrected left- and right-

states from previous steps. We implemented two similar kernel

functions Cons1D to Prim1D Slice1D 8b() and

Cons1D to Prim1D Slice1D 8c() to perform this task

(listing 8). Both of them use the device function,

flux roe cu dev(), to perform flux evaluation. The results

are stored in x1Flux dev and x2Flux dev.

__global__ vo id Cons1D_to_Prim1D_Slice1D_8b (Cons1D ∗←֓
Ul_x1Face_dev ,

Cons1D ∗Ur_x1Face_dev , Prim1D ∗Wl_dev , Prim1D ∗Wr_dev←֓
,

Real ∗B1_x1Face_dev , Cons1D ∗x1Flux_dev ,

i n t is , i n t ie , i n t js , i n t je , i n t sizex ,

Real Gamma_1 , Real Gamma_2) {

/ / Index e v a l u a t i o n

. . .

/∗ Main a l g o r i t h m ∗ /

Cons1D_to_Prim1D_cu_dev(&Ul_x1Face_dev [ind] ,&Wl_dev [ind←֓
] ,

&B1_x1Face_dev [ind] , Gamma_1) ;

Cons1D_to_Prim1D_cu_dev(&Ur_x1Face_dev [ind] ,&Wr_dev [ind←֓
] ,

&B1_x1Face_dev [ind] , Gamma_1) ;

flux_roe_cu_dev (Ul_x1Face_dev [ind] , Ur_x1Face_dev [ind] ,←֓
Wl_dev [ind] ,

Wr_dev [ind] , B1_x1Face_dev [ind] ,&x1Flux_dev [ind] , ←֓
Gamma_1 ,

Gamma_2) ;

}

__global__ vo id Cons1D_to_Prim1D_Slice1D_8c (Cons1D ∗←֓
Ul_x2Face_dev ,

Cons1D ∗Ur_x2Face_dev , Prim1D ∗Wl_dev , Prim1D ∗Wr_dev←֓
,

Real ∗B2_x2Face_dev , Cons1D ∗x2Flux_dev ,

i n t is , i n t ie , i n t js , i n t je , i n t sizex ,

Real Gamma_1 , Real Gamma_2) {
i n t i = (blockIdx . x ∗ blockDim . x) + threadIdx . x ;

i n t j ;

calculateIndexes2D(&i , &j , sizex) ;

/ / Index e v a l u a t i o n

. . .

/∗ Main a l g o r i t h m ∗ /

Cons1D_to_Prim1D_cu_dev(&Ul_x2Face_dev [ind] ,&Wl_dev [ind←֓
] ,

&B2_x2Face_dev [ind] , Gamma_1) ;

Cons1D_to_Prim1D_cu_dev(&Ur_x2Face_dev [ind] ,&Wr_dev [ind←֓
] ,

&B2_x2Face_dev [ind] , Gamma_1) ;

flux_roe_cu_dev (Ul_x2Face_dev [ind] , Ur_x2Face_dev [ind] ,←֓
Wl_dev [ind] ,

Wr_dev [ind] , B2_x2Face_dev [ind] , x2Flux_dev+ind ,

Gamma_1 , Gamma_2) ;

}

Listing 8: Th kernel functions for evaluating fluxes in step 8

of the main algorithm

The flux roe cu dev() function is based on

flux roe() from the Athena-CPU code, but it is defined

as the device function, thus can be used within the kernel

functions. The same way we implemented the device func-

tion, flux hlle cu dev(), which is used when Roe’s flux

evaluation fails.

Step 9 of the main integration function is very similar to

step 4. We used the four separate kernel functions as in step

4 to update the interface magnetic fields using CT for a full

time-step.

The final two steps update cell centered conserved vari-

ables for a full time-step (using x1Flux dev and x2Flux dev

fluxes) and cell centered magnetic field (using updated face

centered fields). This is performed by the three separate kernel

functions: update cc x1 Flux(), update cc x2 Flux(),

and update cc mf(). Their implementation is based on the

Athena-CPU source code. We converted each loop from orig-

inal code to the corresponding kernel functions. Each thread

within kernel works on a single grid cell and perform single

update.

The main integration function, integrate 2d cuda(),

which is built by above sequence of the kernel functions exe-

cutions, can be called from the host code. As a result we get

Grid gpu structure updated for a full time-step.

After evaluating conserved values at a new time-step,

the Athena-GPU code calculates next time-step from the

CFL condition. To avoid unnecessary memory copies be-

tween the host and device memories, we implemented time-

step calculation on a GPU (Fig. 2). The main scheme from

the Athena-CPU code is based on finding a minimum of

the time-step, ∆t, based on wave speeds in each numeri-

cal cell. The new dt cuda() function uses the two kernel

244 Bull. Pol. Ac.: Tech. 61(1) 2013

A new CUDA-based GPU implementation of the two-dimensional Athena code

functions to find the time-step, ∆t. The first kernel function,

new dt 1Step cuda kernel(), evaluates 1/∆ti in each grid

cell. The second kernel function, get max dti() searches

for a maximum value of 1/∆ti (listing 9). It is noteworthy

that we need to copy only one single double precision value

from the device memory located in the first element of the

max dti array array. Thus time-step evaluation performed

on a GPU can be very fast and next ∆t is available for the

CPU code.

__global__ vo id get_max_dti (i n t N , i n t n , Real ∗←֓
max_dti_array) {

i n t i = (blockIdx . x ∗ blockDim . x) + threadIdx . x ;

i n t i1 = (1 << n) ∗ i ;

i n t i2 = i1 + (1 << (n −1)) ;

i f (i2 < N) {
max_dti_array [i1] = MAX (max_dti_array [i1] , ←֓

max_dti_array [i2]) ;

}
}

e x t e r n ”C” vo id new_dt_cuda (Grid_gpu ∗pGrid , Real Gamma , ←֓
Real Gamma_1 , Real CourNo)

{
i n t sizex = pGrid−>Nx1+2∗nghost ;

i n t sizey = pGrid−>Nx2+2∗nghost ;

i n t nnBlocks = (sizex∗sizey) / (BLOCK_SIZE) +

((sizex∗sizey) % (BLOCK_SIZE) ? 1 : 0) ;

/ / C a l c u l a t e i n i t i a l d a t a

new_dt_1Step_cuda_kernel<<<nnBlocks , BLOCK_SIZE>>>(←֓
pGrid−>U , pGrid−>B1i , pGrid−>B2i ,

pGrid−>B3i , pGrid−>is , pGrid−>ie , pGrid−>←֓
js , pGrid−>je , sizex , max_dti_array ,

Gamma , Gamma_1 , pGrid−>dx1 , pGrid−>dx2 , ←֓
pGrid−>Nx1 , pGrid−>Nx2) ;

i n t n = 1 ;

i n t N = sizex∗sizey / (1 << n) + (sizex∗sizey) % (1 ←֓
<< n) ; / / How many t h r e a d s

nnBlocks = N / BLOCK_SIZE + (N % BLOCK_SIZE ? 1 : 0) ;

/ / E va l u a t e maximum

wh i l e (N > 1) {
get_max_dti<<<nnBlocks , BLOCK_SIZE>>>(sizex∗sizey ,←֓

n , max_dti_array) ;

n++;

N = sizex∗sizey / (1 << n) + ((sizex∗sizey) % (1 ←֓
<< n) ? 1 : 0) ; / / How many t h r e a d s

nnBlocks = N / BLOCK_SIZE + (N % BLOCK_SIZE ? 1 : ←֓
0) ;

}
/∗ Copy m a x d t i a r r a y [0] a s maximum ∗ /

Real max_dti ;

cudaMemcpy(&max_dti , max_dti_array , s i z e o f (Real) , ←֓
cudaMemcpyDeviceToHost) ;

/ / C a l c u l a t e new d t based on CourNo and ma x d t i

. . .

}

Listing 9: New time-step calculation new dt cuda() and its

kernel function, get max dti()

The last part of the Athena-CPU code, which we reim-

plemented for a GPU, concerns boundary conditions. The

Athena-GPU implementation of the set bvals cu() func-

tion is very simple. We implemented only periodic boundary

conditions as a set of the kernel functions which operate on

the Grid gpu structure. The example of one of those ker-

nel functions is presented in listing 10. The main idea is to

copy appropriate cell values from the edges to adjacent ghost

cells.

__global__ vo id periodic_ix1_cu_step1 (Gas ∗U , Real ∗B1i , ←֓
i n t js ,

i n t je , i n t is , i n t ie , i n t sizex)

{

/∗ C a l c u l a t e and check i nde x ∗ /

i n t j = blockIdx . x ∗ blockDim . x + threadIdx . x ;

i f (j < js | | j > je) r e t u r n ;

f o r (i n t i = 1 ; i <= nghost ; i++) {
U [j∗sizex+(is − i)] . d = U [j∗sizex +(ie − (i − 1))←֓

] . d ;

U [j∗sizex+(is − i)] . M1 = U [j∗sizex +(ie − (i − 1))←֓
] . M1 ;

U [j∗sizex+(is − i)] . M2 = U [j∗sizex +(ie − (i − 1))←֓
] . M2 ;

U [j∗sizex+(is − i)] . M3 = U [j∗sizex +(ie − (i − 1))←֓
] . M3 ;

U [j∗sizex+(is − i)] . E = U [j∗sizex +(ie − (i − 1))←֓
] . E ;

U [j∗sizex+(is − i)] . B1c = U [j∗sizex +(ie − (i − 1)←֓
)] . B1c ;

U [j∗sizex+(is − i)] . B2c = U [j∗sizex +(ie − (i − 1)←֓
)] . B2c ;

U [j∗sizex+(is − i)] . B3c = U [j∗sizex +(ie − (i − 1)←֓
)] . B3c ;

B1i [j∗sizex +(is−i)] = B1i [j∗sizex +(ie−(i−1))] ;

}
}

Listing 10: The kernel function for evaluating periodic

boundary conditions on the left side of the x-direction

The main loop of the Athena-GPU code, denoted by red

dashed line in Fig. 2, is essentially executed on a GPU. On-

ly at given time-steps we need to perform a copy from the

Grid gpu to Grid structures in order to save intermediate

results of simulations for further analysis. Thus a GPU can

handle the most expensive computationally calculations while

a CPU is responsible only for writing results and scheduling

execution of the kernel functions.

The Athena-GPU code is a simple port of the Athena-

CPU code. We did not focus on optimization, but rather on a

simplicity of implementation. Some of the device and kernel

functions are almost exactly the same as in the original code

for a CPU. The kernel function is executed as a group of si-

multaneously running threads, so the loops from a CPU code

needed to be converted. In each kernel we evaluate cell index

for each thread and we need to specify correct execution con-

figuration for each kernel function call. Some of the kernels

use shared memory, but the access to that memory could be

further optimized. The Athena-GPU code was used for test

cases we describe in details in the following section.

4. Numerical tests and performance analysis

of the Athena-GPU code

We use four test platforms to compare performance of the

Athena-GPU and Athena-GPU codes. Summary of these test

platforms is presented in Table 1. In a parallel execution on

GPUs the number of CUDA threads depends upon grid res-

olution and kernel execution configuration. For many core

processors and parallel execution on a CPU we run MPI. For

the Athena-GPU code we use CUDA Toolkit 3.1, which in-

cludes CUDA C/C++ compiler. We adopt default compiler

options with the additional flag, -arch=sm 13, which enables

double precision support.

Bull. Pol. Ac.: Tech. 61(1) 2013 245

A. Wasiljew and K. Murawski

Table 1

Test processors and parallel execution configuration

Processor Model Cores Threads Memory

GPU1 GTX460 (GF114) 336 (SP) (1.55 GHz) CUDA threads 1024 GDDR5 (128.0 GB/s)

GPU2 GTX260 (GT200b) 216 (SP) (1.242 GHz) CUDA threads 896 GDDR3 (111.9 GB/s)

CPU1 Core i7 930 4 (2.8 GHz) 4 (MPI processes) 8GB DDR3

CPU2 C2D E5200 2 (2.5 GHz) 1 (Single process) 4GB DDR2

The first test case is the magnetic field loop advection,

originated from the Athena-CPU code [13]. The simulation

region is defined as (−1.0, 1.0) × (−0.5, 0.5) along the x−
and y−directions. A numerical grid is chosen to satisfy geom-

etry constraint 2N×N , where N is the number of cells along

the y−direction. Numerical runs are performed for N varying

from N = 200 to N = 500. The initial velocity components

are vx = v0 cos(θ), vy = v0 sin(θ), vz = 0, with the θ angle

such as cos(θ) = 2/
√

5 and sin(θ) = 1/
√

5. The remaining

initial parameters are mass density ρ = 1, gas pressure p = 1
and the base advection speed, v0 =

√
5. Initial magnetic field

components [Bx, By] = ∇ × Aẑ. Here ẑ is the unit vector

along the z-axis and A is the magnetic flux function,

A =

{

A0(R − r), r ≤ R,

0, r > R,
(4)

with r =
√

x2 + y2. We set A0 = 10−3 and radius R = 0.3.

For this test case we select periodic boundary conditions.

Spatial profiles of the z-component of the current density,

jz = 1

µ
(∇×B)z , are shown at t = 0.8 in Fig. 3. The magnet-

ic field loop advection test verifies whether the code satisfies

∇·B = 0 condition, which means that the loop shape should

remain unaltered in time. Figure 3 reveals that the profiles

of jz look identically for the Athena-GPU and Athena-CPU

codes.

The second test is associated with blast waves and is also

taken from the Athena-CPU repositories [13]. The simulation

domain spans over the domain (−0.75, 0.75) × (−0.5, 0.5),
with the periodic boundary conditions at its four edges. This

domain is covered by 1.5N × N grid points, where N is the

grid resolution along the y−direction. We perform runs for N
varying from N = 150 to N = 500. Initially, at t = 0, we set

ρ = 1, v = 0, and Bx = By = 10/
√

2, Bz = 0. In the center

of the simulation region we launch a Gaussian pulse in the gas

pressure, p = P exp[−(x2 +y2)/2R2] with radius R = 0.125
and P = 100. As a result of that the plasma β in the ambi-

ent medium is β = 2µP/B2 = 2, while at (x = 0, y = 0)
β = 200. The initial pulse triggers blast waves. Figure 4 il-

lustrates mass density profiles at t = 0.2 obtained with the

Athena-CPU (left) and Athena-GPU (right) codes. As these

profiles look identical we infer that the GPU version of the

code leads to same results as its CPU counterpart.

a) b)

Fig. 3. The z-component of the current density, jz = 1

µ
(∇× B)

z
, for the field loop problem obtained with the Athena-CPU (left) and

Athena-GPU (right) codes for the 500 × 250 grid points and the linear colour map (−0.04, 0.08)

a) b)

Fig. 4. Mass density profiles for the blast waves problem obtained with the Athena-CPU (left) and Athena-GPU (right) codes for 450× 300
grid points and the linear colour map (0.06, 4.4)

246 Bull. Pol. Ac.: Tech. 61(1) 2013

A new CUDA-based GPU implementation of the two-dimensional Athena code

Fig. 5. Magnetic field Bx (By) component along y = 0 at t = 0.8 for the grid resolution 500×250 at top-left (top-right) panel and absolute

difference between the CPU and GPU results at bottom-left (bottom-right) panel for the field loop problem

Fig. 6. Mass density (top-left) profiles and momentum density ρvx (top-right) along y = 0 at t = 0.2 for grid resolution 450 × 300 for the

blast waves problem. The corresponding absolute difference between the CPU and GPU results are displayed in bottom panels

Figures 5 and 6 compare the results in more details. In

top panels slices of given profiles along y = 0 are present-

ed. The results from CPU and GPU look identical and they

are illustrated by single line. Bottom panels of Figs. 5 and 6

present absolute difference between the results obtained with

the Athena-CPU and Athena-GPU codes. In the case of the

field loop problem (Fig. 5) there is a difference of an order of

10−9 while for the blast wave (Fig. 6) the difference is about

Bull. Pol. Ac.: Tech. 61(1) 2013 247

A. Wasiljew and K. Murawski

10−4. At steeper profiles the differences become larger, while

in places where the profile is smoother, these differences be-

come smaller.

These results, obtained with the Athena-CPU and Athena-

GPU codes, look nearly identical as illustrated in Figs. 3 and 4.

The more accurate analysis shown in Figs. 5 and 6 reveal small

absolute differences between these results. These differences

result from the fact that the GPU floating point arithmetic is

not fully IEEE754 standard compliant and there are some de-

viations from this standard. Ordering of floating point math,

which is not associative, is also important. The CUDA com-

piler can make optimisation for multiplication and addition

operations and convert them into one multiply-add operation

(FMAD) or fused multiply-add (FMA) which also change the

precision of calculations. The use of double precision on a

GPU make results more precise, but does not resolve the prob-

lem. Because of these facts, differences in results are present

and they are more prominent for steep profiles. Indeed Figs. 5

and 6 shows that absolute difference between results is larger

at steeper profiles.

We made the performance tests based on computer run-

ning times (∆tr) of the Athena-GPU and Athena-CPU codes.

Note that the Athena-GPU code includes device memory ini-

tialization and memory transfers between the host and device.

We run the Athena-CPU code on 4 MPI processes, each work-

ing on a part of the whole domain. Running times are sum-

marized in Tables 2 and 3. In both cases the shortest running

times are for GPU1 which is based on Fermi architecture [19].

For the Athena-CPU code ∆tr is shortest for the CPU1. This

is because it runs 4 parallel MPI processes and CPU2 is the-

oretically slower in terms of Flops. However, ∆tr for CPU1

is only about 3 times shorter than for CPU2. Running times

from columns GPU2 and CPU2 are nearly equal in case of

low numerical grid resolution. This is true up to the 600×300
grid resolution for the magnetic field loop advection and up to

450× 300 for the blast waves problem. Comparing in general

∆tr from the Athena-CPU and Athena-GPU codes, we infer

that in both test cases GPUs performance is better for a finer

grid.

Table 2

Simulation times for the magnetic field loop advection test

Grid GPU1 [s] GPU2 [s] CPU1 [s] CPU2 [s]

400x200 228.46 506,39 521,65 1693,90

500x250 374.23 823,79 1063,45 3303,53

600x300 589.73 1407,85 1789,13 5752,37

700x350 847.92 1773,98 2880,91 9067,04

800x400 1174.32 2441,64 4340,89 13576,60

900x450 1556.99 3228,03 6211,21 19450,82

1000x500 2012.64 4577,01 8601,99 27203,85

Table 3

Simulation times for the blast problem

Grid GPU1 [s] GPU2 [s] CPU1 [s] CPU2 [s]

225x150 48.25 111,38 89,59 337,06

300x200 95.81 208,72 223,27 797,09

375x250 155.84 342,5 440,08 1553,56

450x300 246.04 519,66 764,22 2701,72

525x350 352.09 745,1 1202,47 4300,76

600x400 486.14 1128,37 1800,08 6463,29

750x500 838.45 1751,91 3540,67 12703,60

In Fig. 7 we compare ∆tr. In both cases, the blast and

field loop advection problems, ∆tr grows with the size of a

numerical grid. In the case of a low resolution grid, ∆tr does

not vary much with the test platforms. However, differences

in ∆tr become more significant for a finer grid and ∆tr for

the Athena-GPU code does not grow that much as for the

Athena-CPU code.

We measure the ratio of code running times,

s = ∆tr(CPUx)/∆tr(GPUy), (5)

as a relative speed-up of the Athena-GPU code, where x and

y denote a type of chip specified in Table 1. In both cases s
grows with a grid resolution (Fig. 8). This growth is almost

linear. Comparing the serial Athena code with the Athena-

GPU code we infer that for the finest grid, the latter is almost

14 times faster in the loop problem and over 15 times faster

in the blast problem. For the finest grid four MPI processes

are about 4 times (for the blast problem) and 3 times (for the

loop problem) slower compared to the Athena-GPU running

on GTX460.

As it is shown in Figs. 7 and 8, ∆tr grows with a grid

resolution. Obviously the Athena-GPU code performs better

for a finer grid. The Athena-CPU works better with the use

of MPI but its performance decreases faster than the Athena-

GPU for a finer grid. This is because the number of MPI

processes is relatively small, thus the simulation domain is

divided into large sub domains. As a result, for each MPI

process we are more likely to saturate maximum performance

for each CPU core. The Athena-GPU makes use of a highly

parallel architecture of a GPU which allows to run a large

number of independent threads. This leads to a growth of

performance with the size of the problem because when more

grid points are needed to be updated more threads within

the kernel function are used. A more powerful GPU is, more

threads can be run simultaneously and the kernel function is

executed more efficiently. We also infer that for problems with

a low grid resolution, ∆tr remains essentially same for the

Athena-GPU and Athena-CPU codes. In some cases ∆tr for

the Athena-GPU code is larger than for the Athena-CPU code.

This confirms that a GPU performs better for more complex

problems with a larger simulation box and finer grid.

248 Bull. Pol. Ac.: Tech. 61(1) 2013

A new CUDA-based GPU implementation of the two-dimensional Athena code

Fig. 7. Computer running time for the field loop (left panel) and blast wave (right panel) problems vs. grid resolution

Fig. 8. Relative speed-up of the Athena-GPU code for the field loop (left panel) and blast (right panel) problems vs. grid resolution

5. Summary

In this paper we have presented a new (albeit unofficial) im-

plementation of the Athena-GPU code which can be run on

NVIDIA CUDA GPUs. A performance analysis of this code

shows that GPUs are capable to run complex physical prob-

lems such as magnetohydrodynamics [15]. We also made re-

sults correctness comparison between the Athena-CPU and

Athena-GPU codes and showed that it is acceptable for the

double precision. In order to show that performance could

be much better on a GPU than on its CPU counterpart we

measured computation running time. For a double precision

calculations made by a GPU, running times become shortest

for Fermi architecture. By taking into account a scalable archi-

tecture of CUDA GPUs the Athena-GPU could perform even

better on the newest versions of NIVIDA’s graphic chips. Per-

forming physical simulations with the use of a GPU allows us

to run more complex problems in short time, which is cheaper

than using expensive CPU platforms.

The Athena-GPU code may be extended to three-

dimensional problems and optimized for the Fermi architec-

ture. This is a formidable task as a significant amount of

memory would be required for running simulations. There is

also possibility to extend the Athena-GPU code to use mul-

tiple graphic cards simultaneously similarly to MPI multiple

processes, increasing by this way performance of the code.

See, e.g. [20].

Acknowledgements. The authors express their cordial thanks

to Prof. James Stone for his comment on the earlier version

of this draft.

REFERENCES

[1] K. Murawski and T. Tanaka, “Godunov-type methods for two-

component magnetohydrodynamic equations”, Bull. Pol. Ac.:

Tech. 60 (2), 343–348 (2012).

[2] http://www.astro.princeton.edu/∼jstone/zeus.html

(2011).

[3] http://flash.uchicago.edu/website/home (2011).

Bull. Pol. Ac.: Tech. 61(1) 2013 249

A. Wasiljew and K. Murawski

[4] http://plutocode.ph.unito.it/ (2011).

[5] http://nirvana-code.aip.de/ (2011).

[6] http://folk.uio.no/mcmurry/amhd/ (2011).

[7] https://trac.princeton.edu/Athena (2011).

[8] http://www.mcs.anl.gov/research/projects/mpi

(2011).

[9] NVIDIA, NVIDIA CUDA Programming Guide 3.1, NVIDIA

(2010).

[10] H. Schive, Y. Tsai, and T. Chiueh, “GAMER: a graphic

processing unit accelerated adaptive-mesh-refinement code for

astrophysics”, Astrophys. J. Suppl. 186, 457–484 (2010).

[11] B. Pang, U. Pen, and M. Perrone, “Magnetohydrodynamics

on Heterogeneous architectures: a performance comparison”,

CoRR, abs/1004.1680 (2010).

[12] H.-C. Wong, U.-H. Wong, X. Feng, and Z. Tang, “Effi-

cient magnetohydrodynamic simulations on graphics process-

ing units with CUDA”, eprint arXiv:0908.4362 (2009).

[13] J.M. Stone, T.A. Gardiner, P. Teuben, J.F. Hawley, and J.B. Si-

mon, “Athena: a new code for astrophysical MHD”, Astrophys.

J. Suppl. 178 (1), 137–177 (2008).

[14] T.A. Gardiner and J.M. Stone, “An unsplit Godunov method

for ideal MHD via constrained transport”, J. Comp. Phys. 205

(2), 509–539 (2005).

[15] K. Murawski, “Numerical solutions of magnetohydrodynamic

equations”, Bull. Pol. Ac.: Tech. 59 (1), 1–8 (2011).

[16] P. Colella and P.R. Woodward, “The Piecewise Parabolic

Method (PPM) for gas-dynamical simulations”, J. Comp. Phys.

54 (1), 174–201 (1984).

[17] P.L. Roe, “Approximate Riemann solvers, parameter vectors,

and difference schemes”, J. Comp. Phys. 43 (2), 357–372

(1981).

[18] B. Einfeldt, C.D. Munz, P.L. Roe, and B. Sjogreen, “On

Godunov-type methods near low densities”, J. Comput. Phys.

92 (2), 273–295 (1991).

[19] NVIDIA, Whitepaper. NVIDIA Next Generation CUDA Com-

pute Architecture: Fermi, NVIDIA (2009).

[20] K. Murawski, K. Murawski Jr., and H.-Y. Schive, “Numerical

simulations of acoustic waves with the graphic acceleration

GAMER code”, Bull. Pol. Ac.: Tech. 60 (4), 787–792 (2012).

250 Bull. Pol. Ac.: Tech. 61(1) 2013

