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Abstract: Consider two-dimensional two-component periodic composite made from a collection
of non-overlapping, identical, circular disks, embedded in a matrix. In accordance with a theory of the
representative cells (representative volume elements), the effective conductivity of disks is expressed in
terms of the generalized Eisenstein–Rayleigh sums (ER sums). Straightforward computation of the ER
sums is possible only for the sums of lower orders. In the present paper, a fast algorithm to compute
higher order sums worked out by use of random walks and Monte Carlo simulations. The algorithm is
recurrent, i.e., an ER sum of the fixed order is expressed in terms of the ER sums of lower orders by simple
formulae. Relations between the Eisenstein and Weierstrass functions and algebraic dependences between
their derivatives are also used to improve the algorithm. The obtained numerical results are applied to
investigation of the structure of composites.

Keywords: representative volume element, composite material, Eisenstein–Rayleigh sums

1. Introduction

One of the most important notion of the theory of composites is the representative
volume element (RVE). A physical–engineering definition of the RVE can be given as
follows [5]. RVE is a part of material which is small enough from a macroscopical
point of view and can be thus treated as a typical element of the heterogeneous medium.
On the other hand, it is sufficiently large in the microscopical scale, and it represents
typical microstructure of the material under consideration. According to this definition
one should follow the following scheme to determine the RVE. First, geometric mea-
surements or computations should be made for a class of composites to describe its
geometrical characteristics. Second, a number of the real or computational experiments
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should be performed to determine the macroscopic tensor property of composites. Third,
to compare the results and to make conclusions concerning RVE. The above physical–
engineering scheme looks natural but it is not so simple in applications.

A rigorous mathematical theory of the representative cell was proposed in [8]. This
mathematical theory is developed now for two–dimensional composites with circular
inclusions and outlined for general three–dimensional elastic composites. It is based
on the advanced topics of complex analysis but it is simple in applications because one
can avoid solution to the boundary value problems at the second step of the physical–
engineering approach and simplify the third step by reduction the whole problem to
investigation of the generalized Eisenstein–Rayleigh sums introduced below in Sec. 1

It was established in [8] that the effective conductivity tensor Λe of the considered
composites has the form of double series on the concentration of inclusions and on "ba-
sic elements" which depend only on locations of the inclusions. These basic elements
are written in terms of the Eisenstein series. Coefficients in the double series depend
on conductivity of constitutes. Two composites are equivalent if expansions of their Λe

have the same basic elements. Therefore, the set of the composites with circular iden-
tical inclusions is divided onto classes of equivalence determined only by geometrical
structure of the composite. Each composite is represented by a periodicity cell. In each
class of equivalence a composite having the minimal size cell is chosen. This cell is
called the representative cell of the considered class of equivalent composites.

This approach was used in [4] to investigate the effective transport properties of
randomly 2D composites with non–overlapping disks uniformly distributed in a cell. In
this case, the effective conductivity tensor is represented in the form Λe = λ̂I , where I
denotes the identity matrix and the scalar λ̂ the effective conductivity. Let ν stands for
the concentration of disks in the cell. The effective conductivity can be considered as
a function λ̂(ν). It was obtained with the accuracy O(ν5). For instance, the following
formula for perfectly conducting disks was deduced by use of the Padé approximation

λ̂(ν) ≈ 3.223
ν − 1.247

− 3.237
ν − 0.9069

+
0.014ν + 0.001

ν2 + 0.261ν + 0.076
(1)

This formula is based on computations of the lower multi–index order generalized
Eisenstein–Rayleigh sums (ER sums).

In the present paper, we present a fast algorithm to compute the ER sums of higher
orders. A method of random walks to simulate random locations of inclusions with high
concentrations is applied. The initial locations of disks are fixed in various periodical
nodes: square, hexagonal and rectangular. The results show that lower order ER sums
which essentially impact on the effective conductivity tensor do not depend on the choice
of the original location. But some higher order ER sums "remember" the initial location.
This yields the second application of the mathematical theory [8]. It is possible not only
to reconstruct the representative cell by pure geometrical data, but also to describe an
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engineering method of its creation. For instance, the original regular location of inclu-
sions can be restored for dispersed composites produced by stirring. This observation
can be explained by the different scales of convergence of the ER sums during stirring
to the limit values when time of random walks tends to infinity. This method also gives
a quantitative stirring measure of inclusions in bulk material.

2. Random walk model

Let ω1 and ω2 be the fundamental pair of periods on the complex plane C such
that Im ω2

ω1
> 0. The fundamental parallelogram Q is defined by its vertices ±ω1

2 and
±ω2

2 . Without loss of generality the area of Q can be normalized to one. The points
m1ω1 + m2ω2 (m1,m2 ∈ Z) generates a doubly periodic lattice Q. Here, Z stands for

the set of integer numbers. Let i denote the imaginary unit. In the case ω1 = 4

√
4
3 and

ω2 = 4

√
4
3 e

πi
3 , the cell Q becomes a rhombus with an angle 600 and the array Q is

called the hexagonal lattice (the equilateral triangular lattice).
Consider N non–overlapping circular disks Dk of radius r with the centres ak ∈ Q

(see Fig. 1). Let D0 be the complement of all closure disks |z − ak| ≤ r to the
domain Q. We study conductivity of the doubly periodic composite when the host
∪m1,m2(D0 + m1ω1 + m2ω2) and the inclusions Dk + m1ω1 + m2ω2 are occupied
by conducting materials. It is assumed that inclusions are occupied by a perfect conduc-
tor that correspond to real fibre composites.

The concentration of the inclusions has the form ν = Nπr2. The centres ak are
considered as random variables distributed in such a way that the disks Dk = {z ∈ C :
|z − ak| < r} generate a set of uniformly distributed non–overlapping disks. Theoret-
ically this distribution denoted below as U can be introduced as the distribution of the
variable a = (a1, a2, · · · , aN ) ∈ QN with the restrictions |am − ak| > 2r for m 6= k
(m, k = 1, 2, . . . , N ). According to [9], 0 ≤ ν ≤ π√

12
where π√

12
is the maximal con-

centration attained for the hexagonal array. It is worth noting that the disks Dk belong
to Q in the torus topology when the opposite sides of Q are identified.

A constructive description of the distribution U for high concentrations is based on
random walks. Put the centres ak onto the nodes of a regular array. Take a positive
number d less than mink 6=m |ak − am| − 2r. Let each ak moves in a randomly chosen
direction φk ∈ [0, 2π) with the step d in the torus topology of Q. Then, each center
obtain new complex coordinate a′k = ak + deiφk . This move is repeated with renewed
coordinates for each k = 1, 2, . . . , N if |a′k−am| ≥ 2r (for all m = k+1, k+2, . . . , N ).
If |a′k − am| < 2r for some m, the point ak does not move at this step, and we say that
it is blocked. After sufficiently large number of the walks the obtained location of the
centres can be considered as a statistical realization of the distribution U . This method

Authenticated | 195.187.97.1
Download Date | 12/12/12 2:08 PM



230

Fig. 1. Doubly periodic composite with inclusions Dk + m1ω1 + m2ω2 where m1, m2 ∈ Z

can be applied for arbitrary concentrations satisfying 0 ≤ ν ≤ π√
12

.
In all computer simulations, we take

d =
1
5

(
ω1√
N
− 2r

)
(2)

This is the maximal reasonable value of d for which computations are not too frequently
blocked for ν not closed to π√

12
. Less value of d decrease the velocity of walking,

hence, increase the computation time. However for higher concentrations about π√
12

,
computations are frequently blocked for any choice of d. To overcome this difficulty we
introduce the maximal number of random choices of the angle φk, denoted below by P .

After a number of experiments we have taken the following parameters to optimize
computations in precision and in time. For each fixed N and ν we calculate r, d and
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introduce P = 1, 2 or 3. Every center ak has P attempts to move to a′k with a randomly
chosen direction in each attempt. If it is done for all k = 1, 2, . . . , N , we say that a cycle
is performed. The number of cycles is always taken equal to 80. As a result, we have
one ultimate location a = (a1, a2, . . . , aN ). The total number of locations is denoted by
M .

3. Computation of Eisenstein-Rayleigh sums

3.1. General theory

Following [7,8] we present constructive formulae for the Eisenstein-Rayleigh sums
Sm and the Eisenstein functions Em(z) corresponding to the lattice Q.

The Eisenstein-Rayleigh lattice sums Sm can be easily calculated through the rapidly
convergent series

S2 =
(

π

ω1

)2
(

1
3
− 8

∞∑

m=1

mq2m

1− q2m

)
, where q = exp

(
πi

ω2

ω1

)
, (3)

S4 = 60
(

π

ω1

)4
(

4
3

+ 320
∞∑

m=1

m3q2m

1− q2m

)
, (4)

S6 = 1400
(

π

ω1

)6
(

8
27
− 448

3

∞∑

m=1

m5q2m

1− q2m

)
. (5)

S2n (n ≥ 4) can be calculated by the recurrent formula

S2n =
3

(2n + 1) (2n− 1) (n− 3)

n−2∑

m=2

(2m− 1) (2n− 2m− 1)S2mS2(n−m). (6)

The rest sums vanish.
The Eisenstein functions [10] are related to the Weierstrass function ℘(z) [1] by the

identities

E2(z) = ℘(z) + S2, Em(z) =
(−1)m

(m− 1)!
dm−2℘(z)

dzm−2
, m = 3, 4, . . . . (7)

Every function (9) is doubly periodic and has a pole of order m at z = 0. The Eisenstein
functions of the even order E2m(z) can be presented in the form of the series [10]

E2m(z) =
1

z2m
+

∞∑

k=1

σ
(m)
k z2(k−1), (8)
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where

σ
(m)
k =

(2m + 2k − 3)!
(2m− 1)!(2k − 2)!

S2(m+k−1). (9)

We follow [8] to introduce the generalized Eisenstein-Rayleigh sums. Let ak (k =
1, 2, . . . , N ) be a set of points. Let q be a positive integer; kt runs over 1 to N ; mj =
2, 3, . . .. Let C be the operator of complex conjugation. Introduce the following sum of
multi-index (m1, . . . , mq)

em1...mq := N−[1+ 1
2
(m1+···+mq)]

∑

k0k1...kq

Em1(ak0 − ak1)

× Em2(ak1 − ak2) . . .CqEmq(akq−1 − akq).
(10)

Here, it is assumed for convenience that

Em(0) := Sm. (11)

According to (10)–(11), em becomes the classical Eisenstein-Rayleigh sum Sm in the
case N = 1. The following useful formula was proved in [4]

em1...mq = (−1)
Pq

j=1 mjCqemq ...m1 (12)

The sums (10) constitute the basic elements dependent only on locations of inclu-
sion. The effective conductivity tensor is presented as a linear combinations of (10) with
coefficients dependent on the physical properties of constitutes and the concentration
[8,3.6]. Let an accuracy in the concentration O(νp) is fixed. Then a finite set Mp of the
basic elements (10) is needed to identify a representative cell [8].

3.2. Algorithm

Straightforward computation of the sums (10) is based on the standard summation
formula

N∑

k0=1

N∑

k1=1

F1(ak0−ak1)
N∑

k2=1

F2(ak1−ak2)
N∑

k3=1

F3(ak2−ak3) · · ·
N∑

kq=1

Fq(akq−1−akq ). (13)

They are expensive for large N and q.
We describe now a fast recurrent algorithm to compute the sums (10) of order

(m1...mq) by use of the sums of lower orders. Introduce the matrix

Cs =




Fs (a1 − a1) Fs (a1 − a2) · · · Fs (a1 − aN )
Fs (a2 − a1) Fs (a2 − a2) · · · Fs (a2 − aN )

...
...

. . .
...

Fs (aN − a1) Fs (aN − a2) · · · Fs (aN − aN )


 . (14)
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Introduce the product of matrices

C1C2 . . . Cq (15)

One can see that the sum of the components of the matrix (15) is equal to the sum (13).
We propose the following algorithm based on formulae (14)-(15). Let O(νp) be a

fixed accuracy in the theory of representative cells.

• The set Mp of multi-indexes (m1, . . . , mq) is generated to reach the accuracy
O(νp) in accordance with [8].

• All the matrices (14) with s ∈Mp are computed and put into storage.

• The sums (13) are computed by summation of the elements of the product matrix
(15).

Table 1 contains the number of elements of Mp in the first line. For instance, the

accuracy O(ν5) O(ν6) O(ν7) O(ν8) O(ν9) O(ν10)

number of terms 8 16 32 64 128 256
reduced number 7 13 23 43 79 151

accuracy O(ν11) O(ν12) O(ν13) O(ν14) O(ν15) O(ν16)

number of terms 512 1024 2048 4096 8192 16384
reduced number 287 559 1087 2143 4223 8383

Table 1. Number of elements ofMp and reduced number of elements after application of (12) for given accuracy.

accuracy O(ν5) yields 8 terms e2, e22, e33, e222, e44, e332, e233, e2222. But application
of (12) reduces the number of terms to 7. Here, the terms e332 and e233 are related
by (12). One can see that the reduced number of terms is less than the initial number
approximately in 2 times for large p.

The functions Fs(z) in (14) are even or odd. This also reduces the computation of
Cs by restriction to a triangular matrix. Moreover, the Eisenstein functions (9)-(10) are
expressed by the Weierstrass function ℘(z) and its derivatives. It follows from the the-
ory of elliptic functions [10] that all the derivatives of ℘(z) are algebraically expressed
through ℘(z) and ℘′(z) that also accelerates the computations.

Comparison of the CPU time for the standard method and our modification is pre-
sented in Fig. 3. Symbolic computations were performed in Mathematica R© with the use
of Sum operator.

3.3. Initial locations for random walks

The hexagonal, square and rectangular lattices are considered (see Fig. 4) with the
concentration ν = 0.6 as initial locations of the points ak and further random walks
described in Sec. 2.
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Fig. 2. Computation times for presented algorithm

Fig. 3. Comparison of computation times of e23 (left) and e23456 (rigth). Black dots-standard sum; gray

dots–presented algorithm

The hexagonal and square lattices contain N = 64 inclusions. The maximal con-
centrations for the hexagonal and rectangular lattices are νmax = π√

12
≈ 0.9069 and

νmax = π
4 ≈ 0.7854, respectively [9]. The rectangular array contains 9 × 7 = 63 in-

clusions. The maximal concentration for this rectangular array is equal to νmax = 7π
36 ≈

0.6109. The computations were performed for ν = 0.6 with the accuracy O(ν10).
In order to compare the computed sums for different lattices we use the respective

error ∣∣∣∣
elattice1 − elattice2

elattice1

∣∣∣∣ < 0.01. (16)

Moreover, many terms have to be real (e.g. e2 = π, e22, e33, e222, etc). Hence, their
imaginary parts display the absolute error. The question which sums have to be real has
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Fig. 4. Considered lattices

been not investigated yet except some sums. Table 2 presents the number of terms errors
which exceed a fixed level. Table 3 and Table 4 contain terms errors of which do not
exceed 1% with respect to the corresponding terms of the hexagonal lattice (lattice1 in
(16)). The criterion (16) can give wrong results for the sums oscillating near zero (e.g.
e3543, e4532, e23432, e34322 etc). However, there exist few non–zero terms. For instance,
the terms e2343222, e24642, e343332, e2343222, e3432222 depend on the initial lattice type.
Table 5 and Table 6 include only such terms for which the the error exceeds 10% and the
modulus of which is greater than 0.2.

4. Discussion and conclusion

One can consider the set {em1...mq ,mj = 2, 3, . . .} as a basis in the space of the
deterministic or random locations of inclusions. This observation was used in [8] to
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create a constructive theory of representative volume elements. The results presented
in Tables 3-6 can be considered as the characteristic parameters of the uniform non–
overlapping distribution of disks, below denoted as U , in the following way. Let a set
of the centres of inclusions be measured in a sample with two–dimensional geometry
and the sums em1...mq are computed for the measured data. If e2 ≈ π, the considered
composite is rather isotropic. This assertion is true at least for not high concentrations.
If the rest sums em1...mq are closed to the values from Tables 3-6, one can assign this
composite to the class of composites U obtained by stirring of the hard inclusions in a
host. Let us consider another case when the values em1...mq coincide with the theoretical
values from Tables 3-6 but for higher concentrations than in the sample. This means that
the sample could be obtained from a periodic structure by perturbations modelled by
random walks in Method II. These perturbations can be restricted, for instance in time.
Hence, the hard inclusions are not intimately stirred.

The second interesting question can be stated as follows. Do the final positions of
inclusions "remember" the initial locations? Theoretically, the answer must be nega-
tive. However, Tables 5-6 demonstrate that at least the terms e2343222, e24642, e343332,
e2343222, e3432222 depend on the initial lattice type. This means that the original reg-
ular location of inclusions can be restored for composites modelled by random walks
(produced by stirring). This observation can be explained by the different scales of con-
vergence of em1...mq to the limit values when time of random walks tends to infinity.
The noted sums converge very slowly to the theoretical values. The number N or time
of random walks should be significantly greater for the sums from Tables 5-6 than from
Tables 3-4.

The main result of the present paper is a constructive fast algorithm to compute the
ER sums for random composites made from collections of non-overlapping, identical,
circular disks, embedded in a matrix. The obtained numerical results are applied to the
theoretical investigation of the structure of composites and modelling their production
by stirring. We have been making experiments to verify our mathematical models the
results of which will be published in a separate paper. To the best of our knowledge no
such experimental investigations have been carried out.

error > 0.01 > 0.03 > 0.05 > 0.1 > 0.2

square 81 51 47 37 32

rectangular 96 49 47 35 30

Table 2. Number of terms errors which exceed given value.
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sum hexagonal square rectangular

e2 3.141+0.005 i 3.142 3.141

e22 10.492 10.508 10.497

e222 34.929+0.042 i 35.014 34.961-0.002 i

e44 3.351 3.363 3.382

e2222 119.676 120.119 119.865

e55 -7.581 -7.612 -7.592

e2332 -16.996 -17.077 -17.157

e22222 408.497+0.450 i 410.459+0.023 i 409.400+0.020 i

e442 10.519+0.014 i 10.582-0.006 i 10.615-0.003 i

e66 10.885 10.863 10.853

e4422 36.033+0.007 i 36.293-0.023 i 36.377-0.004 i

e2442 36.883 37.217 37.233

e222222 1421.740 1430.630 1425.990

e552 -23.825-0.048 i -23.918+0.007 i -23.841-0.006 i

e23322 -54.970-0.067 i -55.1976-0.030 i -55.467+0.011 i

e77 -8.315 -8.379 -8.377

e5522 -82.760-0.045 i -83.248+0.013 i -82.847-0.028 i

e2552 -79.019 -79.388 -79.084

e3443 -8.040 -8.111 -8.108

e233222 -196.512+0.100 i -197.545+0.044 i -198.195-0.079 i

e332222 -157.040+0.055 i -157.9080-0.359 i -158.654+0.326 i

e223322 -191.428 -192.183 -193.053

e2222222 4928.980+5.247 i 4966.370+0.552 i 4947.640+0.709 i

e662 34.195+0.042 i 34.118+0.020 i 34.095+0.001 i

e24422 125.254+0.111 i 126.527+0.056 i 126.532+0.016 i

e44222 119.766+0.194 i 120.8410-0.120 i 120.962-0.043 i

e88 6.887 6.905 6.954

e6622 119.789-0.036 i 119.757+0.095 i 119.604+0.086 i

e2662 111.850 111.646 111.584

Tab. 3. Eisenstein-Rayleigh sums errors of which for square and rectangular lattices
with respect to hexagonal terms do not exceed 1%
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sum hexagonal square rectangular

e442222 417.985+0.203 i 422.3180-0.481 i 422.360-0.076 i

e233332 127.744 127.722 128.796

e22222222 17346.200 17506.200 17427.400

e772 -26.137-0.028 i -26.330-0.035 i -26.321-0.020 i

e25522 -273.178-0.311 i -274.8790+0.020 i -273.447+0.006 i

e34432 -25.255-0.062 i -25.4490-0.039 i -25.483+0.021 i

e55222 -275.125-0.504 i -276.8070-0.046 i -275.435-0.145 i

e2233222 -677.310-1.005 i -680.6730-0.660 i -682.763+0.291 i

e2332222 -659.282-0.545 i -662.4020-0.241 i -664.490-0.311 i

e3322222 -536.964-0.684 i -540.5350-1.495 i -542.382+1.501 i

e99 -8.252 -8.294 -8.288

e6633 -15.241-0.006 i -15.324-0.047 i -15.381+0.020 i

e7722 -93.050+0.032 i -93.869-0.108 i -93.743-0.078 i

e2772 -86.915 -87.593 -87.459

e4554 -18.025 -18.055 -18.182

e255222 -932.595+0.140 i -939.0070+0.301 i -933.7780+0.166 i

e344322 -82.823-0.039 i -83.5149-0.116 i -83.630+0.106 i

e552222 -970.801-0.601 i -978.6840-0.201 i -972.521-0.409 i

e225522 -965.793 -973.428 -967.124

e22332222 -2366.840-0.319 i -2378.5100-0.841 i -2384.320+1.256 i

e23322222 -2343.050+1.666 i -2357.8400+0.455 i -2361.590-2.169 i

e33222222 -1851.620+0.875 i -1863.1800-4.180 i -1869.510+5.307 i

e22233222 -2485.400 -2501.140 -2504.800

e222222222 60806.200+64.308 i 61460.2000+9.809 i 61146.400+13.461 i

e882 21.6135+0.061 i 21.7103-0.015 i 21.8069-0.025 i

e26622 390.301+0.575 i 390.2250-0.031 i 389.901-0.192 i

e33552 20.334-0.053 i 20.297+0.085 i 20.486-0.076 i

e66222 397.879+0.319 i 398.0510+0.404 i 397.460+0.350 i

e2333322 407.659+0.328 i 407.0330+0.092 i 410.825-0.357 i

Tab. 4. Continuation of Table 3
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term hexagonal square error

e3542 -0.232-0.059 i -0.177-0.033 i 0.25

e4532 -0.661-0.041 i -0.559-0.054 i 0.15

e23432 -0.574+0.029 i -0.983-0.036 i 0.72

e34322 -0.198-0.032 i -0.459 1.31

e3652 0.398+0.111 i 0.502-0.030 i 0.42

e4642 0.237+0.110 i 0.505-0.002 i 1.11

e234322 -7.523+0.197 i -8.824-0.054 i 0.18

e343222 0.031-0.043 i -1.064-0.022 i 20.78

e35422 -0.765-0.195 i -0.578-0.081 i 0.28

e45322 -2.090-0.226 i -1.816-0.215 i 0.13

e3762 -0.629+0.060 i -0.581-0.205 i 0.43

e4752 -0.395-0.126 i -0.529+0.070 i 0.57

e5742 -2.740-0.136 i -2.979+0.006 i 0.10

e24642 1.752-0.234 i 2.791+0.041 i 0.61

e34443 0.203-0.086 i -0.031 i 0.95

e333432 -0.785-0.146 i -0.255+0.155 i 0.76

e343332 1.642-0.064 i 2.218+0.011 i 0.35

e354222 -5.149-0.714 i -4.785-0.428 i 0.09

e2234322 -41.744-0.869 i -45.880 0.10

e36522 1.243+0.381 i 1.529-0.151 i 0.46

e46422 0.711+0.426 i 1.693+0.089 i 1.25

e2343222 -21.757+0.322 i -27.078-0.266 i 0.25

e3432222 -0.076-0.158 i -3.414-0.095 i 19.10

Tab. 5. Eisenstein-Rayleigh sums for hexagonal and square lattices.
Last column includes respective error with respect to hexagonal terms
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term hexagonal rectangular hex-rect

e3542 -0.232-0.059 i -0.193-0.073 i 0.17

e4532 -0.661-0.041 i -0.628-0.009 i 0.07

e23432 -0.574+0.029 i -1.077-0.127 i 0.92

e34322 -0.198-0.032 i -0.483+0.118 i 1.61

e3652 0.398+0.111 i 0.536-0.101 i 0.61

e4642 0.237+0.110 i 0.343+0.148 i 0.43

e234322 -7.523+0.197 i -9.340-0.166 i 0.25

e343222 0.031-0.043 i -1.224+0.392 i 25.21

e35422 -0.765-0.195 i -0.604-0.255 i 0.22

e45322 -2.090-0.226 i -1.938-0.095 i 0.1

e3762 -0.629+0.060 i -0.585+0.097 i 0.09

e4752 -0.395-0.126 i -0.410+0.167 i 0.71

e5742 -2.740-0.136 i -2.813+0.165 i 0.11

e24642 1.752-0.234 i 2.200-0.423 i 0.28

e34443 0.203-0.086 i 0.184+0.241 i 1.48

e333432 -0.785-0.146 i -0.493-0.189 i 0.37

e343332 1.642-0.064 i 2.104-0.150 i 0.29

e354222 -5.149-0.714 i -4.687-1.006 i 0.11

e2234322 -41.744-0.869 i -48.079-0.302 i 0.15

e36522 1.243+0.381 i 1.708-0.328 i 0.65

e46422 0.711+0.426 i 1.041+0.486 i 0.41

e2343222 -21.757+0.322 i -29.000-0.661 i 0.34

e3432222 -0.076-0.158 i -4.337+0.982 i 25.23

Tab. 6. Eisenstein-Rayleigh sums for hexagonal and rectangular lattices.
Last column includes respective error with respect to hexagonal terms
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Symulacje komórki reprezentacyjnej 2D kompozytu z kołowymi nie
nachodzącymi na siebie wtrąceniami

Streszczenie

Rozważmy dwuwymiarowy, dwufazowy okresowy materiał kompozytowy, złożony
ze zbioru nienakładających się na siebie identycznych wtrąceń kołowych zanurzonych
w osnowie. Zgodnie z teorią komórki reprezentatywnej, efektywna przewodność ba-
danego materiału wyraża się za pomocą uogólnionych sum Eisensteina-Rayleigha
(zwanych dalej sumami ER). Bezpośrednie obliczenie sum ER jest możliwe tylko
w przypadku sum niższych rzędów. W artykule przedstawiono szybki algorytm oblicza-
jący sumy ER wyższych rzędów, opracowany z wykorzystaniem błądzenia losowego
oraz metody Monte Carlo. Algorytm ten jest rekurencyjny, tzn. ustalona suma ER
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wyrażona jest za pomocą sum niższego rzędu. W celu usprawnienia działania algo-
rytmu wykorzystano algebraiczne zależności między funkcjami Eisensteina i Wieier-
strassa oraz między ich pochodnymi. Uzyskane wyniki numeryczne zastosowano do
badania struktury materiałów kompozytowych.
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