
Archives of Control Sciences
Volume 25(LXI), 2015
No. 2, pages 215–225

Parametric programming of industrial robots

PAWEŁ SZULCZYŃSKI and KRZYSZTOF KOZŁOWSKI

This article proposes the use of parametric design software, commonly used by architects,
in order to obtain complex trajectory and program code for industrial robots. The paper de-
scribes the drawbacks of existing solutions and proposes a new script to obtain a correct pro-
gram. The result of the algorithm was verified experimentally.

Key words: robotics, robot programming, CAAD/CAM, parametric design.

1. Introduction

Industrial robots supersede human in difficult, tedious, repetitive and sometimes dan-
gerous activities. They can be found mainly in large factories engaged in mass series
production. 50 years have passed since the first use of a robot in the industry to the cre-
ation of today’s robotized stations. The dynamic development of robots and their control
systems has increased theirreliability and reduced their prices. Robots are no longer ex-
pensive devices and have become tools used in most factories all over the world, where
they deal with welding, painting, assembling, milling, packaging, palletizing and so on.
The possibility of programming the robots in any way and their general availability con-
tribute to the need of exploring new areas of their applications [7, 13, 6].

This multifunctionality of industrial robots has also been recognized by architects
and designers [1, 2, 4, 11], who have encountered problems with the accomplishment
of their projects created in programs such as CAAD (Computer Aided Architectural
Design). Modern CAAD systems allow designing various types of models, the shape of
which depends on the adopted parameters. This makes it possible to change or manage
designed forms easily [5]. However, transferring these changes to the CAM (Computer
Aided Manufacturing) remains a problem.

This paper presents the existing test solutions for CAAD systems that are not devoid
of drawbacks. Then the authors’ module is proposed and the result of its works is verified
experimentally.

The Authors are with Poznan University of Technology, ul. Piotrowo 3a, 60-965 Poznan, Poland. E-
mails: {firstname.lastname}@put.poznan.pl

Received 12.11.2014. Revised 20.04.2015.

216 P. SZULCZYŃSKI, K. KOZŁOWSKI

2. Parametric programming

2.1. Robot programming

Programming of industrial robots is generally done in two ways: online and offline.
The first method involves teaching by showing, i.e. the operator moves the robot by hand
to the required positions and then logs these positions into the memory. An offline pro-
gramming is done in special programs in which the robot’s movements are determined
on the basis of specified geometry. This is translated into the language of programming
of the robot and then saved in a file. The file prepared in this way must be transferred to
the control system of the robot and then executed.

The study was based on KUKA robots Agilus (KR 6 sixx R900). These robots are
programmed in KRL (KUKA Robot Language), which in its general structure is similar
to Pascal. The main difference is the program code is divided into two files. The first
file with the extension *.src contains the structure of the program which includes mo-
tion commands, loops, declarations of local variables, arithmetic, etc. The second file
contains mainly declarations of points and the associated additional information. The
location point is stored in the coordinate axis (AXIS) or Cartesian coordinates (POS),
where the orientation is expressed by Euler angles (RPY). For movement between two
points PTP commands (fastest movement from point to point) and LIN (movement along
the shortest path) are used.

2.2. Parametric programming

One of the most popular tools for parametric programming, used by architects, is
Rhinoceros - a free addition to the CAD program Grasshopper. It allows parameterizing
graphic design and producing virtually any shape obtained by using all available mathe-
matical tools. This type of design is often used for analyzing sunlight, natural, unforced
ventilation or communication in large buildings. It is also employed in modern design to
generate natural curved shapes. Parametric project is dependent on certain checkpoints
and therefore any changes in design or appearance are not labor-intensive.

2.3. Parametric robot programming

One of the possibilities of combining parametric programming with the program-
ming of KUKA robots is to use the module KUKA|prc [3]. This module enables visual-
izing the robot model in a graphical environment Rhinoceros (Rhino). The programming
itself is done in Grasshopper’s add-on where the reference trajectory is generated using
the available blocks or can be directly drawn from Rhino. In addition, the module allows
defining the size of the robot or tool dimensions and detects whether the robot reaches
the preset points.

The result of the module KUKA | prc file is *.src written in KRL. An example of a
program that uses the module KUKA | prc is shown in Fig. 1.

Since the resulting program was not always performed by the robot the authors de-
cided to carry out an analysis of the module KUKA | prc and the resulting code. The

PARAMETRIC PROGRAMMING OF INDUSTRIAL ROBOTS 217

Figure 1: Example view of Grasshopper and Rhinoceros program.

trajectory generated either in Rhino or in the Grasshopper is approximated by straight
lines. The number of these lines depends on the parameter indicated by the user. When
selecting this parameter one should be aware of the fact that the frequency distribution
of the curve has a significant impact on the quality of approximation. With insufficient
division one can completely lose the point of the curve shape, e.g. specifying a circle
4 points one will receive a square. In order to smooth the trajectory C DIS command
language KRL was used, thanks to which the robot does not commute to selected points
but bypasses them in a given distance. Road approximation consists of two segments of
a parabola, which tangentially pass one into another and at the same time communicate
with the reference trajectory. A disadvantage of dividing the curve into segments of equal
length is that an excess of credit is generated. A long straight is unnecessarily divided
into sections. A large number of points contributes to the file size and even though the
program can be run on the robot it is not possible to re-edit it on the operator panel.

Some difficulty in transferring the program to the robot is the definition of coordinate
systems and tools. It has to be remembered that the definitions in the program need to be
identical to those in the robot.

The most serious drawback of the module KUKA|prc is the lack of information about
the configuration of the robot. It is known that for 6-axis robots it is usually possible to
obtain 4 inverse kinematics solutions. The KUKA robots resolved this ambiguity by
adding bits of status and turns. No declaration of these bits results in the fact that the
robot in reality moves differently that in simulations and sometimes it is not able to
perform this movement.

Because of the above-mentioned disadvantages programming of robot using
KUKA|prc module requires the user to have a specific knowledge about programming
in KRL. It allows understanding why the program does not work and how to improve it.

218 P. SZULCZYŃSKI, K. KOZŁOWSKI

3. A new approach to parametric programming robots

3.1. Calculation of information about the orientation of the robot

An important advantage of the module KUKA|prc is that it is free. Unfortunately,
this program is not open software so making direct changes in the module is not possi-
ble. Therefore, it was decided to extend the code with the necessary features using the
tools available in the module. For this purpose the block "Custom Command" was used
to manually enter commands by means of which the movement command was added
to take account of information about the orientation of the robot, i.e. the variable Status
and Turn. The designation of these variables is not a task simple enough to perform it in
memory and therefore for this purpose a script was written in built-in script editor Rino
VBscript that sets them on the basis of a specified point and configuration information
for the robot joints. Variable turn defines 6 bits, each assigned to one of the joints, which
takes the value 1 for angles less than zero and the value 0 otherwise. The status is com-
posed of three bits. The first contains information on whether the robot wrist is in front
or behind. The second defines the relationship between the arm and the wrist of the robot
and the third is associated with position of the fifth axes [10].

3.2. Hop2Kuka - calculation

Despite the numerous advantages of the module KUKA|prc it is time consuming
to write a simple program with it. Therefore, a new application (script) was written,
Hop2Kuka, thanks to which it is easy and fast to generate code in KRL from the trajec-
tory designed in Rhino or Grasshopper.

Just as it is the case in the module KUKA|prc the curve trajectory of the tool tip is di-
vided into straight sections. Unfortunately, this information is insufficient. To determine
the trajectory a robot needs a set of points defining both the position and orientation of
the tool tip. Since such information cannot be included in a curve, for the full description
of the trajectory of the tip of the robot tool, two additional curves were used. In Fig. 2,
three curves denoted by t, x and o are presented. The curve t defines the position of the
working point of the tool. Additionally curves x and o are used to determine XTOOL and
tool orientation, respectively.

By sharing all the curves equally, for each position of the tip of the robot, a set of
three points Pti = t(i), Pxi = x(i) and Poi = o(i) is obtained, where i = 1,2, . . . ,N denotes
the index of segment while N is the number of total segments. Using the basic opera-
tions on vectors PxiPti and PoiPti we set a Cartesian coordinate system which specifies
the orientation of the tool (Xtool,Ytool,Ztool). In a KRL environment the target point is
defined either as information about the location of each robot axis (type AXIS) or Carte-
sian orientation stored using Euler angles (type POS). It should be noted that the linear
movement can take place only to position POS. Therefore, based on the coordinate sys-
tem that specifies the orientation of the tool Euler angles were determined by commonly
available formulas [8].

PARAMETRIC PROGRAMMING OF INDUSTRIAL ROBOTS 219

Figure 2: Calculating the position and orientation based on three curves.

In order to determine information about the orientation of the robot the script de-
scribed in section 3.1 was used. The script was modified since the information about the
position of each axis module came from KUKA | prc. Consequently, using the informa-
tion about the size of the robot (Tab. 1 and Fig. 3) the Denavit-Hartenberg parameters
(D-H) of the crawler (Tab. 2) were defined on the basis of which direct and inverse
kinematics of the robot Agilus were calculated.

Because the orientation in space of the tool is to change during the path motion,
the orientation control mode must be set using the system variable $ORI TYPE. The
value of this variable remains valid until a new value is assigned. In cases where the
tool direction is of particular interest recommended option is #VAR. In this mode the
orientation of the tool changes continuously from the start position to the end position.
However, if the trajectory is near a singularity maintain the programmed velocity may
not be possible. In this case, use of option #JOINT is necessary but then the orientation
change is not linear. Simple method of avoiding the singular position represents the work
[12].

3.3. Hop2Kuka – code generation

KRL syntax is largely similar to Pascal. Basic information about the available com-
mands, variables, and method of writing the program can be found in the technical doc-
umentation [10].

Each program *.src in KRL consists of three sections:

• declaration,

• initialization,

• instructions.

220 P. SZULCZYŃSKI, K. KOZŁOWSKI

Table 6: Parameters of the robot shown in Fig. 3 [9].

A B C D E F G H I J
[mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm]

1276 1620 901.5 656 245.5 851.5 420 455 400 855

Table 7: Parameters D-H for the robot KR 6 R900 sixx AGILUS.

i αi [rad] di [mm] ai [mm] θi [rad]

1 −π/2 d1 = I a1 = 25 q1 = π/2

2 0 0 a2 = H q2 =−π/2

3 π/2 0 a3 = 35 q3 = 0

4 −π/2 d4 =−(G−1.4) 0 q4 = 0

5 π/2 0 0 q5 = 0

6 π d6 =−80 0 q6 = 0

Figure 3: Dimensions of the robot KR 6 R900 sixx AGILUS [9] with marked coordinate
systems.

Since all the necessary calculations are performed in the script VBscript, declaration
of variables in the KRL file is not necessary, either.

PARAMETRIC PROGRAMMING OF INDUSTRIAL ROBOTS 221

In the initialization section to the default speed, acceleration, performance tools and
databases are set through command BAS (# INITMOV, 0). A sequence of commands
associated with the security system is also implemented (GLOBAL INTERRUPT Decl 3
WHEN $ STOPMESS == TRUE TO IR STOPM (); INTERRUPT ON 3), which ensures
that the robot returns to the programmed path in case of the robot emergency stop.

The instruction section includes primarily motion commands. In the script only two
types of these commands were used: Command PTP providing the fastest movement to
the set point and click LIN performing movement along a straight line. The first com-
mand is a command direction to the home position (ptp XHOME), which is a global
position, adjustable by the user and by default taken to be safe. Then set the base and the
robot tool are specified by the user ($ BASE = POS; $ TOOL = POS). In the following
steps commuting to selected items is performed (e.g. .: LIN X 980, Y -238, Z 718, A
133, B 66, C 146, S 6, T 50 C DIS). The program ends with instructions to return to the
home position.

The end result of the program is shown in Fig. 5. The red lines indicate the planned
trajectory in Rhino. The reference trajectory is divided into 13 parts (points P1-P13).
Black lines connecting individual points represent the trajectory uses LIN command.
The blue color indicates the trajectory of the DIS option uses the command LIN. Num-
ber of points dividing the original trajectory was chosen so to showcase defects in the
applied solution. From Fig. 5 it is clear that the actual trajectories do not overlap with
the reference trajectory. But it is possible to determine the maximum error of mapping
trajectory. This property comes from the fact that the distribution of selected number of
points to get only a concave or convex function (no inflection points) for each segment.
Tracking Error is should not exceed the sum of maximum distance between the reference
trajectory and the straight line connecting two points and value of variable $APO.CDIS
(If C DIS is specified as the approximate positioning criterion, the distance from the
start of the approximation to the corner point corresponds to the value of $APO.CDIS).

4. Results of the program Hop2Kuka

Hop2Kuka written script has already been tested on the robot KR 6 sixx R900 Agilus
in the Chair of Control and Systems Engineering.

After starting Rhino the three curves were outlined determining the position of the
tool tip, the axis of approach tools and tool orientation relative to the axis of approach as
shown in Fig. 4a. Then the script Hop2Kuka was launched. After that the other relevant
curves were indicated and a value for the crossover frequency curves and performance
of the tool was given. On the basis of the obtained data the trajectory was determined,
marked in blue in Fig. 4b. In order to better disclose the resulting trajectory, required
curves were divided only into 4 parts. As a result, the program generated two files. The
first with the extension *.src contains the program code and the second with the extension
*.dat includes information on the location of points.

222 P. SZULCZYŃSKI, K. KOZŁOWSKI

Figure 4: Screenshots of the program Rhino: a) – the curves that define the trajectory of
the robot, b) – designated trajectory (blue).

PARAMETRIC PROGRAMMING OF INDUSTRIAL ROBOTS 223

Figure 5: Final result.

The file was transferred to the robot system and successfully executed. Transfer on
the trajectory took place in a continuous movement and internal points were omitted as
described in Section 2.3.

5. Summary

The article proposes the use of graphics software for parametric design in order to
obtain complicated trajectories for industrial robots. The paper describes existing solu-
tions and tested constraints they are subjected to. It also proposes a new script that allows
obtaining a correct program for the robot KUKA Agilus easily and fast. The result of the
algorithm was verified experimentally.

Further work may be considered to optimize the number of points needed to restore
the preset curve. Control of the parameter responsible for the continuous path (CP) also
seems possible. Note should also be taken of other motion instructions that are available
in the KRL environment, especially command Spline. Generally, such paths can also be
generated using approximated LIN and CIRC motions, but Spline has more advantages.
The most important disadvantage of approximated LIN and CIRC motions is that the
path changes in accordance with the override setting such as velocity or acceleration.
For this reason, in many cases it is not possible to calculate the path. In Spline motion
the path is defined by means of points that are located on the path and the programmed
velocity is maintained. It contributes to the programmed velocity. The problem that re-
mains is how to detect KUKA algorithm to generate Spline curves.

It also seems useful to transfer the code to the .NET and use RhinoCommon SDK and
SDK Grasshpper libraries to form a module similar to KUKA|prc. This change allowed
inserting it into the Rino environment of the robot model. It seems to be interesting
to implement the collision detection algorithm and transition of the vicinity at singular
points.

224 P. SZULCZYŃSKI, K. KOZŁOWSKI

References

[1] A. AIGNER and S. BRELL COKCAN: Surface Structures and Robot Milling. The
Impact of Curvilinear Structured Architectural Scale Models on Architectural De-
sign and Production. In: Innovative Design & Construction Technologies. Building
complex shapes and beyond, I. Paoletti (Ed.), Milano, 2009, 433-445.

[2] S. AMBROSZKIEWICZ STANISŁAW, A. BORKOWSKI, K. CETNAROWICZ and C.
ZIELIŃSKI: Intelligence around us; cooperation of software agents, robots, intelli-
gent units. Academic Publishing House EXIT, Warsaw, 2010. Monographs of the
Committee for Control and Robotics of the Polish Academy of Sciences, in Polish.

[3] J. BRAUMANN and S. BRELL-COKCAN: Parametric robot control: integrated
CAD/CAM for architectural design. Proc. 31st Conference, Association for
Computer-Aided Design in Architecture, Banff, (2011), 242-251.

[4] S. BRELL-COKCAN and J. BRAUMANN: Computer Numeric Controlled Manu-
facturing for Freeform Surfaces in Architecture. In: Emotion in Architecture, D.
Kuhlmann, S. Brell-Cokcan, K. Schinegger (Ed.), issued by: Institut f ur Architek-
turwissenschaften, TU Wien; Luftschacht, Wien, 2011.

[5] C. EASTMAN, P. TEICHOLZ, R. SACKS and K. LISTON: BIM Handbook: A
Guide to Building Information Modeling for Owners, Managers, Designers, En-
gineers and Contractors. John Wiley & Sons, Inc., New Jersey, 2008.

[6] J. HEINDL, M. OTTER, H. HIRSCHM ULLER, M. FROMMBERGER, N. SPORER,
F. SIEGERT and H. HEINRICH: The robocoaster as simulation platform – experi-
ences from the first authentic Mars flight simulation. Proc. of the Motion Simulator
Conf., Braunschweig, Germany, (2005).

[7] W. KACZMAREK and J. PANASIUK: Selected Application of Industrial Robots.
Control Engineering, 11(104), (2013), 56-62, in Polish.

[8] K. KOZŁOWSKI, P. DUTKIEWICZ and W. WRÓBLEWSKI: Modeling and Control
of Robot Manipulators. Warszawa, PWN, 2003, in Polish.

[9] Data Sheet | KR 6 R900 sixx, http://www.kuka-robotics.com/res /sps/f776ebab-
f613-4818-9feb-527612db8dc4 PB0001 KR AGILUS en.pdf.

[10] Use And Programming Of Industrial Robots, KUKA Roboter GmbH Zugspitzs-
traSSe 140 D-86165, Augsburg Germany.

[11] A. PAYNE: A five-axis robotic motion controller for designers. Proc. 31st Con-
ference, Association for Computer-Aided Design in Architecture, Banff, (2011),
162-169.

PARAMETRIC PROGRAMMING OF INDUSTRIAL ROBOTS 225

[12] T. SZKODNY: Avoiding of the kinematic singularities of contemporary industrial
robots. Lecture Notes in Computer Science, Springer Int. Publ. Switzerland, 8918
(2014), 183-194.

[13] C. ZIELIŃSKI, W. SZYNKIEWICZ, T. WINIARSKI, M. STANIAK, W. CZAJEW-
SKI and T. KORNUTA: Rubik’s cube as a benchmark validating MRROC++ as an
implementation tool for service robot control systems. Industrial Robot: An Int.
Journal, 34(5) (2007), 368-375.

	Tekst5: 10.1515/acsc-2015-0014

