Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In the discussion of water quality control, the first and most effective parameter that affects other variables and water quality parameters is the temperature situation and water temperature parameters that control many ecological and chemical processes in reservoirs. Additionally, one of the most important quality parameters studied in the quality of water resources of dams and reservoirs is the study of water quality in terms of salinity. The salinity of the reservoirs is primarily due to the rivers leading into them. The control of error in the reservoirs is always considered because the outlet water of the reservoirs, depending on the type of consumption, should always be standard in terms of salinity. Therefore, in this study, using the available statistics, the Ce-Qual-W2 two-dimensional model was used to simulate the heat and salinity layering of the Latyan Dam reservoir. The results showed that with warming and shifting from spring to late summer, the slope of temperature changes at depth increases and thermal layering intensifies, and a severe temperature difference occurs at depth. The results of sensitivity analysis also showed that by decreasing the wind shear coefficient (WSC), the reservoir water temperature increases, so that by increasing or decreasing the value of this coefficient by 0.4, the average water temperature by 0.56°C changes inversely, and the results also show that by increasing or decreasing the value of the shade coefficient by 0.85, the average water temperature changes by about 7.62°C, directly.
Go to article

Bibliography

AFSHAR A., KHOSRAVI M., MOLAJOU A. 2021. Assessing adaptability of cyclic and non-cyclic approach to conjunctive use of ground-water and surface water for sustainable management plans under climate change. Water Resources Management. Vol. 35 p. 3463– 3479. DOI 10.1007/s11269-021-02887-3.

AZADI F., ASHOFTEH P.S., LOÁICIGA H.A. 2019. Reservoir water-quality projections under climate-change conditions. Water Resources Management. No. 33(1) p. 401–421. DOI 10.1007/s11269-018-2109-z.

CAISSIE D. 2006. The thermal regime of rivers: a review. Freshwater Biology. Vol. 51(8) p. 1389–1406. DOI 10.1111/j.1365-2427.2006.01597.x.

CHENG Y., VOISIN N., YEARSLEY J.R., NIJSSEN B. 2020. Reservoirs modify river thermal regime sensitivity to climate change: a case study in the southeastern United States. Water Resources Research. Vol. 56(6), e2019WR025784. DOI 10.1029/2019WR025784.

DEBELE B., SRINIVASAN R., PARLANGE J.Y. 2008. Coupling upland watershed and downstream waterbody hydrodynamic and water quality models (SWAT and CE-QUAL-W2) for better water resources management in complex river basins. Environmental Modeling & Assessment. Vol. 13(1) p. 135–153. DOI 10.1007/s10666-006-9075-1.

DELIMAN P.N., GERALD J.A. 2002. Application of the two-dimensional hydrothermal and water quality model, CE-QUAL-W2, to the Chesapeake Bay–Conowingo Reservoir. Lake and Reservoir Management. Vol. 18(1) p. 10–19. DOI 10.1080/07438140209353925.

DOÑA C., SÁNCHEZ J.M., CASELLES V., DOMÍNGUEZ J.A., CAMACHO A. 2014. Empirical relationships for monitoring water quality of lakes and reservoirs through multispectral images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. Vol. 7(5) p. 1632–1641. DOI 10.1109/JSTARS.2014.2301295.

HAMILTON D.P., SCHLADOW S.G. 1997. Prediction of water quality in lakes and reservoirs. Part I – Model description. Ecological Modelling. Vol. 96(1–3) p. 91–110. DOI 10.1016/S0304-3800(96)00062-2.

HENRY R. 1993. Thermal regime and stability of Jurumirim reservoir (Paranapanema River, Sao Paulo, Brazil). Internationale Revue der gesamten Hydrobiologie und Hydrographie. Vol. 78(4) p. 501–511. DOI 10.1002/IROH.19930780407.

HUA R., ZHANG Y. 2017. Assessment of water quality improvements using the hydrodynamic simulation approach in regulated cascade reservoirs: A case study of drinking water sources of Shenzhen, China. Water. Vol. 9(11) p. 825–839. DOI 10.3390/w9110825.

KHODABANDEH F., DARMIAN M.D., MOGHADDAM M.A., MONFARED S.A.H. 2021. Reservoir quality management with CE-QUAL-W2/ANN surrogate model and PSO algorithm (case study: Pishin Dam, Iran). Arabian Journal of Geosciences. Vol. 14(5) p. 1–18. DOI 10.1007/s12517-021-06735-x.

LITVINOV A.S., ZAKONNOVA A.V. 2012. Thermal regime in the Rybinsk Reservoir under global warming. Russian Meteorology and Hydrology. Vol. 37(9) p. 640–644. DOI 10.3103/S1068373912090087.

MELO D.S., GONTIJO E. S., FRASCARELI D., SIMONETTI V.C., MACHADO L.S., BARTH J.A., ... FRIESE K. 2019. Self-organizing maps for evaluation of biogeochemical processes and temporal variations in water quality of subtropical reservoirs. Water Resources Research. Vol. 55(12) p. 10268–10281. DOI 10.1029/2019WR025991.

MOHSENI-BANDPEI A., MOTESADDI S., ESLAMIZADEH M., RAFIEE M., NASSERI M., NAMIN M.M., ... RIAHI S.M. 2018. Water quality assessment of the most important dam (Latyan dam) in Tehran, Iran. Environmental Science and Pollution Research. Vol. 25(29) p. 29227–29239. DOI 10.1007/s11356-018-2865-6.

MOLAJOU A., AFSHAR A., KHOSRAVI M., SOLEIMANIAN E., VAHABZADEH M., VARIANI H.A. 2021. A new paradigm of water, food, and energy nexus. Environmental Science and Pollution Research. DOI 10.1007/s11356-021-13034-1.

NOURANI V., ROUZEGARI N., MOLAJOU A., BAGHANAM A.H. 2020. An integrated simulation-optimization framework to optimize the reservoir operation adapted to climate change scenarios. Journal of Hydrology. Vol. 587, 125018. DOI 10.1016/j.jhydrol.2020.125018.

OSTFELD A., SALOMONS S. 2005. A hybrid genetic – instance based learning algorithm for CE-QUAL-W2 calibration. Journal of Hydrology. Vol. 310(1–4) p. 122–142. DOI 10.1016/j.jhy-drol.2004.12.004.

SCHLADOW S.G., HAMILTON D.P. 1997. Prediction of water quality in lakes and reservoirs: Part II – Model calibration, sensitivity analysis and application. Ecological Modelling. Vol. 96(1–3) p. 111–123. DOI 10.1016/S0304-3800(96)00063-4.

SKOWRON R., PIASECKI A. 2016. Dynamics of the daily course of water temperature in Polish lakes. Journal of Water and Land Development. No. 31 p. 149–156. DOI 10.1515/jwld-2016-0046.

WANG S., QIAN X., HAN B.P., LUO L.C., HAMILTON D.P. 2012. Effects of local climate and hydrological conditions on the thermal regime of a reservoir at Tropic of Cancer, in southern China. Water Research. Vol. 46(8) p. 2591–2604. DOI 10.1016/j.watres.2012.02.014.

WANG X., ZHOU Y., ZHAO Z., WANG L., XU J., YU J. 2019. A novel water quality mechanism modeling and eutrophication risk assessment method of lakes and reservoirs. Nonlinear Dynamics. Vol. 96(2) p. 1037–1053. DOI 10.1007/s11071-019-04837-6.

WU Z., WANG X., CHEN Y., CAI Y., DENG J. 2018. Assessing river water quality using water quality index in Lake Taihu Basin, China. Science of the Total Environment. Vol. 612 p. 914–922. DOI 10.1016/j.scitotenv.2017.08.293.

YANG Y., DENG Y., TUO Y., LI J., HE T., CHEN M. 2020. Study of the thermal regime of a reservoir on the Qinghai-Tibetan Plateau, China. PloS ONE. Vol. 15(12), e0243198. DOI 10.1371/journal.pone.0243198.

ZEINIVAND H., DE SMEDT F. 2009. Hydrological modeling of snow accumulation and melting on river basin scale. Water Resources Management. Vol. 23(11) p. 2271–2287. DOI 10.1007/s11269-008-9381-2.

ZHI W., FENG D., TSAI W.P., STERLE G., HARPOLD A., SHEN C., LI L. 2021. From hydrometeorology to river water quality: Can a deep learning model predict dissolved oxygen at the continental scale? Environmental Science & Technology. Vol. 55(4) p. 2357–2368. DOI 10.1021/acs.est.0c06783.
Go to article

Authors and Affiliations

Tzu-Chia Chen
1
ORCID: ORCID
Shu-Yan Yu
1
Chang-Ming Wang
1
Sen Xie
1
Hanif Barazandeh
2

  1. International College, Krirk University, Bangkok, 3 Ram Inthra Rd, Khwaeng Anusawari, Khet Bang Khen, Krung Thep Maha Nakhon 10220, Thailand
  2. Ferdowsi University of Mashhad, Iran
Download PDF Download RIS Download Bibtex

Abstract

To investigate the effects and improvements of tightening vehicle emission standards from China Ⅲ to China Ⅴ on ozone (O3) and particulate matter (PM) pollution in the atmospheric environment, this study obtained emission factors of O3 and PM precursors such as nitrogen oxides (NOx), volatile organic compounds (VOCs), and primary PM from gasoline and diesel vehicles through actual testing. Response surface models (RSM) were then created for the environmental concentrations of the target pollutants O3 (RSM-O3_HSS6-200) and PM (RSMPM_HSS9-300) as functions of precursor pollutant emissions. Beijing was chosen as the main receptor region, with the China Ⅲ emission standard serving as the baseline scenario and the China Ⅳ and Ⅴ standards as control scenarios. The results indicate that as vehicle emission standards tightened from China Ⅲ to China Ⅳ and Ⅴ, O3 concentrations in Beijing's environment decreased from 92.7 ppbv to 78.47 ppbv and 72.20 ppbv, respectively, while PM concentrations decreased from 64.12 μg/m3 to 48.23 μg/m3 and 38.60 μg/m3, respectively. Furthermore, the environmetal benefits achieved from China Ⅲ to China Ⅳ were higher than those from China Ⅳ to China Ⅴ. Additionally, an analysis of pollutant source contributions revealed that NOx played a major role in reducing O3 concentrations, while primary PM was crucial in controlling PM pollution.
Go to article

Bibliography

  1. Aelion, C.M., Davis, H.T, Liu, Y., Lawson, A.B. & McDermott, S. (2009). Validation of Bayesian kriging of arsenic, chromium, lead, and mercury surface soil concentrations based on internode sampling. Environmental Science & Technology,43(12).
  2. Akimoto, H. & Tanimoto, H. (2022). Rethinking of the adverse effects of NOx-control on the reduction of methane and tropospheric ozone–Challenges toward a denitrified society. Atmospheric Environment, 277: 119033. DOI:10.1016/j.atmosenv.2022.119033
  3. BMEEB (2022). Beijing Ecology and Environment Statement 2021, http://sthjj.beijing.gov.cn/bjhrb/index/xxgk69/sthjlyzwg/1718880/1718881/1718882/325831146/2022122313533794930.pdf.
  4. Box, G.E.P. & Draper, N. (2007). Response Surfaces, Mixtures, and Ridge Analyses, Second Edition of Empirical Model-Building and Response Surfaces, 1987, Wiley.
  5. Brown, S.S., Ryerson, T.B., Wollny, A.G., Brock, C.A., Peltier, R., Sullivan, A.P., Weber, R.J., Dubé, W.P., Trainer, M., Meagher, J.F., Fehsenfeld, F.C. & Ravishankara, A.R. (2006). Variability in nocturnal nitrogen oxide processing and its role in regional air quality. Science, 311(5757), pp. 67-70. DOI:10.1126/science.1120120.
  6. Daellenbach, K.R., Uzu, G., Jiang J., Cassagnes, L.E., Leni, Z., Vlachou, A., Stefenelli, A., Canonaco, F., Weber, S., Segers., A., Kuenen, J.P.J., Schaap, M., Favez, O., Albinet, A., Aksoyoglu, S., Dommen, J., Baltensperger, U., Geiser, M., Haddad, E. I., Jaffrezo, J.L & Prévôt, S.H.A. (2020). Sources of particulate-matter air pollution and its oxidative potential in Europe. Nature, 587(7834), pp. 414-419. DOI:10.1038/s41586-020-2902-8.
  7. Dai H.B., Liao, H., Wang, Y. & Qian, J. (2024). Co-occurrence of ozone and PM2.5 pollution in urban/non-urban areas in eastern China from 2013 to 2020: Roles of meteorology and anthropogenic emissions. Science of The Total Environment, 924, 171687. DOI:10.1016/j.scitotenv.2024.171687.
  8. Deng, T., Huang, Y.Q., Li, Z.N., Wang, N., Wang, S.Q., Zou, Y., Yin, C.Q. & Fan. S.J. (2018). Numerical simulations for the sources apportionment and control strategies of PM 2.5 over Pearl River Delta, China, part II: Vertical distribution and emission reduction strategies. Science of the Total Environment, 634. DOI:10.1016/j.scitotenv.2018.04.209.
  9. Ding, W & Shuhua, L. (2023). Impact assessment of air pollutants and greenhouse gases on urban heat wave events in the Beijing-Tianjin-Hebei region. Environmental Geochemistry and Health, 45(11): pp. 7693-7709. DOI:10.1007/s10653-023-01677-7.
  10. Guha, A.K. & Gokhale, S. (2023). Urban workers' cardiovascular health due to exposure to traffic-originated PM2.5 and noise pollution in different microenvironments. Science of the Total Environment, 859, 160268. DOI:10.1016/j.scitotenv.2022.160268.
  11. Hammersley, J. (1960). Monte Carlo methods for solving multivariable problems. Proceedings of the New York Academy of Science, 86: pp. 844-874. DOI:10.1111/j.1749-6632.1960.tb42846.x.
  12. Jia, X., Wang, S.X., Jang, C., Zhu, Y., Zhao, B., Ding, D., Wang, J.D., Zhao, L.J., Xie, H.X. & Hao, J.M. (2017). ABaCAS: an overview of the air pollution control cost-benefit and attainment assessment system and its application in China. The Magazine for Environmental Managers–Air & Waste Management Association, (April). https://www.abacas-dss.com/Files/paper/ABaCAS_EM_April_2017_xing.pdf.
  13. Kumar, P.G., Lekhana, P., Tejaswi, M. & Chandrakala, S. (2021). Effects of vehicular emissions on the urban environment-a state of the art. Materials Today: Proceedings, 45: pp. 6314-6320. DOI: 10.1016/j.matpr.2020.10.739.
  14. Lao, Y. W., Zhu, Y., Jang, C., Lin, C. J., Xing, J.,Chen, Z. R., Xie, J. P., Wang, S. X. & Fu, J. (2012). Research and development of auxiliary decision tools for regional air pollution control based on response surface mode. Journal of Environmental Sciences, 32(08), pp. 1913-1922. DOI:10.13671/j.hjkxxb.2012.08.019. (In Chinese)
  15. Latha, R., Shahana, B., Dolly, M., Rupal, A., Trina, M., Priyadarshi, M. & Murthy, B.S. (2023). On the transition of major pollutant and O3 production regime during Covid-19 lockdowns. Journal of Environmental Management, 328, 116907. DOI:10.1016/j.jenvman.2022.116907.
  16. Liu, C. & Shi, K. (2021). A review on methodology in O3-NOx-VOC sensitivity study. Environmental Pollution, 291, 118249. DOI:10.1016/j.envpol.2021.118249.
  17. Liu, F., Zhu, Y. & Zhao, Y. (2008). Contribution of motor vehicle emissions to surface ozone in urban areas: A case study in Beijing. The International Journal of Sustainable Development & World Ecology, 15(4), pp. 345-349. DOI:10.3843/SusDev.15.4:9.
  18. Lv, Z.F., Wang, X.T., Deng, F.Y., Ying, Q., Archibald, T.A., Jones, J.R., Ding, Y., Cheng, Y., Fu, M.L., Liu, Y., Man, H.Y., Xue, Z.G., He, K.B., Hao, J.M. & Liu, H. (2020). Source–receptor relationship revealed by the halted traffic and aggravated haze in Beijing during the COVID-19 lockdown. Environmental science & technology, 54(24), pp, 15660-15670. DOI:10.1021/acs.est.0c04941.
  19. Lyu, M., Bao, X.F., Zhu, R.C. & Matthews, R. (2020). State-of-the-art outlook for light-duty vehicle emission control standards and technologies in China. Clean Technologies and Environmental Policy, 22(4), pp. 757-771. DOI:10.1007/s10098-020-01834-x.
  20. Ministry of Ecology and Environment of the People’s Republic of China (MEE). (2022) https://www.mee.gov.cn. Last access: 20 August 2022.
  21. Ministry of Ecology and Environment of the People’s Republic of China (MEE). (2023) https://www.mee.gov.cn. Last access: 1 August 2023.
  22. Nguyen, K. & Dabdub, D. (2022). NOx and VOC control and its effects on the formation of aerosols. Aerosol Science & Technology, 36(5), pp. 560-572. DOI:10.1080/02786820252883801.
  23. Pan, Y. Z. (2020). Improvement and application of PM2.5 source contribution analysis Method based on Response Surface model technique. South China University of Technology, DOI:10.27151/d.cnki.ghnlu.2020.002204. (in Chinese)
  24. The People's Government of Beijing Municipality (PGBM). (2021) http://www.beijing.gov.cn. Last access: 1 August 2021.
  25. Wang, Y.H., Gao, W.K., Wang, S., Song, T., Gong, Z.Y., Ji, D.S., Wang L.L., Liu, Z.R.,Tang, G.Q., Huo, Y.F., Tian, S.L., Li, J.Y., Li, M.G., Yang,Y., Chu, B.W., Petaja, T., Kerminen, V.M., He, H., Hao, J.M., Kulmala, M., Wang, Y.S. & Zhang, Y.H. (2020). Contrasting trends of PM2.5 and surface-ozone concentrations in China from 2013 to 2017. National Science Review, 7(8), pp. 1331-1339. DOI:10.1093/nsr/nwaa032.
  26. Wu, T.R., Cui, Y.Y., Lian, A.P., Tian, Y., Li, R.F., Liu, X.Y., Jing, Y., Xue, Y.F., Liu, H. & Wu, B.B. (2023). Vehicle emissions of primary air pollutants from 2009 to 2019 and projection for the 14th Five-Year Plan period in Beijing, China. Journal of Environmental Sciences, 124(02), pp. 513-521. DOI:10.1016/j.jes.2021.11.038.
  27. Xing, J. (2011). Study on non-linear response relationship between air pollution emissions and environmental effects. Tsinghua University, https://kns.cnki.net/kcms2/article/abstract?v=4wkQyjAcIEdPh2Yz1dvthqvcfOngyxm32aJgNvaSA4efiNy_bMJJ4XlzsbKsiQczmoIqt74U_xNLfCgwd3hxR2AIh1OI7XMyf76pbtSLWw1Dubs4VmUGJvvJ6fLOGwKrwODdmuqlysGVyPacwW_Mt7j_RMJXR2h75EvN8sWktx0_lBW-P2WMKiacY0eic2ET&uniplatform=NZKPT&language=CHS. (In Chinese)
  28. Xu, J., Xu, X.B., Lin, W.L., Ma, Z.Q., Ma, J.Z., Wang, R., Wang, Y., Zhang, G. & Xu, W.Y. (2020). Understanding the formation of high-ozone episodes at Raoyang, a rural site in the north China plain. Atmospheric Environment, 240, 117797. DOI:10.1016/j.atmosenv.2020.117797.
  29. Xue, X.H. (2020). A brief discussion on the harm of photochemical smog and its control countermeasures. Sichuan Environment, (04), pp. 75-76+60. DOI:10.14034/j.cnki.schj.2000.04.025. (In Chinese)
  30. Zhang, Q.J., Liu, J.Y., Wei, N., Song, C.B., Peng, J.F., Wu, L. & Mao, H.J. (2023). Identify the contribution of vehicle non-exhaust emissions: a single particle aerosol mass spectrometer test case at typical road environment. Frontiers of Environmental Science & Engineering, 17(5), 62. DOI:10.1007/s11783-023-1662-8.
  31. Zhao, B., Wang, S.X., Dong, X.Y., Wang, J.D., Duan, L., Fu, X., Hao, J.M. & Fu, J.S. (2013a). Environmental effects of the recent emission changes in China: implications for particulate matter pollution and soil acidification. Environmental Research Letters, 8(2), 024031. DOI:10.1088/1748-9326/8/2/024031.
  32. Zhao, B., Wang, S.X, Wang, J.D., Fu, S.J., Liu, T.H., Hua, J.Y., Fu, X. & Hao, J.M. (2013b). Impact of national NOx and SO2 control policies on particulate matter pollution in China. Atmospheric Environment, 77, pp. 453-463. DOI:10.1016/j.atmosenv.2013.05.012.
Go to article

Authors and Affiliations

Chang Wang
1
Xiaohan Miao
1
Maodong Fang
2
Yuan Chen
1
Taosheng Jin
1

  1. Tianjin Key Laboratory of Urban Transport Emission Research, State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
  2. National Engineering Laboratory for Mobile Source Emission Control Technology, China Automotive Technology and Research Center Co., Ltd., Tianjin 300300, China

This page uses 'cookies'. Learn more