
Theoretical and Applied Informatics
ISSN 1896–5334

Vol.24 (2012), no. 1
pp. 23–31

DOI: 10.2478/v10179-012-0002-7

Tracedump: A Novel Single Application IP Packet Sniffer

PAWEŁ FOREMSKI

The Institute of Theoretical and Applied Informatics of the Polish Academy of Sciences
ul. Bałtycka 5, Gliwice, Poland

pjf@iitis.pl

Received 10 January 2012, Revised 2 February 2012, Accepted 24 February 2012.

Abstract: The article introduces a novel Internet diagnosis utility - an open source IP packet sniffer
which captures TCP and UDP packets sent and received by a single Linux process only. Preliminary
evaluation results are presented. The utility can be applied in the field of IP traffic classification.

Keywords: Computer networks, traffic monitoring, traffic classification, ptrace, code injection, Linux

1. Introduction

The Internet needs diagnosis and maintenance tools. One of the most valuable tools
for a network administrator is a packet sniffer, i.e. a computer program which intercepts
IP packets flowing in the network. The output of a sniffer gives insight into how exactly
the network operates, and thus can be useful for solving communication issues. For
example, in order do diagnose a routing problem, one would observe IP packets on
inbound and outbound network interfaces of an Internet router. Presence of network
traffic on the inbound interface and absence on the outbound one would mean that the
router is not forwarding IP packets properly.

Problem statement

On a particular machine it is difficult to use a packet sniffer in order to capture IP
packets belonging to given application only, i.e. packets sent or received by a single
process. This is caused by the fact that the most popular sniffers were designed to be de-
ployed on Internet routers, i.e. hosts which rarely generate traffic on their own. A typical
packet sniffer can monitor selected network interface, but it lacks enough granularity in



24

order to inspect a local process only. Unfortunately, it seems that such direction in snif-
fer design influenced operating systems. In particular, the Linux kernel lacks apparatus
necessary for straightforward implementation of such functionality in packet sniffers.

The ability of monitoring just a single application is important for several reasons.
Original motivation for this work is IP traffic classification using machine learning tech-
niques [1], i.e. development of a computer system which is able to automatically tell
the name of application given its IP packets. Before operation, such system needs to
be trained using IP traffic trace files annotated with so-called ground truth – name of
the application that generated these packets. By employing a single application packet
sniffer, the problem of ground truth is resolved – name of the application is known to the
sniffer. In order to obtain an adequate quantity of training data, automation techniques
would need to be adopted for practical employment of such method. Synthetic traffic
traces are of limited usability, but may be very important during development of traffic
analysis and classification systems.

Proposed solution and its scope

This paper presents tracedump – a novel IP packet sniffer which intercepts packets
belonging to a single application only. It employs several techniques in order to mitigate
the lack of necessary mechanisms in the Linux kernel, particularly the ptrace(2) [2]
system call and the BPF socket filter [3]. The implementation currently supports only
TCP and UDP protocols on a 32-bit x86 Linux host, but the proposed approach can
be easily applied to different transport protocols, architectures, and possibly to other
operating systems.

The sniffer attaches to a given process and to all of its threads and monitors its system
calls related to communication with the Internet. A list of local TCP and UDP ports is
constructed and used for filtering out all the traffic not belonging to the application under
interest.

Paper organization

This paper is organized as follows. Section 2 reviews a few of the most popular
packet sniffers available on UNIX-like operating systems, considering their applicability
for single application monitoring and for traffic classification. Section 3 gives technical
background for the design of tracedump. Section 4 presents the internal architecture of
the program. Section 5 gives preliminary evaluation results. Section 6 gives a summary,
suggesting issues for future work.



25

2. Related work

One of the most popular packet sniffers is tcpdump, accompanied by the libpcap
library [4]. Originally written in 1987 at the Lawrence Berkeley National Laboratory,
it was published a few years later and quickly gained users attention. It runs on most
UNIX-like operating systems – e.g. Linux, BSD, Solaris – and on Windows. Since
its inception, tcpdump was cited by numerous scientific papers in the field of computer
networks and is indeed the standard utility for capturing IP traffic. It established an
output file format PCAP, which is the most popular file format for storing IP packets
off-line, still developed to support new functionality [5]. The tcpdump sniffer features a
command-line filter mechanism, which allows the user to easily capture only the pack-
ets satisfying given criteria, e.g. TCP packets with destination port number equal to 80.
Unfortunately, this filter mechanism does not support selecting packets of a single appli-
cation only – especially if the monitored process is a peer-to-peer application, allocating
new ports each few seconds.

Another very popular packet sniffer, Wireshark [6], is a full-fledged GUI applica-
tion with lots of advanced features. Libtrace [7] aims at addressing weaknesses of the
libpcap library. It supports many input methods and formats, and provides a very good
performance. However, none of them can be employed to capture single application
traffic.

In the field of traffic classification, there are two notable software utilities. F.
Gringoli et al. in [8] present a system for collecting traces of IP traffic, in which flows
are annotated with the name of the application that generated them. First, each host in a
particular network submits a list of its own connections - along with application names
- to the border router of the network. Second, this router captures all of the IP traffic
flowing in and out of the network, and by employing the lists submitted by each host,
it annotates the resultant traffic trace file with appropriate ground truth data. Szabó et
al. proposed a similar approach for Windows machines in [9]. Again, none of these two
approaches solve the problem of single application diagnosis in a strict sense. They re-
quire a separate post-processing stage, what disables possibility of real-time application
connectivity diagnosis. They are also prone to loosing IP packets at the beginning of
connection, due to non-zero time needed for updating the list of active connections on a
particular machine.

3. Design Considerations

The original motivation for tracedump was the need to automatically collect samples
of network traffic generated by modern desktop applications, as a supportive element for
traffic classification systems. Therefore, special care must be taken not to loose any
packets, especially those at the beginning of an IP connection. Besides, possibility of



26

capturing all of the DNS queries made by an application may also be crucial for traffic
classification purposes.

Let us analyze – in a simplified manner – how a Linux application makes a TCP
connection and sends data to a distant host. The operating system provides an API
for Internet communication by means of system calls socket(), connect(), and send().
Thus, the application first calls the socket() function in order to get a unique handle for
a connection. Then, the connect() function is called with the address of the remote peer,
and finally the send() system call may be used to send the data.

There are two crucial issues one needs to realize when constructing a packet sniffer
of a single application. First (A), the application does not handle construction of IP
and transport protocol headers – it is the task of the operating system. Hence, it is not
enough to intercept the data passed as arguments to system calls responsible for Internet
communication. Second (B), a call to connect() will generate packets before the call
returns. Thus, a packet sniffer must react to connect() before it is executed in the kernel.

Unfortunately, it is quite hard to mitigate these problems using existing mechanisms
present in the Linux kernel. One of the possible ways to write such a sniffer would be
to extend the Linux struct sk_buff structure with a pid member holding the process ID
number. For outgoing packets, this would be trivial, but for incoming packets it could be
quite troublesome. However, such approach would constrain the scope of software very
much, due to necessity to patch and recompile the operating system kernel.

It is possible to take care of (A) and (B) in user space, without modifying the kernel.
A straightforward procedure would be to exploit the dynamic linker ld.so [10] in order
to provide wrapper functions for system calls responsible for communication with the
Internet. However, this would fail for statically compiled program binaries, hence the
tracedump sniffer implements the ptrace() process tracing facility, as will be detailed in
the next section.

4. Architecture and Implementation

Tracedump is divided into three functional modules, implemented as threads: ptrace,
pcap, and garbage collector (GC). The ptrace module attaches to all threads of a given
process, and using the Linux ptrace() function it constructs a list of all local TCP and
UDP ports that the application is using. The pcap module operates like an ordinary
packet sniffer, intercepting all IP packets on all network interfaces, at the kernel level
- recall (A) from the previous section. Whenever the port list changes, a BPF filter is
immediately applied on the pcap sniffing socket, so that the packets not belonging to the
monitored application are ignored. The BPF filter is updated before the kernel executes
the original system call – recall (B). The task of the garbage collector module is to
detect ports that are no longer used. Each minute it reads the list of all active system



27

connections, and it cleans up the list constructed by the ptrace thread. The architecture
of tracedump is depicted on Fig. 1.

Fig. 1. Architecture of tracedump. The port list is constructed by observing the kernel-userspace

communication and is used for raw IP packet capture. The garbage collector (gc) thread periodically

cleans up the list

The ptrace module traces only three system calls: bind(), connect(), and sendto().
By means of analysis of the Linux kernel source code and by examination of the usual
path a user-space program needs to adopt in order to setup an Internet connection, it was
verified that – for proposed tracedump architecture - this is enough in order not to loose
any IP packets. For UDP and TCP servers, the application needs to call bind() in order to
setup the local port number. For client programs, it will either call connect() or sendto().
In such case it may happen that the local port number is not yet assigned, and the kernel
will perform an “autobind” operation, i.e. allocate an ephemeral port automatically.
However, due to (B), this is an undesirable situation, so tracedump splits the system call
in such case. It forces the process to first call bind() with the port argument set to 0,
i.e. it requests the automatic allocation to be executed. Then, the BPF filter is updated,
and finally the original call – either connect() or sendto() – is continued. This is realized
using machine code injection into the stack area of the monitored process.

The pcap thread attaches to the kernel using a PF_PACKET [11] socket, and writes
captured packets to disk in the PCAP [12] format. Whenever the list of local ports
is changed, the BPF filter code is immediately rewritten and sent to the kernel using
setsockopt() system call.

A naïve solution to tracking local port numbers that the application no longer uses
would be to intercept close() system calls. Unfortunately, it is not possible to distinguish



28

a close() call which effectively ends a connection from a close() call which only dissolves
an association between a file descriptor and a socket number. The latter may happen in
case of multi-threaded applications, which may – or may not – share the file descriptor
table amongst its threads. This depends on the detailed configuration of a particular
thread, which is difficult to discover on a Linux machine. Thus, tracedump utilizes the
conventional procfs network diagnosis interface, i.e. the /proc/net/tcp and /proc/net/udp
special files. This interface is quite slow, hence a separate garbage collector thread is
required in order to continuously read these files in an asynchronous manner.

5. Evaluation

Tracedump has a simple command-line interface. Either a process ID number or a
command is accepted as the program argument. Provided that the user has root privi-
leges, it is possible to attach to any process in the system, belonging to any user. Hence,
tracedump can be used by system administrators for inspection of any user activity on a
Linux server.

The output of tracedump is a PCAP file, which may be further post-processed with
traffic analysis tools like Wireshark. It is also possible to visually examine IP packets in
real-time, by adopting the UNIX pipe mechanism and e.g. the tcpdump program.

On Listing 1 below an exemplary application of tracedump is presented.

Listing 1. Using tracedump to capture BitTorrent traffic. A BitTorrent client ctorrent [13] is used for

downloading a CD disk ISO image

In this example, an installation CD ISO disk image of a popular Linux distribution
is downloaded using the BitTorrent [14] protocol. Aim of this experiment is to roughly
estimate the overhead of the BitTorrent protocol, in order to present tracedump.

In line 1, tracedump is started so it monitors a BitTorrent client application down-
loading a file. In line 2, the resultant PCAP file name is reported: dump.pcap. The
download process completes in 6 minutes, attaining an average throughput of ~2 MB/s.
Table 1 presents brief characteristics of the generated IP traffic, obtained using libtrace
[7] utility programs.

The resultant ISO file is 705,998,848 bytes long, hence a rough overhead of the
BitTorrent protocol, including the network and transport protocols, is ~4.21% of the



29

Packets Bytes Ports

TCP
Outbound
Inbound

249,575
503,730

17,698,668
718,005,933

77

UDP
Outbound
Inbound

2
2

160
192

1

Total 753,309 735,704,953 78
Tab 1. Characteristics of BitTorrent IP traffic. Last column presents number of

transport protocol ports as a sum for inbound and outbound traffic

downloaded file size. Note that this also includes all of the DNS queries made during
the download process.

6. Conclusion

The article presents tracedump – a novel packet sniffer which intercepts IP pack-
ets of a single Linux process only. The Linux kernel lacks appropriate mechanisms
for straightforward implementation of such utility. Thus, tracedump employs several
advanced techniques in order to mitigate these deficiencies: ptrace() system call, code
injection and dynamic generation of BPF assembler code for the Linux socket filter
mechanism. The actual process of packet capture happens at the kernel level, so the
network and transport protocol headers are retained.

Initial results prove practical applicability of tracedump. In the paper, the BitTorrent
protocol overhead was roughly estimated by employing tracedump to capture IP packets
of a BitTorrent client application. Moreover, tracedump can be adopted in the field of IP
traffic classification. Resultant traffic trace files contain all of the DNS queries made by
monitored applications, what opens an interesting prospect for research on employing
DNS context as a traffic classification feature. Tracedump may also be employed as a
general Internet diagnosis utility.

Current implementation of tracedump poses a few limits on the scope of practical
applications. It works only on 32-bit x86 Linux hosts and is limited to about 300 ports
opened at the same time. However, the architecture of tracedump leaves plenty of space
for future work.

The source code of tracedump is published under terms of the GNU General
Public License and is available for download from the MuTriCs project website:
http://mutrics.iitis.pl/tracedump

Acknowledgments

This work was supported by the Polish National Science Centre, under research grant
nr 2011/01/N/ST6/07202 - project “MuTriCs” [1].



30

References

1. MuTriCs: Multilevel Traffic Classification, http://mutrics.iitis.pl/

2. ptrace(2) manual page, http://www.kernel.org/doc/man-pages/online/pages/man2/
ptrace.2.html

3. S. McCanne, V. Jacobson: The BSD packet filter: a new architecture for user-level packet
capture, USENIX Winter 1993 Conference Proceedings (USENIX’93), 1993.

4. tcpdump, http://www.tcpdump.org/

5. L. Degioanni, F. Risso, G. Varenni: PCAP Next Generation Dump File Format, IETF,
Internet-Draft PCAP-DumpFileFormat, 2004.

6. Wireshark, http://www.wireshark.org/

7. S. Alcock, P. Lorier, R. Nelson: Libtrace: A Packet Capture and Analysis Library.

8. F. Gringoli, L. Salgarelli, M. Dusi, N. Cascarano, F. Risso, K.C. Claffy: GT: picking up
the truth from the ground for Internet traffic, ACM SIGCOMM Computer Communication
Review, Vol. 39, No. 5, pp. 13-18, Oct. 2009.

9. G. Szabó, D. Orincsay, S. Malomsoky, I. Szabó: On the validation of traffic classification
algorithms, Proceedings of PAM’08, Springer-Verlag, 2008.

10. ld.so(8) manual page, http://www.kernel.org/doc/man-pages/online/pages/man8/ld.so.8.
html

11. packet(7) manual page, http://www.kernel.org/doc/man-pages/online/pages/man7/
packet.7.html

12. PCAP file format, http://wiki.wireshark.org/Development/LibpcapFileFormat

13. ctorrent, http://ctorrent.sourceforge.net/

14. B. Cohen: The BitTorrent Protocol Specification, http://bittorrent.org/beps/bep_0003.html

Tracedump – nowatorskie narzędzie typu sniffer pozwalające
na zapis ruchu IP pojedynczej aplikacji

Streszczenie

Artykuł prezentuje nowatorskie narzędzie open source służące do analizy ruchu in-
ternetowego należącego wyłącznie do jednej aplikacji działającej pod kontrolą systemu
operacyjnego Linux. Program pozwala na zapis w postaci pliku PCAP wszystkich pakie-
tów protokołów TCP i UDP, które zostały odebrane i wysłane przez wybraną aplikację
w dowolnym momencie jej działania. W szczególności wynikowy plik PCAP zawiera
wszystkie wykonane zapytania DNS.



31

Implementacja narzędzia tego typu jest problematyczna, gdyż system Linux
nie dostarcza mechanizmów śledzenia ruchu IP, które pozwalałyby na wystarcza-
jące ograniczenie zakresu monitorowanych zasobów w systemie. Z tego powodu
w programie tracedump zostały zastosowane zaawansowane funkcje systemu Linux –
wywołanie systemowe ptrace(2), wstrzykiwanie kodu maszynowego oraz filtry gniazd
sieciowych BPF.

Architektura programu oparta jest o 3 wątki – wątek śledzący otwierane porty TCP
i UDP, wątek przechwytujący i filtrujący ruch IP w systemie oraz wątek wykrywający
zakończone połączenia.

Ponadto w artykule w sposób skrócony przedstawiono przykład praktycznego zas-
tosowania narzędzia w celu oceny narzutu protokołu BitTorrent w sytuacji pobierania
obrazu płyty CD z Internetu.


