Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Data
  • Type

Search results

Number of results: 1
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

To investigate the effects and improvements of tightening vehicle emission standards from China Ⅲ to China Ⅴ on ozone (O3) and particulate matter (PM) pollution in the atmospheric environment, this study obtained emission factors of O3 and PM precursors such as nitrogen oxides (NOx), volatile organic compounds (VOCs), and primary PM from gasoline and diesel vehicles through actual testing. Response surface models (RSM) were then created for the environmental concentrations of the target pollutants O3 (RSM-O3_HSS6-200) and PM (RSMPM_HSS9-300) as functions of precursor pollutant emissions. Beijing was chosen as the main receptor region, with the China Ⅲ emission standard serving as the baseline scenario and the China Ⅳ and Ⅴ standards as control scenarios. The results indicate that as vehicle emission standards tightened from China Ⅲ to China Ⅳ and Ⅴ, O3 concentrations in Beijing's environment decreased from 92.7 ppbv to 78.47 ppbv and 72.20 ppbv, respectively, while PM concentrations decreased from 64.12 μg/m3 to 48.23 μg/m3 and 38.60 μg/m3, respectively. Furthermore, the environmetal benefits achieved from China Ⅲ to China Ⅳ were higher than those from China Ⅳ to China Ⅴ. Additionally, an analysis of pollutant source contributions revealed that NOx played a major role in reducing O3 concentrations, while primary PM was crucial in controlling PM pollution.
Go to article

Bibliography

  1. Aelion, C.M., Davis, H.T, Liu, Y., Lawson, A.B. & McDermott, S. (2009). Validation of Bayesian kriging of arsenic, chromium, lead, and mercury surface soil concentrations based on internode sampling. Environmental Science & Technology,43(12).
  2. Akimoto, H. & Tanimoto, H. (2022). Rethinking of the adverse effects of NOx-control on the reduction of methane and tropospheric ozone–Challenges toward a denitrified society. Atmospheric Environment, 277: 119033. DOI:10.1016/j.atmosenv.2022.119033
  3. BMEEB (2022). Beijing Ecology and Environment Statement 2021, http://sthjj.beijing.gov.cn/bjhrb/index/xxgk69/sthjlyzwg/1718880/1718881/1718882/325831146/2022122313533794930.pdf.
  4. Box, G.E.P. & Draper, N. (2007). Response Surfaces, Mixtures, and Ridge Analyses, Second Edition of Empirical Model-Building and Response Surfaces, 1987, Wiley.
  5. Brown, S.S., Ryerson, T.B., Wollny, A.G., Brock, C.A., Peltier, R., Sullivan, A.P., Weber, R.J., Dubé, W.P., Trainer, M., Meagher, J.F., Fehsenfeld, F.C. & Ravishankara, A.R. (2006). Variability in nocturnal nitrogen oxide processing and its role in regional air quality. Science, 311(5757), pp. 67-70. DOI:10.1126/science.1120120.
  6. Daellenbach, K.R., Uzu, G., Jiang J., Cassagnes, L.E., Leni, Z., Vlachou, A., Stefenelli, A., Canonaco, F., Weber, S., Segers., A., Kuenen, J.P.J., Schaap, M., Favez, O., Albinet, A., Aksoyoglu, S., Dommen, J., Baltensperger, U., Geiser, M., Haddad, E. I., Jaffrezo, J.L & Prévôt, S.H.A. (2020). Sources of particulate-matter air pollution and its oxidative potential in Europe. Nature, 587(7834), pp. 414-419. DOI:10.1038/s41586-020-2902-8.
  7. Dai H.B., Liao, H., Wang, Y. & Qian, J. (2024). Co-occurrence of ozone and PM2.5 pollution in urban/non-urban areas in eastern China from 2013 to 2020: Roles of meteorology and anthropogenic emissions. Science of The Total Environment, 924, 171687. DOI:10.1016/j.scitotenv.2024.171687.
  8. Deng, T., Huang, Y.Q., Li, Z.N., Wang, N., Wang, S.Q., Zou, Y., Yin, C.Q. & Fan. S.J. (2018). Numerical simulations for the sources apportionment and control strategies of PM 2.5 over Pearl River Delta, China, part II: Vertical distribution and emission reduction strategies. Science of the Total Environment, 634. DOI:10.1016/j.scitotenv.2018.04.209.
  9. Ding, W & Shuhua, L. (2023). Impact assessment of air pollutants and greenhouse gases on urban heat wave events in the Beijing-Tianjin-Hebei region. Environmental Geochemistry and Health, 45(11): pp. 7693-7709. DOI:10.1007/s10653-023-01677-7.
  10. Guha, A.K. & Gokhale, S. (2023). Urban workers' cardiovascular health due to exposure to traffic-originated PM2.5 and noise pollution in different microenvironments. Science of the Total Environment, 859, 160268. DOI:10.1016/j.scitotenv.2022.160268.
  11. Hammersley, J. (1960). Monte Carlo methods for solving multivariable problems. Proceedings of the New York Academy of Science, 86: pp. 844-874. DOI:10.1111/j.1749-6632.1960.tb42846.x.
  12. Jia, X., Wang, S.X., Jang, C., Zhu, Y., Zhao, B., Ding, D., Wang, J.D., Zhao, L.J., Xie, H.X. & Hao, J.M. (2017). ABaCAS: an overview of the air pollution control cost-benefit and attainment assessment system and its application in China. The Magazine for Environmental Managers–Air & Waste Management Association, (April). https://www.abacas-dss.com/Files/paper/ABaCAS_EM_April_2017_xing.pdf.
  13. Kumar, P.G., Lekhana, P., Tejaswi, M. & Chandrakala, S. (2021). Effects of vehicular emissions on the urban environment-a state of the art. Materials Today: Proceedings, 45: pp. 6314-6320. DOI: 10.1016/j.matpr.2020.10.739.
  14. Lao, Y. W., Zhu, Y., Jang, C., Lin, C. J., Xing, J.,Chen, Z. R., Xie, J. P., Wang, S. X. & Fu, J. (2012). Research and development of auxiliary decision tools for regional air pollution control based on response surface mode. Journal of Environmental Sciences, 32(08), pp. 1913-1922. DOI:10.13671/j.hjkxxb.2012.08.019. (In Chinese)
  15. Latha, R., Shahana, B., Dolly, M., Rupal, A., Trina, M., Priyadarshi, M. & Murthy, B.S. (2023). On the transition of major pollutant and O3 production regime during Covid-19 lockdowns. Journal of Environmental Management, 328, 116907. DOI:10.1016/j.jenvman.2022.116907.
  16. Liu, C. & Shi, K. (2021). A review on methodology in O3-NOx-VOC sensitivity study. Environmental Pollution, 291, 118249. DOI:10.1016/j.envpol.2021.118249.
  17. Liu, F., Zhu, Y. & Zhao, Y. (2008). Contribution of motor vehicle emissions to surface ozone in urban areas: A case study in Beijing. The International Journal of Sustainable Development & World Ecology, 15(4), pp. 345-349. DOI:10.3843/SusDev.15.4:9.
  18. Lv, Z.F., Wang, X.T., Deng, F.Y., Ying, Q., Archibald, T.A., Jones, J.R., Ding, Y., Cheng, Y., Fu, M.L., Liu, Y., Man, H.Y., Xue, Z.G., He, K.B., Hao, J.M. & Liu, H. (2020). Source–receptor relationship revealed by the halted traffic and aggravated haze in Beijing during the COVID-19 lockdown. Environmental science & technology, 54(24), pp, 15660-15670. DOI:10.1021/acs.est.0c04941.
  19. Lyu, M., Bao, X.F., Zhu, R.C. & Matthews, R. (2020). State-of-the-art outlook for light-duty vehicle emission control standards and technologies in China. Clean Technologies and Environmental Policy, 22(4), pp. 757-771. DOI:10.1007/s10098-020-01834-x.
  20. Ministry of Ecology and Environment of the People’s Republic of China (MEE). (2022) https://www.mee.gov.cn. Last access: 20 August 2022.
  21. Ministry of Ecology and Environment of the People’s Republic of China (MEE). (2023) https://www.mee.gov.cn. Last access: 1 August 2023.
  22. Nguyen, K. & Dabdub, D. (2022). NOx and VOC control and its effects on the formation of aerosols. Aerosol Science & Technology, 36(5), pp. 560-572. DOI:10.1080/02786820252883801.
  23. Pan, Y. Z. (2020). Improvement and application of PM2.5 source contribution analysis Method based on Response Surface model technique. South China University of Technology, DOI:10.27151/d.cnki.ghnlu.2020.002204. (in Chinese)
  24. The People's Government of Beijing Municipality (PGBM). (2021) http://www.beijing.gov.cn. Last access: 1 August 2021.
  25. Wang, Y.H., Gao, W.K., Wang, S., Song, T., Gong, Z.Y., Ji, D.S., Wang L.L., Liu, Z.R.,Tang, G.Q., Huo, Y.F., Tian, S.L., Li, J.Y., Li, M.G., Yang,Y., Chu, B.W., Petaja, T., Kerminen, V.M., He, H., Hao, J.M., Kulmala, M., Wang, Y.S. & Zhang, Y.H. (2020). Contrasting trends of PM2.5 and surface-ozone concentrations in China from 2013 to 2017. National Science Review, 7(8), pp. 1331-1339. DOI:10.1093/nsr/nwaa032.
  26. Wu, T.R., Cui, Y.Y., Lian, A.P., Tian, Y., Li, R.F., Liu, X.Y., Jing, Y., Xue, Y.F., Liu, H. & Wu, B.B. (2023). Vehicle emissions of primary air pollutants from 2009 to 2019 and projection for the 14th Five-Year Plan period in Beijing, China. Journal of Environmental Sciences, 124(02), pp. 513-521. DOI:10.1016/j.jes.2021.11.038.
  27. Xing, J. (2011). Study on non-linear response relationship between air pollution emissions and environmental effects. Tsinghua University, https://kns.cnki.net/kcms2/article/abstract?v=4wkQyjAcIEdPh2Yz1dvthqvcfOngyxm32aJgNvaSA4efiNy_bMJJ4XlzsbKsiQczmoIqt74U_xNLfCgwd3hxR2AIh1OI7XMyf76pbtSLWw1Dubs4VmUGJvvJ6fLOGwKrwODdmuqlysGVyPacwW_Mt7j_RMJXR2h75EvN8sWktx0_lBW-P2WMKiacY0eic2ET&uniplatform=NZKPT&language=CHS. (In Chinese)
  28. Xu, J., Xu, X.B., Lin, W.L., Ma, Z.Q., Ma, J.Z., Wang, R., Wang, Y., Zhang, G. & Xu, W.Y. (2020). Understanding the formation of high-ozone episodes at Raoyang, a rural site in the north China plain. Atmospheric Environment, 240, 117797. DOI:10.1016/j.atmosenv.2020.117797.
  29. Xue, X.H. (2020). A brief discussion on the harm of photochemical smog and its control countermeasures. Sichuan Environment, (04), pp. 75-76+60. DOI:10.14034/j.cnki.schj.2000.04.025. (In Chinese)
  30. Zhang, Q.J., Liu, J.Y., Wei, N., Song, C.B., Peng, J.F., Wu, L. & Mao, H.J. (2023). Identify the contribution of vehicle non-exhaust emissions: a single particle aerosol mass spectrometer test case at typical road environment. Frontiers of Environmental Science & Engineering, 17(5), 62. DOI:10.1007/s11783-023-1662-8.
  31. Zhao, B., Wang, S.X., Dong, X.Y., Wang, J.D., Duan, L., Fu, X., Hao, J.M. & Fu, J.S. (2013a). Environmental effects of the recent emission changes in China: implications for particulate matter pollution and soil acidification. Environmental Research Letters, 8(2), 024031. DOI:10.1088/1748-9326/8/2/024031.
  32. Zhao, B., Wang, S.X, Wang, J.D., Fu, S.J., Liu, T.H., Hua, J.Y., Fu, X. & Hao, J.M. (2013b). Impact of national NOx and SO2 control policies on particulate matter pollution in China. Atmospheric Environment, 77, pp. 453-463. DOI:10.1016/j.atmosenv.2013.05.012.
Go to article

Authors and Affiliations

Chang Wang
1
Xiaohan Miao
1
Maodong Fang
2
Yuan Chen
1
Taosheng Jin
1

  1. Tianjin Key Laboratory of Urban Transport Emission Research, State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
  2. National Engineering Laboratory for Mobile Source Emission Control Technology, China Automotive Technology and Research Center Co., Ltd., Tianjin 300300, China

This page uses 'cookies'. Learn more