Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 1
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In this study, the effectiveness of sequentially applying coagulation and adsorption processes in treating soft drink industry wastewater was assessed based on COD removal. In the electrocoagulation method with iron electrodes, the highest COD removal occurred at 42%, achieved with a current of 9A and the natural pH of the wastewater at 5.51. In chemical coagulation, using FeCl3•6H2O as a coagulant, the highest removal rate of 23% was achieved at pH 5 with a coagulant dose of 2.5g/L. Activated carbon adsorption, in doses ranging from 10 to 40g/L, was applied to the effluents of both electrocoagulation and chemical coagulation at various contact times, up to 150 minutes, resulting in COD removal rates of 42% and 36%, respectively. According to the results, the COD removal efficiencies for the electrocoagulation-adsorption and chemical coagulation-adsorption systems were 66% and 51%, respectively. The findings of this study are important because they demonstrate the necessity of research on the use and development of physicochemical methods for the treatment of soft drink industry wastewater.
Go to article

Bibliography

  1. Can, O.T. (2014). COD removal from fruit-juice production wastewater by electrooxidation electrocoagulation and electro-Fenton processes, Desalination and Water Treatment, 52, pp. 65-73. DOI:10.1080/19443994.2013.781545
  2. Casillas, H.A.M., Cocke, D.L., Gomes, J.A.G., Morkovsky, P., Parga, J.R. & Peterson, E. (2007). Electrocoagulation mechanism for COD removal, Separation and Purification Technology, 56, pp. 204-211. DOI:10.1016/j.seppur.2007.01.031
  3. Chang, S.H., Wang, K.S., Liang, H.H., Chen, H.Y., Li, H.C., Peng, T.H., Su, Y.C. & Chang, C.Y. (2010). Treatment of Reactive Black 5 by combined electrocoagulation-granular activated carbon adsorption-microwave regeneration process, Journal of Hazardou Materials, 175, pp. 850-857. DOI:10.1016/j.hazmat.2009.10.088
  4. Das, P.P., Sharma, M. & Purkait, M.K. (2022). Recent progress on electrocoagulation process for wastewater treatment: A review. Separation and Purification Technology, 292, 121058. DOI:10.1016/j.seppur.2022.121058
  5. Dia, O., Drogui, P., Bueldo, G. & Dube, R. (2018). Hybrid process, electrocoagulation-biofiltration for landfill leachate treatment, Waste Management, 75, pp. 391-399. DOI:10.1016/j.wasman.2018.02.016
  6. Ebeling, J.M., Sibrell, P.L., Ogden, S.R. & Summerfelt, S.T. (2003). Evaluation of chemical coagulation-flocculation aids for the removal suspended solids and phosphorus from intensive recirculating aquaculture effluents discharge, Aquaculture Engineering, 29, pp. 23-42. DOI:10.1016/S0144-8609(03)00029-3
  7. El-Naas, M.H., Al-Zuhair, S. & Alhaija, M.A. (2010). Reduction of COD in refinery wastewater through adsorption on date-pit activated carbon, Journal of Hazardou Materials, 173, pp. 750-757. DOI:10.1016/j.hazmat.2009.09.002
  8. GilPavas, E. & Correa-Sanchez, S. (2020). Assessment of the optimized treatment of indigo-polluted industrial textile wastewater by a sequential electrocoagulation-activated carbon adsorption process, Journal of Water Process Engineering, 36, 101306. DOI:10.1016/j.jwpe.2020.101306
  9. Heidman, I. & Calmano, W. (2008). Removal of Cr (VI) from model wastewaters by electrocoagulation with Fe electrodes, Separation and Purification Technology, 61, pp. 15-21. DOI:10.1016/j.seppur.2007.09.011
  10. Hernandez, I.L., Diaz, C.B., Cerecero, M.V., Sanchez, P.T.A., Juarez, M.C. & Lugo, V.L. (2017). Soft drink wastewater treatment by electrocoagulatin-electrooxidation processes, Environmental Technology, 38, 4, pp. 433-442. DOI:10.1080/09593330.2016.1196740
  11. Hsine, E.A., Benhammou, A. & and Pons, M.N. (2005). Water resources management in soft drink industry-water use and wastewater generation, Environmental Technology, 26, pp. 1309-1316. DOI:10.1080/09593332608618605
  12. Hu, R., Liu, Y., Zhu, G., Chen, C., Hantoko, D. & Yan, M. (2022). COD removal of wastewater from hydrothermal carbonization of food waste: Using coagulation combined activated carbon adsorption, Journal of Water Process Engineering, 45, 102462. DOI:10.1016/j.wpe.2021.102462
  13. Inan, H., Dimoglo, A., Şimşek, H. & Karpuzcu, M. (2004). Olive oil mill wastewater treatment by means of electro-coagulation, Separation and Purification Technology, 36, pp. 23-31.
  14. Ishak, A.R., Hamid, F.S., Mohamad, S. & Tay, K.S. (2018). Stabilized landfill leachate treatment by coagulation-floculation coupled with UV-based sulfate radical oxidation process, Waste Management, 76, pp. 575-581. DOI:10.1016/j.wasman.2018.02.047
  15. Kasmi, M., Chatti, A., Hamdi, M. & Trabelsi, I. (2016). Eco-friendly process for soft drink industries wastewater reuse as growth medium for Saccharomyces cerevisiae production, Clean Technologies Environmental Policy, 18, pp. 2265-2278. DOI:10.1007/s 10098-016-1144-9
  16. Kong, X., Zhou, Y., Xu, T., Hu, B., Lei, X., Chen, H. & Yu, G. (2020). A novel technique of COD removal from electroplating wastewater by Fenton-alternating current electrocoagulation, Environmental Science and Pollution Research, 27, pp. 15198-15210. DOI:10.1007/s11356-020-07804-6
  17. Kuśmierek, K., Dąbek, D. & Świątkowski, A. (2023). Removal of direct orange 26 azo dye from water using natural carbonaceous materials, Archives of Environmental Protection, 49, 1, pp. 47-56. DOI:10.24425/aep.2023.144736.
  18. Modirshahla, N., Behnajady, M.A.& Kooshaiian, S. (2007). Investigation of the effect of different electrode connections on the removal efficiency of Tartrazine from aqueous solutions by electrocoagulation, Dyes and Pigments, 74, pp. 249-257. DOI:10.1016/j.dyepig.2006.02.006
  19. Ofir, E., Oren, Y. & Adin, A. (2007). Modified equilibrium-solubility domains and a kinetic model of iron oxide and hydroxide colloids for electroflocculation, Desalination, 204, pp. 79-86, 820079. DOI:10.1016/j.desal.2006.03.535
  20. Öztürk, T. & Özcan, Ö.F. (2021). Effectiveness of electrocoagulation and chemical coagulation methods on paper industry wastewater and optimum operating parameters, Separation Science and Technology, 56, 12, pp. 2074-2086. DOI:10.1080/01496395.2020.1805465
  21. Remya, N., & Swain, A. (2019). Soft drink industry wastewater treatment in microwave photocatalytic system - Exploration of removal efficiency and degradation mechanism, Separation and Purification Technology, 210, pp. 600-607. DOI:10.1016/j.seppur.2018.08.051
  22. Salinas, R.E.V., Miranda, V.M., Hernandez, I.L., Mejia, G.V., Juarez, M.C. & Sanchez, P.T.A. (2019). Pre-treatment of soft drink wastewater with a calcium-modified zeolite to improve electrooxidation of organic matter, Journal of Environmental Science and Health, Part A, 54, 7, pp. 617-627. DOI:10.1080/10934529.2019.1579522
  23. Shak, K.P.Y. & Wu, T.Y. (2014). Coagulation-flocculation treatment of high-strength agro-industrial wastewater using natural Cassia obtusifolia seed gum: Treatment efficiencies and floc characterization, Chemical Engineering Journal, 256, pp. 293-305. DOI:10.1016/j.cej.2014.06.093
  24. Sheldon, M.S. & Erdogan, I.G. (2016). Multi-stage EGSB/MBR treatment of soft drink industry wastewater, Chemical Engineering Journal, 285, pp. 368-377. DOI:10.1016/j.cej.2015.10.021
  25. Sincero, A.P. & Sincero, G.A. (2003). Physical-Chemical Treatment of Water and Wastewater, IWA Publishing-CRC Press, Washington 2003.
  26. Standard Methods, (1995). Standard Methods for the Examination of Water and Wastewater, American Public Health Association, Washington, USA 1995.
  27. Tsioptsias, C., Petridis, D., Athanasakis, N., Lemonidis, I., Deligiannis, A. & Samaras, P. (2015). Post-treatment of molasses wastewater by electrocoagulation and process optimization through response surface analysis, Journal of Environmental Management, 164, pp. 104-113. DOI:10.1016/j.envman.2015.09.007
  28. Water Pollution Control Regulation (2004). Republic Ministry of Environment, Urbanization and Climate Change, Water Pollution Control Regulation, Official Journal No:25687.
  29. Zablocka, J.B., Capodaglio, A.G. & Vogel, D. (2017). Analysis of wastewater treatment efficiency in a soft drinks industry, International Conference Energy, Environmental and Material Systems, EEMS, Polanica-Zdroj, Poland, Sep. 13-15. DOI:10.1051/e3sconf/20171902014
  30. Zongo, I., Leclerc, J.P., Maiga, H.A., Wethe, J. & Lapicque, F. (2009). Removal of hexavalent chromium from industrial wastewater by electrocoagulation: A comprehensive comparison of aluminium and iron electrodes, Separation and Purification Technology, 66, pp. 159-166. DOI:10.1016/j.seppur.2008.11.012
Go to article

Authors and Affiliations

Ece Sever
1
Tuba Öztürk
1
Elçin Güneş
1

  1. Tekirdağ Namık Kemal University, Turkey

This page uses 'cookies'. Learn more