Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Per- and polyfl uoroalkyl substances (PFASs) are human-invented chemicals that were created in the middle of the 20th century. They were synthesized for the fi rst time in 1949, and because of their exceptional surfactant properties, they have been widely used in many industrial applications and daily life products. The common use of PFASs resulted in their worldwide dissemination in natural environment. PFASs are reported to be ubiquitous in surface and drinking waters, but also may be present in soils, animals, milk and milk-products, plants, food. Contaminated drinking water and food are the most signifi cant exposure sources to these chemicals. Ingested PFASs are bio-accumulative and have adverse eff ect on health of humans as well as animal organisms. This paper reviews the most signifi cant information on the origin, properties, distribution, environmental fate, human exposure, health eff ects, and the environmental regulations on PFASs and summarizes the latest advances in the development of novel methods for the eff ective removal of these chemicals from the aqueous environment. Recognized (reverse osmosis, adsorption on activated carbon) and most promising developing removal methods such as adsorption on biomaterials (plant proteins, chitosan beds), mineral adsorbents (LDHs, hydrotalcite), ionexchange resins, and photocatalytic degradation have been emphasized.

Go to article

Authors and Affiliations

Mariusz Grabda
1
Sylwia Oleszek
2
Michiaki Matsumoto
3

  1. General Tadeusz Kosciuszko Military University of Land Forces, Wroclaw, Poland
  2. Department of Environmental Engineering, Kyoto University, Kyoto, Japan
  3. Department of Chemical Engineering and Materials Science, Doshisha University, Kyoto, Japan
Download PDF Download RIS Download Bibtex

Abstract

Mishandling and disposal of post-harvested phytoremediation biomass results in secondary pollution. Biochar production is one of the available technologies for processing post-harvested phytoremediation biomasses. The main objective of this study was to assess the potential adsorption of PO43- and NO3- ions from a binary solution by ZnCl2-activated phytoremediation biochars. The biochars were activated using ZnCl2 and analyzed for specific surface area, pore size, volume, surface morphology, point of zero charges (pHpzc), surface functional groups, and elemental composition. Subsequently, the adsorption potential for PO43- and NO3- ions of the activated biochar was investigated. Activation of phytoremediation biochars led to the development of new micropores and increased specific surface area range from 1.62-4.72 m2 g-1 to 4.75- 55.50 m2 g-1. ZnCl2 activation reduced the pHpzc values of Cymbopogon citratus, Cymbopogon nardus, and Chrysopogon zizanioides biochars (BCL2, BCC2, and BCV2) from 9.75, 9.50, 9.62 to 5.72, 5.51, and 6.23, respectively. Activated Chrysopogon zizanioides biochar (ACBCV2), activated Cymbopogon nardus biochar (ACBCC2) and activated Cymbopogon citratus biochar (ACBCL2) showed maximum potential phosphate ion adsorption capacities of 115.70, 101.74, and 270.59 mg g-1, respectively. ACBCL2, ACBCC2, and ACBCV2 indicated maximum potential nitrate ion adsorption capacities of 155.78, 99.42, and 117.71 mg g-1. BCC2, BCL2, ACBCV1, ACBCV2, and ACBCC2 best fitted the Langmuir linear form 1 model during NO3- adsorption. The results obtained in this study showed that ZnCl2-activated phytoremediation biochars have the potential to remove PO4 3- and NO3- ions from PO4 3- and NO3- ions binary solution.
Go to article

Bibliography

Abd Rahman, A. A., Alias, A. B., Jaffar, N. N. & Amir, M. A. (2019). Adsorption of hydrogen sulphide by commercialized rice husk biochar (RHB) & hydrogel biochar composite (RH-HBC). Int. J. Recent Technol. Eng, 8(4), pp. 6864-6870. DOI:10.35940/ijrte.D5207.118419. Ahmed, M. B., Zhou, J. L., Ngo, H. H., Guo, W. & Chen, M. (2016). Progress in the preparation and application of modified biochar for improved contaminant removal from water and wastewater. Bioresource technology, 214, pp. 836-851. DOI:10.1016/j.biortech.2016.05.057. Alagha, O., Manzar, M. S., Zubair, M., Anil, I., Mu’azu, N. D. & Qureshi, A. (2020). Comparative adsorptive removal of phosphate and nitrate from wastewater using biochar-MgAl LDH nanocomposites: coexisting anions effect and mechanistic studies. Nanomaterials, 10(2), 336. DOI:10.3390/nano10020336. Angın, D., Altintig, E. & Köse, T. E. (2013). Influence of process parameters on the surface and chemical properties of activated carbon obtained from biochar by chemical activation. Bioresource Technology, 148, pp. 542-549. DOI: 10.1016/j.biortech.2013.08.164. Banu, H. A. T., Karthikeyan, P., Vigneshwaran, S. & Meenakshi, S. (2020). Adsorptive performance of lanthanum encapsulated biopolymer chitosan-kaolin clay hybrid composite for the recovery of nitrate and phosphate from water. International journal of biological macromolecules, 154, pp. 188-197. DOI: 10.1016/j.ijbiomac.2020.03.074. Barquilha, C. E. & Braga, M. C. (2021). Adsorption of organic and inorganic pollutants onto biochars: Challenges, operating conditions, and mechanisms. Bioresource Technology Reports, 15, 100728. DOI:10.1016/j.biteb.2021.100728. Berkessa, Y. W., Mereta, S. T. & Feyisa, F. F. (2019). Simultaneous removal of nitrate and phosphate from wastewater using solid waste from the factory. Applied Water Science, 9, pp. 1-10. DOI:10.1007/s13201-019-0906-z. Biswas, B., Rahman, T., Sakhakarmy, M., Jahromi, H., Eisa, M., Baltrusaitis, J. & Adhikari, S. (2023). Phosphorus adsorption using chemical and metal chloride activated biochars: Isotherms, kinetics and mechanism study. Heliyon, 9(9). DOI:10.1016/j.heliyon.2023.e19830. Borchard, N., Wolf, A., Laabs, V., Aeckersberg, R., Scherer, H. W., Moeller, A. & Amelung, W. (2012). Physical activation of biochar and its meaning for soil fertility and nutrient leaching–a greenhouse experiment. Soil Use and Management, 28(2), pp. 177-184. DOI:10.1111/j.1475-2743.2012.00407.x Bouchemal, N., Belhachemi, M., Merzougui, Z. and Addoun, F. (2009). The effect of temperature and impregnation ratio on the active carbon porosity. Desalination and water treatment, 10(1-3), pp.115-120. DOI:10.5004/dwt.2009.828. Boyd, C. E. (2019). Water quality: an introduction. Springer Nature. DOI 10.1007/978-3-319-17446-4. Buentello-Montoya, D., Zhang, X., Li, J., Ranade, V., Marques, S. & Geron, M. (2020). Performance of biochar as a catalyst for tar steam reforming: Effect of the porous structure. Applied energy, 259, 114176. DOI:10.1016/j.apenergy.2019.114176. Chen, C., Fu, Y., Yu, L. L., Li, J. & Li, D. Q. (2017). Removal of methylene blue by seed-watermelon pulp-based low-cost adsorbent: Study of adsorption isotherms and kinetic models. Journal of Dispersion Science and Technology, 38(8), pp. 1142-1146. DOI:10.1080/01932691.2016.1225263. Choi, Y. K., Jang, H. M., Kan, E., Wallace, A. R. & Sun, W. (2019). Adsorption of phosphate in water on a novel calcium hydroxide-coated dairy manure-derived biochar. Environmental Engineering Research, 24(3), pp. 434-442. DOI:10.4491/eer.2018.296. Dai, Y., Wang, W., Lu, L., Yan, L. & Yu, D. (2020). Utilization of biochar for the removal of nitrogen and phosphorus. Journal of Cleaner Production, 257, 120573. DOI:10.1016/j.jclepro.2020.120573. Deng, Y., Li, M., Zhang, Z., Liu, Q., Jiang, K., Tian, J. & Ni, F. (2021). Comparative study on characteristics and mechanism of phosphate adsorption on Mg/Al modified biochar. Journal of Environmental Chemical Engineering, 9(2), 105079. DOI:10.1016/j.jece.2021.105079. Du, J., Zhang, L., Liu, T., Xiao, R., Li, R., Guo, D. & Zhang, Z. (2019). Thermal conversion of a promising phytoremediation plant (Symphytum officinale L.) into biochar: dynamic of potentially toxic elements and environmental acceptability assessment of the biochar. Bioresource technology, 274, pp. 73-82. DOI:10.1016/j.biortech.2018.11.077. Egbedina, A. O., Adebowale, K. O., Olu-Owolabi, B. I., Unuabonah, E. I. & Adesina, M. O. (2021). Green synthesis of ZnO coated hybrid biochar for the synchronous removal of ciprofloxacin and tetracycline in wastewater. RSC advances, 11(30), pp. 18483-18492. DOI: 10.1039/d1ra01130h. Elaigwu, S. E., Usman, L. A., Awolola, G. V., Adebayo, G. B. & Ajayi, R. M. K. (2010). Adsorption of Pb (II) from aqueous solution by activated carbon prepared from cow dung. Environmental Research Journal, 4(4), pp. 257-260. Feng, Q., Chen, M., Wu, P., Zhang, X., Wang, S., Yu, Z. & Wang, B. (2022). Simultaneous reclaiming phosphate and ammonium from aqueous solutions by calcium alginate-biochar composite: Sorption performance and governing mechanisms. Chemical Engineering Journal, 429, 132166. DOI:10.1016/j.cej.2021.132166. Foo, K. Y. & Hameed, B. H. (2010). Insights into the modeling of adsorption isotherm systems. Chemical engineering journal, 156(1), pp. 2-10. DOI:10.1016/j.cej.2009.09.013. Gámiz, B., Hall, K., Spokas, K. A. & Cox, L. (2019). Understanding activation effects on low-temperature biochar for optimization of herbicide sorption. Agronomy, 9(10), 588. DOI: 10.3390/agronomy9100588. Ghosh, M. & Singh, S. P. (2005). A review on phytoremediation of heavy metals and utilization of it’s by products. Asian J Energy Environ, 6(4), 18. Gizaw, A., Zewge, F., Kumar, A., Mekonnen, A. & Tesfaye, M. (2021). A comprehensive review on nitrate and phosphate removal and recovery from aqueous solutions by adsorption. AQUA—Water Infrastructure, Ecosystems and Society, 70(7), pp. 921-947. DOI:10.2166/aqua.2021.146. Gray, M., Johnson, M. G., Dragila, M. I. & Kleber, M. (2014). Water uptake in biochars: The roles of porosity and hydrophobicity. Biomass and bioenergy, 61, pp. 196-205. Guo, F., Peng, K., Liang, S., Jia, X., Jiang, X. & Qian, L. (2019). Evaluation of the catalytic performance of different activated biochar catalysts for removal of tar from biomass pyrolysis. Fuel, 258, 116204. DOI:10.1016/j.biombioe.2013.12.010. Gupta, K. & Khatri, O. P. (2017). Reduced graphene oxide as an effective adsorbent for removal of malachite green dye: Plausible adsorption pathways. Journal of colloid and interface science, 501, pp. 11-21. DOI:10.1016/j.jcis.2017.04.035. Hafshejani, L. D., Hooshmand, A., Naseri, A. A., Mohammadi, A. S., Abbasi, F. & Bhatnagar, A. (2016). Removal of nitrate from aqueous solution by modified sugarcane bagasse biochar. Ecological Engineering, 95, pp. 101-111. DOI: 10.1016/j.ecoleng.2016.06.035. He, J., Strezov, V., Kumar, R., Weldekidan, H., Jahan, S., Dastjerdi, B. H. & Kan, T. (2019). Pyrolysis of heavy metal contaminated Avicennia marina biomass from phytoremediation: Characterisation of biomass and pyrolysis products. Journal of Cleaner Production, 234, 1235-1245. DOI:10.1016/j.jclepro.2019.06.285. He, J., Strezov, V., Zhou, X., Kumar, R. & Kan, T. (2020). Pyrolysis of heavy metal contaminated biomass pre-treated with ferric salts: Product characterisation and heavy metal deportment. Bioresource Technology, 313, 123641. DOI:10.1016/j.biortech.2020.123641. Hock, P. E. & Zaini, & M. A. A. (2018). Activated carbons by zinc chloride activation for dye removal–a commentary. Acta chimica slovaca, 11(2), pp. 99-106. DOI: 0.2478/acs-2018-0015. Huang, Y., Chu, H., Wang, D. & Hui, S. (2024). Performance and mechanism of benzene adsorption on ZnCl2 one-step modified corn cob biochar. Environmental Science and Pollution Research, 31(10), pp. 15209-15222. DOI: 10.1007/s11356-024-32183-7. Hung, C. Y., Tsai, W. T., Chen, J. W., Lin, Y. Q. & Chang, Y. M. (2017). Characterization of biochar prepared from biogas digestate. Waste management, 66, pp. 53-60. DOI:10.1016/j.wasman.2017.04.034. Inyang, M. I., Gao, B., Yao, Y., Xue, Y., Zimmerman, A., Mosa, A. & Cao, X. (2016). A review of biochar as a low-cost adsorbent for aqueous heavy metal removal. Critical Reviews in Environmental Science and Technology, 46(4), pp. 406-433. DOI:10.1080/10643389.2015.1096880. Ip, A. W. M., Barford, J. P. & McKay, G. (2009). Reactive Black dye adsorption/desorption onto different adsorbents: effect of salt, surface chemistry, pore size and surface area. Journal of colloid and interface science, 337(1), pp. 32-38. DOI:10.1016/j.jcis.2009.05.015. Itodo, A. U., Itodo, H. U. & Gafar, M. K. (2010). Estimation of specific surface area using Langmuir isotherm method. Journal of Applied Sciences and Environmental Management, 14(4). DOI:10.4314/jasem.v14i4.63287. Jing, X. R., Wang, Y. Y., Liu, W. J., Wang, Y. K. & Jiang, H. (2014). Enhanced adsorption performance of tetracycline in aqueous solutions by methanol-modified biochar. Chemical Engineering Journal, 248, pp. 168-174. DOI:10.1016/j.cej.2014.03.006. Kabbashi, N. A., Atieh, M. A., Al-Mamun, A., Mirghami, M. E., Alam, M. D. Z. & Yahya, N. (2009). Kinetic adsorption of application of carbon nanotubes for Pb (II) removal from aqueous solution. Journal of Environmental Sciences, 21(4), pp. 539-544. DOI:10.1016/S1001-0742(08)62305-0. Lalley, J., Han, C., Li, X., Dionysiou, D. D. & Nadagouda, M. N. (2016). Phosphate adsorption using modified iron oxide-based sorbents in lake water: kinetics, equilibrium, and column tests. Chemical Engineering Journal, 284, pp. 1386-1396. DOI:10.1016/j.cej.2015.08.114. Lawal, A. A., Hassan, M. A., Zakaria, M. R., Yusoff, M. Z. M., Norrrahim, M. N. F., Mokhtar, M. N. & Shirai, Y. (2021). Effect of oil palm biomass cellulosic content on nanopore structure and adsorption capacity of biochar. Bioresource Technology, 332, 125070. DOI:10.1016/j.biortech.2021.125070. Lee, H. S. & Shin, H. S. (2021). Competitive adsorption of heavy metals onto modified biochars: Comparison of biochar properties and modification methods. Journal of Environmental Management, 299, 113651. DOI:10.1016/j.jenvman.2021.113651. Lee, S. Y. & Park, S. J. (2013). Determination of the optimal pore size for improved CO2 adsorption in activated carbon fibers. Journal of colloid and interface science, 389(1), pp. 230-235. DOI:10.1016/j.jcis.2012.09.018. Li, B., Hu, J., Xiong, H. & Xiao, Y. (2020). Application and properties of microporous carbons activated by ZnCl2: adsorption behavior and activation mechanism. ACS omega, 5(16), pp. 9398-9407. DOI:10.1021/acsomega.0c00461. Li, X., Zhao, C. & Zhang, M. (2019). Biochar for anionic contaminants removal from water. In Biochar from biomass and waste pp. 143-160. Elsevier. DOI:10.1016/B978-0-12-811729-3.00008-X. Liu, A., Chen, J., Lu, X., Li, D. & Xu, W. (2021). Influence of components interaction on pyrolysis and the explosion of biomass dust. Process Safety and Environmental Protection, 154, pp. 384-392. DOI:10.1016/j.psep.2021.08.032. Liu, L., Ji, M. & Wang, F. (2018). Adsorption of nitrate onto ZnCl2-modified coconut granular activated carbon: kinetics, characteristics, and adsorption dynamics. Advances in Materials Science and Engineering, DOI:10.1155/2018/1939032. Liu, N., Charrua, A. B., Weng, C. H., Yuan, X. & Ding, F. (2015). Characterization of biochars derived from agriculture wastes and their adsorptive removal of atrazine from aqueous solution: A comparative study. Bioresource technology, 198, pp. 55-62. DOI:10.1016/j.biortech.2015.08.129. Liu, W. J., Tian, K., Jiang, H. & Yu, H. Q. (2014). Harvest of Cu NP anchored magnetic carbon materials from Fe/Cu preloaded biomass: their pyrolysis, characterization, and catalytic activity on aqueous reduction of 4-nitrophenol. Green chemistry, 16(9), pp. 4198-4205. DOI:10.1039/C4GC00599F. Machado, L. M., Lütke, S. F., Perondi, D., Godinho, M., Oliveira, M. L., Collazzo, G. C. & Dotto, G. L. (2020). Treatment of effluents containing 2-chlorophenol by adsorption onto chemically and physically activated biochars. Journal of Environmental Chemical Engineering, 8(6), 104473. DOI:10.1016/j.jece.2020.104473. Majd, M. M., Kordzadeh-Kermani, V., Ghalandari, V., Askari, A. & Sillanpää, M. (2022). Adsorption isotherm models: A comprehensive and systematic review (2010− 2020). Science of The Total Environment, 812, 151334. DOI:10.1016/j.scitotenv.2021.151334. Mehdizadeh, S., Sadjadi, S., Ahmadi, S. J. & Outokesh, M. (2014). Removal of heavy metals from aqueous solution using platinum nanopartcles/Zeolite-4A. Journal of Environmental Health Science and Engineering, 12, pp. 1-7. Menya, E., Olupot, P. W., Storz, H., Lubwama, M. & Kiros, Y. (2018). Production and performance of activated carbon from rice husks for removal of natural organic matter from water: a review. Chemical Engineering Research and Design, 129, pp. 271-296. DOI:10.1016/j.cherd.2017.11.008. Milmile, S. N., Pande, J. V., Karmakar, S., Bansiwal, A., Chakrabarti, T. & Biniwale, R. B. (2011). Equilibrium isotherm and kinetic modeling of the adsorption of nitrates by anion exchange Indion NSSR resin. Desalination, 276(1-3), pp. 38-44. DOI:10.1016/j.desal.2011.03.015. Mishra, S. P., Mohapatra, D., Mishra, D., Chattopadhyay, P., Chaudhury, G. R. & Das, R. P. (2014). Arsenic adsorption on natural minerals. J Mater Environ Sci, 5(2), pp. 350-359. Mosa, A., El-Ghamry, A. & Tolba, M. (2018). Functionalized biochar derived from heavy metal-rich feedstock: phosphate recovery and reusing the exhausted biochar as an enriched soil amendment. Chemosphere, 198, pp. 351-363. DOI:10.1016/j.chemosphere.2018.01.113. Muzyka, R., Misztal, E., Hrabak, J., Banks, S. W. & Sajdak, M. (2023). Various biomass pyrolysis conditions influence the porosity and pore size distribution of biochar. Energy, 263, 126128. DOI:10.1016/j.energy.2022.126128. Nandiyanto, A. B. D., Arinalhaq, Z. F., Rahmadianti, S., Dewi, M. W., Rizky, Y. P. C., Maulidina, A. & Yunas, J. (2020). Curcumin Adsorption on Carbon Microparticles: Synthesis from Soursop (AnnonaMuricata L.) Peel Waste, Adsorption Isotherms and Thermodynamic and Adsorption Mechanism. International Journal of Nanoelectronics & Materials, 13. Olalekan, A. P., Dada, A. O. & Okewale, A. O. (2013). Comparative adsorption isotherm study of the removal of Pb2+ and Zn2+ onto agricultural waste. Res. J. Chem. Environ. Sci, 1, pp. 22-27. Paredes-Laverde, M., Salamanca, M., Diaz-Corrales, J. D., Flórez, E., Silva-Agredo, J. & Torres-Palma, R. A. (2021). Understanding the removal of an anionic dye in textile wastewaters by adsorption on ZnCl2 activated carbons from rice and coffee husk wastes: A combined experimental and theoretical study. Journal of Environmental Chemical Engineering, 9(4), 105685. DOI:10.1016/j.jece.2021.105685. Pena, J., Villot, A. & Gerente, C. (2020). Pyrolysis chars and physically activated carbons prepared from buckwheat husks for catalytic purification of syngas. Biomass and bioenergy, 132, 105435. DOI:10.1016/j.biombioe.2019.105435. Priya, E., Kumar, S., Verma, C., Sarkar, S. & Maji, P. K. (2022). A comprehensive review on technological advances of adsorption for removing nitrate and phosphate from wastewater. Journal of Water Process Engineering, 49, 103159. DOI:10.1016/j.jwpe.2022.103159. Sayadi, M., Farasati, M., G Mahmoodlu, M. & Rostami Charati, F. (2020). Removal of nitrate, ammonium, and phosphate from water using conocarpus and paulownia plant biochar. Iranian Journal of Chemistry and Chemical Engineering, 39(4), pp. 205-222. Sefatlhi, K. L., Ultra Jr, V. U. & Majoni, S. (2024). Chemical and Structural Characteristics of Biochars from Phytoremediation Biomass of Cymbopogon Citratus, Cymbopogon Nardus, and Chrysopogon Zizanioides. Waste and Biomass Valorization, 15(1), pp. 283-300. DOI:10.1007/s12649-023-02164-x. Shen, M., Song, B., Zeng, G., Zhang, Y., Teng, F. & Zhou, C. (2021). Surfactant changes lead adsorption behaviors and mechanisms on microplastics. Chemical Engineering Journal, 405, 126989. Tekin, B. & Açikel, U. (2022). Adsorption isotherms for removal of heavy metal ions (copper and nickel) from aqueous solutions in single and binary adsorption processes. Gazi University Journal of Science, 36(2), pp. 495-509. DOI:10.35378/gujs.1066137. Thue, P. S., Lima, D. R., Lima, E. C., Teixeira, R. A., dos Reis, G. S., Dias, S. L. & Machado, F. M. (2022). Comparative studies of physicochemical and adsorptive properties of biochar materials from biomass using different zinc salts as activating agents. Journal of Environmental Chemical Engineering, 10(3), 107632. DOI:10.1016/j.jece.2022.107632. Thue, P. S., Lima, D. R., Lima, E. C., Teixeira, R. A., dos Reis, G. S., Dias, S. L. & Machado, F. M. (2022). Comparative studies of physicochemical and adsorptive properties of biochar materials from biomass using different zinc salts as activating agents. Journal of Environmental Chemical Engineering, 10(3), 107632. DOI:10.1016/j.jece.2022.107632. Ultra, V. U., Ngwako, K. M. & Eliason, P. (2022). Physiological Responses, Growth, and Heavy Metal Accumulation of Citronella (Cymbopogon nardus Rendle.) in Cu-Ni Mine Tailings as Affected by Soil Amendments. Philippine Journal of Science, 151(3). DOI:10.56899/151.03.36. Wang, L., Xu, Z., Fu, Y., Chen, Y., Pan, Z., Wang, R. & Tan, Z. (2018). Comparative analysis on adsorption properties and mechanisms of nitrate and phosphate by modified corn stalks. RSC advances, 8(64), pp. 36468-36476. DOI:10.1039/C8RA06617E. Wang, T., Zheng, J., Liu, H., Peng, Q., Zhou, H. & Zhang, X. (2021). Adsorption characteristics and mechanisms of Pb2+ and Cd2+ by a new agricultural waste–Caragana korshinskii biomass derived biochar. Environmental Science and Pollution Research, 28, pp. 13800-13818. DOI:10.1007/s11356-020-11571-9. Wang, Z., Guo, H., Shen, F., Yang, G., Zhang, Y., Zeng, Y. & Deng, S. (2015). Biochar produced from oak sawdust by Lanthanum (La)-involved pyrolysis for adsorption of ammonium (NH4+), nitrate (NO3−), and phosphate (PO43−). Chemosphere, 119, pp. 646-653. DOI:10.1016/j.chemosphere.2014.07.084. Williams, P. T. & Reed, A. R. (2004). High grade activated carbon matting derived from the chemical activation and pyrolysis of natural fibre textile waste. Journal of analytical and applied pyrolysis, 71(2), pp. 971-986. DOI:10.1016/j.jaap.2003.12.007. Wu, B., Wan, J., Zhang, Y., Pan, B. & Lo, I. M. (2019). Selective phosphate removal from water and wastewater using sorption: process fundamentals and removal mechanisms. Environmental science & technology, 54(1), pp. 50-66. DOI:10.1021/acs.est.9b05569. Xia, M., Chen, Z., Li, Y., Li, C., Ahmad, N. M., Cheema, W. A. & Zhu, S. (2019). Removal of Hg (II) in aqueous solutions through physical and chemical adsorption principles. RSC advances, 9(36), pp. 20941-20953. DOI:10.1039/C9RA01924C. Xia, Y., Zhou, J. J., Gong, Y. Y., Li, Z. J. & Zeng, E. Y. (2020). Strong influence of surfactants on virgin hydrophobic microplastics adsorbing ionic organic pollutants. Environmental Pollution, 265, 115061. DOI:10.1016/j.envpol.2020.115061. Xie, T., Reddy, K. R., Wang, C., Yargicoglu, E. & Spokas, K. (2015). Characteristics and applications of biochar for environmental remediation: a review. Critical Reviews in Environmental Science and Technology, 45(9), pp. 939-969. DOI:10.1080/10643389.2014.924180. Xu, D. D., Ma, R. R., Fu, A. P., Guan, Z., Zhong, N., Peng, H. & Duan, C. G. (2021). Ion adsorption-induced reversible polarization switching of a van der Waals layered ferroelectric. Nature communications, 12(1), 655. DOI:10.1038/s41467-021-20945-7. Yağmur, H. K. & Kaya, İ. (2021). Synthesis and characterization of magnetic ZnCl2-activated carbon produced from coconut shell for the adsorption of methylene blue. Journal of molecular structure, 1232, 130071. DOI:10.1016/j.molstruc.2021.130071. Yan, L., Liu, Y., Zhang, Y., Liu, S., Wang, C., Chen, W. & Zhang, Y. (2020). ZnCl2 modified biochar derived from aerobic granular sludge for developed microporosity and enhanced adsorption to tetracycline. Bioresource Technology, 297, 122381. DOI:10.1016/j.biortech.2019.122381. Yang, S., Katuwal, S., Zheng, W., Sharma, B. & Cooke, R. (2021). Capture and recover dissolved phosphorous from aqueous solutions by a designer biochar: Mechanism and performance insights. Chemosphere, 274, 129717. DOI:10.1016/j.chemosphere.2021.12 Yao, Y., Gao, B., Inyang, M., Zimmerman, A. R., Cao, X., Pullammanappallil, P. & Yang, L. (2011). Removal of phosphate from aqueous solution by biochar derived from anaerobically digested sugar beet tailings. Journal of hazardous materials, 190(1-3), pp. 501-507. DOI:10.1016/j.jhazmat.2011.03.083. Yao, Y., Gao, B., Zhang, M., Inyang, M. & Zimmerman, A. R. (2012). Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in sandy soil. Chemosphere, 89(11), pp. 1467-1471. DOI:10.1016/j.chemosphere.2012.06.002. Yin, Q., Ren, H., Wang, R. & Zhao, Z. (2018). Evaluation of nitrate and phosphate adsorption on Al-modified biochar: influence of Al content. Science of the Total Environment, 631, pp. 895-903. DOI:10.1016/j.scitotenv.2018.03.091. Zhang, M., Song, G., Gelardi, D. L., Huang, L., Khan, E., Mašek, O. & Ok, Y. S. (2020). Evaluating biochar and its modifications for the removal of ammonium, nitrate, and phosphate in water. Water Research, 186, 116303. DOI:10.1016/j.watres.2020.116303. Zhao, B., Xu, X., Xu, S., Chen, X., Li, H. & Zeng, F. (2017). Surface characteristics and potential ecological risk evaluation of heavy metals in the bio-char produced by co-pyrolysis from municipal sewage sludge and hazelnut shell with zinc chloride. Bioresource technology, 243, pp. 375-383.DOI:10.1016/j.biortech.2017.06.032. Zhao, L., Cao, X., Zheng, W., Wang, Q. & Yang, F. (2015). Endogenous minerals have influences on surface electrochemistry and ion exchange properties of biochar. Chemosphere, 136, pp. 133-139. DOI:10.1016/j.chemosphere.2015.04.053. Zhao, S., Zhou, N. & Shen, X. (2016). Driving mechanisms of nitrogen transport and transformation in lacustrine wetlands. Science China Earth Sciences, 59, pp. 464-476. DOI:10.1007/s11430-015-5230-3. Zubir, M. H. M. & Zaini, M. A. A. (2020). Twigs-derived activated carbons via H3PO4/ZnCl2 composite activation for methylene blue and congo red dye removal. Scientific reports, 10(1), 14050. DOI:10.1038/s41598-020-71034-6.
Go to article

Authors and Affiliations

Katlarelo Lenny Sefatlhi
1
ORCID: ORCID
Venecio U Ultra
1
ORCID: ORCID
Majoni Stephen
1
ORCID: ORCID
Sylwia Oleszek
2
Trust Manyiwa
1
ORCID: ORCID

  1. Botswana International University of Science and Technology, Department of Earth and Environmental Sciences, Botswana
  2. Kyoto University, Department of Environmental Engineering, Kyoto, Japan

This page uses 'cookies'. Learn more