Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 46
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Multiple anthropogenic agents have turned Lake Maracaibo into a hypereutrophic environment. Heavy metals resulting from the steel and oil industry augment pollution in the lake. There is a lack of research on the ecotoxicological effect of heavy metals in protozoa. To evaluate the ecotoxicological effect of Cr3+, Cr6+, Cd2+, Pb2+ and Ni2+ on free-living ciliated protozoa and to identify suitable ciliated protozoa candidates for bioindicators of water quality; we estimated the lethal concentration for 50% of the protozoa population (LC50) in samples from two stations (S1: narrow of Maracaibo and S2: South of the lake) using ecotoxicological tests in the Sedgewick–Rafter chamber and Probit analysis. The general toxicity patterns obtained for S1 protozoa (Euplotes sp. and Oxytricha sp.) were Cr3+ > Cd2+ > Pb2+ > Cr6+ > Ni2+; and those corresponding to S2 (Coleps sp. and Chilodonella sp.) were Cr6+ > Cr3+ > Cd2+ > Pb2+ > Ni2+. We found statistically significant difference (p < 0.05) in the LC50 of protozoa exposed to Cr3+, Cr6+, Ni2+ and Pb2+ when comparing the two sampling stations. The differences observed in toxicity patterns are probably the result of various kinds of protozoa adaptation, possibly induced by various sources, levels and incidents of exposure to heavy metals contamination of the protozoa studied and to the physicochemical conditions prevailing in the two selected stations. The levels of tolerance observed in the present study, allow us to infer that S2 ciliates are the most susceptible to the contaminants studied and can be used as possible microbiological indicators that provide early warning in studies of contamination by heavy metals in Lake Maracaibo.
Go to article

Bibliography

ABRAHAM J.S., SRIPOORNA S., MAURYA S., MAKHIJA S., GUPTA R., TOTEJA R. 2019. Techniques and tools for species identification in ciliates: A review. International Journal of Systematic and Evolutionary Microbiology. Vol. 69(4) p. 877–894. DOI 10.1099/ij-sem.0.003176.

ALBERGONI V., PICCINNI E. 1983. Biological response to trace metals and their biochemical effects. In: Trace element speciation in surface waters and its ecological implications. NATO Conference Series (I Ecology). Eds. Gary, G. Leppard. Springer. Vol. 6. Boston, MA p. 159–175. DOI 10.1007/978-1-4684-8234-8_10.

AL-RASHEID K.A., SLEIGH M.A. 1994. The effects of heavy metals on the feeding rate of Euplotes mutabilis (Tuffrau, 1960). European Journal of Protistology. Vol. 30(3) p. 270–279. DOI 10.1016/S0932-4739(11)80073-8.

APHA, AWWA, WEF 2012. Standard methods for the examination of water and wastewater. 22nd ed. Washington, D.C. EUA. American Public Health Association. ISBN 978-0875530130 pp. 1496.

ÁVILA H., QUINTERO E., ANGULO N., CÁRDENAS C., ARAUJO M., MORALES N., PRIETO M. 2014. Determinación de metales pesados en sedimentos superficiales costeros del Sistema Lago de Maracaibo, Venezuela [Determination of heavy metals in coastal surface sediments of the Lake Maracaibo System, Venezuela]. Multiciencias. Vol. 14(1) p. 16–21.

ÁVILA H., GUTIÉRREZ E., LEDO H., ARAUJO M., SÁNQUIZ M. 2010. Heavy metals distribution in superficial sediments of Maracaibo Lake (Venezuela). Revista Técnica de la Facultad de Ingeniería Universidad del Zulia. Vol. 33(2) p. 122–129.

BENEDETTI M., CIAPRINI F., PIVA F., ONORATI F., FATTORINI D., NOTTI A., AUSILI A., REGOLI F. 2011. A multidisciplinary weight of evidence approach for classifying polluted sediments: Integrating sediment chemistry, bioavailability, biomarkers responses and bioassays. Environment International. Vol. 38(1) p. 17–28. DOI 10.1016/j.envint.2011.08.003.

BENLAIFA M., REDA M., BERREDJEM H., BENAMARA M., OUALI K., DJEBAR H. 2016. Stress induced by cadmium: Its effects on growth respiratory metabolism, antioxidant enzymes and reactive oxygen species (ROS) of Paramecium sp. International Journal of Pharmaceutical Sciences Review and Research. Vol. 38(1) p. 276–281.

BRACHO G.J., CUADOR-GIL J.Q., RODRÍGUEZ-FERNÁNDEZ R.M. 2016. Calidad del agua y sedimento en el Lago de Maracaibo, estado Zulia [Maracaibo lake water and sediment quality, Zulia State]. Minería & Geología. Vol. 32(1) p. 1–14.

CCME 2001. Canadian sediment quality guidelines for the protection of aquatic life, summary tables. Canadian Council of Ministers of The Environment pp. 5.

CHATTERJEE S., KUMARI S., RATH S., PRIYADARSHANEE M., DAS S. 2020. Diversity, structure and regulation of microbial metallothionein: Metal resistance and possible applications in sequestration of toxic metals. Metallomics. No. 12 p. 1637–1655. DOI 10.1039/D0MT00140F.

CLEMENS S. 2001. Molecular mechanisms of plant metal tolerance and homeostasis. Planta. Vol. 212(4) p. 475–486. DOI 10.1007/s004250000458.

CORLISS J. 2002. Biodiversity and biocomplexity of the protists and an overview of their significant roles in maintenance of our biosphere. Acta Protozoologica. Vol. 41 p. 199–219.

DE BAUTISTA S., BERNARD M., ROMERO M., TROCONIS M., SEGOVIA S., PAREDES J. 1999. Environmental impact of mercury discharges in the navigation channel, Lake of Maracaibo. Revista Técnica de la Facultad de Ingeniería. Universidad del Zulia. Vol. 22(1) p. 42–50.

Decreto N° 883. 1995. Normas para la clasificación y el control de la calidad de los cuerpos de agua y vertidos o efluentes líquidos [Decree no. 883. Standards for the classification and quality control of bodies of water and liquid discharges or effluents]. Ministerio del Ambiente y de los Recursos Naturales. Gaceta Oficial de la República de Venezuela, 5021 (Extraordinario) pp. 32.

DÍAZ S., MARTÍN-GONZÁLEZ A., GUTIÉRREZ J.C. 2006. Evaluation of heavy metal acute toxicity and bioaccumulation in soil ciliated protozoa. Environment International. Vol. 32 (6) p. 711–717. DOI 10.1016/j.envint.2006.03.004.

DOPHEIDE A., LEAR G., STOTT R., LEWIS G. 2009. Relative diversity and community structure of ciliates in stream biofilms according to molecular and microscopy methods. Applied and Environmental Microbiology. Vol. 75(16) p. 5261–5272. DOI 10.1128/AEM.00412-09.

EISEN J.A., COYNE R.S., WU M., WU D., THIAGARAJAN M., WORTMAN J.R., …, ORIAS E. 2006. Macronuclear genome sequence of the ciliate Tetrahymena thermophila, a model eukaryote. PloS Biology. Vol. 4(9), c286. DOI 10.1371/journal.pbio.0040286.

ESTEBAN G., TÉLLEZ C. 1990. Método de aislamiento, cultivo y bioensayo de toxicidad con protozoos ciliados [Method of isolation, culture and toxicity bioassay using ciliated protozoa]. Microbiología SEM. Vol. 6 p. 100–103.

FOISSNER W. 2004. Protozoa as bioindicators in running waters. In: Fachtagung. Biologische Gewässeruntersuchung und Bewertung; Taxonomie und Qualitätssicherung. Symposium zur Feier des 70. Geburtstages von Dr. Erik Mauch am 6. Oktober 2004 in Augsburg [Conference. Biological investigation and assessment of water bodies; Taxonomy and quality assurance. Symposium to celebrate the 70th birthday of Dr. Erik Mauch on October 6, 2004 in Augsburg]. Regierung von Schwaben & Deutsche Gesellschaft für Limnologie pp. 5.

FRIED J., LUDWIG W., PSENNER R., HEINZ K. 2002. Improvement of ciliate identification: a new protocol for fluorescence in situ hybridiza-tion (FISH) in combination with silver stain techniques. Systematic and Applied Microbiology. Vol. 25 p. 555–571. DOI 10.1078/07232020260517706.

GUTIÉRREZ-PEÑA L.V., PICÓN D., GUTIÉRREZ I.A., PRADA M., CARRERO P.E., DELGADO-CAYAMA Y.J., …, VIELMA-GUEVARA J.R. 2018. Heavy metals in soft tissue of blue crab (Callinectes sapidus) of Puerto Concha, Colon Municipality, Zulia State. Avances en Biomedicina. Vol. 7(1) p. 17–22.

GUTIÉRREZ J.C., MARTIN-GONZALEZ A., DIAZ S., AMARO F., ORTEGA R., GALLEGO A., DE LUCAS M.P. 2008. Ciliates as cellular tools to study the eukaryotic cell-heavy metal interactions. In: Heavy metal pollution. Ed. S.E. Brown, W.C. Welton. New York, NY. Nova Science Publishers p. 1–44.

IFTODE F., CURGY J.J., FLEURY A., FRYD-VERSAVEL G. 1985. Action of a heavy ion, Cd2+, and the antagonistic effect of Ca2+, on two ciliates Tetrahymena pyriformis and Euplotes vannus. Acta Protozoologica. Vol. 24(3–4) p. 273–279.

JAHN T.L., BOVEE E.C., JAHN F.F. 1980. How to know the Protozoa. 2. ed. Dubuque, Iowa. The Picture Key Nature Series. Wm. C. Brown Company Publishers. ISBN 0-697-04759-8 pp. 279.

KAPAHI M., SACHDEVA S. 2019. Bioremediation options for heavy metal pollution. Journal of Health and Pollution. Vol. 9(24), 191203. DOI 10.5696/2156-9614-9.24.191203.

KIM Y.O., SHIN K., JANG P.G., CHOI H.W., NOH J.H., YANG E.J., KIM E., JEON D. 2012. Tintinnid species as biological indicators for monitoring intrusion of the warm oceanic waters into Korean coastal waters. Ocean Science Journal. Vol. 47 p. 161–172. DOI 10.1007/s12601-012-0016-4

KUMAR M., GOGOI A., KUMARI D., BORAH R., DAS P., MAZUMDER P., TYAGI V.K. 2017. Review of perspective, problems, challenges, and future scenario of metal contamination in the urban environment. Journal of Hazardous, Toxic, and Radioactive Waste. Vol. 21(4) p. 1–16. DOI 10.1061/(asce)hz.2153-5515.0000351.

LARSEN J., NILSSON J.R. 1983. Effects of nickel on the rates of endocytosis, motility, and proliferation in Tetrahymena and determinations on the cell content of the metal. Protoplasma. Vol. 118(2) p. 140–147. DOI 10.1007/BF01293071.

LIAO V.H., DONG J., FREEDMAN J.H. 2002. Molecular characterization of a novel, cadmium-inducible gene from the nematode Caenor-habditis elegans. A new gene that contributes to the resistance to cadmium toxicity. Journal of Biological Chemistry. Vol. 277 p. 42049–42059. DOI 10.1074/jbc.M206740200.

LIBRI S. 2010. Biologie et physiologie des Protozoaires dans un milieu stressé par un métal lourd, le nickel [Biology and physiology of Protozoa in an environment stressed by a heavy metal, nickel]. Mémoire d’Ingéniorat d’état en Biologie Animale. Option biologie et physiologie animale générale et comparée. Université de Tébessa, Algérie pp. 70.

LINDHOLM T. 1982. EDTA and oxalic acid–two useful agents for narcotizing fragile and rapid microzooplankton. Hydrobiologia. Vol. 86(3) p. 297–298. DOI 10.1007/BF00006143.

LYNN D. 2008. The ciliated Protozoa. Characterization, classification and guide and literature. 3rd ed. New York. Springer. ISBN 978-1402082382 pp. 628.

MADONI P. 2000. The acute toxicity of nickel to freshwater ciliates. Environmental Pollution. Vol. 109(1) p. 53–59. DOI 10.1016/s0269-7491(99)00226-2.

MADONI P., ROMEO M.G. 2006. Acute toxicity of heavy metals towards freshwater ciliated protists. Environmental Pollution. Vol. 141 p. 1–7. DOI 10.1016/j.envpol.2005.08.025.

MARÍN J.C., RINCÓN N., DÍAZ-BORREGO L., MORALES E. 2017. Cultivo de protozoarios ciliados de vida libre a partir de muestras de agua del Lago de Maracaibo [Cultivation of free-living ciliated protozoa from water samples of lake Maracaibo]. Impacto Científico. Vol. 12(1) p. 157–170.

MARÍN-LEAL J.C., POLO C., BEHLING E., COLINA G., RINCÓN N., CARRASQUERO S. 2014. Distribución espacial de Cd y Pb en Polymesoda solida y sedimentos costeros del Lago de Maracaibo [Spatial distribution of Cd and Pb in Polymesoda solida and coastal sediments from Lake Maracaibo]. Multiciencias. Vol. 14 (1) p. 7–15.

MARTÍN-GONZÁLEZ A., DÍAZ S., BORNIQUEL S., GALLEGO A., GUTIÉRREZ J. 2006. Cytotoxicity and bioaccumulation of heavy metals by ciliated protozoa isolated from urban wastewater treatment plants. Research in Microbiology. Vol. 157 p. 108–118. DOI 10.1016/j.resmic.2005.06.005.

MARTINS P., ALMEIDA N., LEITE S. 2008. Application of a bacterial extracellular polymeric substance in heavy metal adsorption in a co-contaminated aqueous system. Brazilian Journal of Microbiology. Vol. 394 p. 780–786. DOI 10.1590/S1517-8382200 8000400034.

MEINELT T., MATZKE S., STÜBER A., PIETROCK M., WIENKE A., MITCHELL A. J., STRAUS D.L. 2009. Toxicity of peracetic acid (PAA) to tomonts of Ichthyophthirius multifiliis. Diseases of Aquatic Organisms. Vol. 86(1) p. 51–56. DOI 10.3354/dao02105.

MERA R., TORRES E., ABALDE J. 2016. Influence of sulphate on the reduction of cadmium toxicity in the microalga Chlamydomonas moewusii. Ecotoxicology and Environmental Safety. Vol. 128 p. 236–245. DOI 10.1016/j.ecoenv.2016.02.030.

METCALF X., EDDY X. 2003. Wastewater engineering: Treatment and reuse. 4th ed. China. McGraw-Hill Publishing Companies, Inc. ISBN 978-0070418783 pp. 1878.

MEYER P. 2015. Epigenetic variation and environmental change. Journal of Experimental Botany. Vol. 6(12) p. 3541–3548. DOI 10.1093/jxb/eru502.

MORTUZA M.G., TAKAHASHI T., UEKI T., KOSAKA T., MICHIBATA H., HOSOYA H. 2009. Comparison of hexavalent chromium bioaccu-mulation in five strains of paramecium, Paramecium bursaria. Journal of Cell and Animal Biology. Vol. 3(4) p. 062–066.

OGOYI D.O., MWITA C.J., NGUU E.K., SHIUNDU P.M. 2011. Determination of heavy metal content in water, sediment and microalgae from Lake Victoria, East Africa. The Open Environmental Engineering Journal. Vol. 4 p. 156–161. DOI 10.2174/1874829501104010156.

PATTERSON D.J. 1996. Free-living freshwater Protozoa: A colour guide. New York. John Wiley & Sons Inc. ISBN 978-1874545408 pp. 223.

PINOT F., KREPS S.E., BACHELET M., HAINAUT P., BAKONYI M., POLLA B.S. 2000. Cadmium in the environment: Sources, mechanisms of biotoxicity, and biomarkers. Reviews on Environmental Health. Vol. 15(3) p. 299–324. DOI 10.1515/reveh.2000.15.3.299.

POLO C. 2012. Distribución espacial de Cd y Pb en Polymesoda solida y sedimentos costeros del Lago de Maracaibo [Spatial distribution of Cd and Pb in Polymesoda solida and coastal sediments from Lake Maracaibo]. MSc Thesis. Maracaibo, Venezuela. Facultad de Ingeniería. Universidad del Zulia pp. 81.

PULIDO M.D., PARRISH A.R. 2003. Metal-induced apoptosis: mechan-isms. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis. Vol. 533(1–2) p. 227–241. DOI 10.1016/j.mrfmmm.2003.07.015.

RAVVA S.V., SARREAL C.Z., MANDRELL R.E. 2010. Identification of protozoa in dairy lagoon wastewater that consume Escherichia coli O157: H7 preferentially. PLoS One. Vol. 5(12), e15671 pp. 9. DOI 10.1371/journal.pone.0015671.

RODRÍGUEZ G. (ed.) 2000. El sistema del Lago de Maracaibo [The Lake Maracaibo system]. 2nd ed. Caracas, Venezuela. Instituto Venezolano de Investigaciones Científicas (IVIC) pp. 264.

ROJAS J. 2012. Polymesoda solida como bioindicador de metales pesados en el sistema estuarino del lago de Maracaibo [Polymesoda solida as a bioindicator of heavy metals in the estuarine system of Lake Maracaibo]. PhD Thesis. Maracaibo, Venezuela. Facultad de Ingeniería, Universidad del Zulia pp. 250.

RUBINSON J.F., RUBINSON K.A. 2000. Química analítica contemporánea [Contemporary analytical chemistry]. 1st ed. México DF. Prentice Hall. ISBN 978-9701703427 pp. 644.

SALL M.L., DIAW A.K.D., GNINGUE-SALL D., EFREMOVA AARON S., AARON J.-J. 2020. Toxic heavy metals: Impact on the environment and human health, and treatment with conducting organic polymers, a review. Environmental Science and Pollution Research. Vol. 27 p. 29927–29942. DOI 10.1007/s11356-020- 09354-3.

SKIBBE O. 1994. An improved quantitative protargol stain for ciliates and other planktonic protists. Archiv für Hydrobiologie. Vol. 130 (3) p. 339–347. DOI 10.1127/archiv-hydrobiol/130/1994/339.

SLAVEYKOVA V., SONNTAG B., GUTIÉRREZ J.C. 2016. Stress and Protists: No life without stress. European Journal of Protistology. Vol. 55 p. 39–49. DOI 10.1016/j.ejop.2016.06.001.

SOMASUNDARAM S., ABRAHAM J. S., MAURYA S., TOTEJA R., GUPTA R., MAKHIJA S. 2019. Expression and molecular characterization of stress-responsive genes (hsp70 and Mn-sod) and evaluation of antioxidant enzymes (CAT and GPx) in heavy metal exposed freshwater ciliate, Tetmemena sp. Molecular Biology Reports. Vol. 46(5) p. 4921–4931. DOI 10.1007/s11033-019-04942-0.

USEPA 2016. National recommended water quality criteria [online]. United States Environmental Protection Agency, Office of Water, Office of Science and Technology pp. 23. [Access 15.05.2020]. Available at: https://www.epa.gov/wqc/national-recommended-water-quality-criteria-aquatic-life-criteria-table

VIGNATI D.A., DOMINIK J., BEYE M.L., PETTINE M., FERRARI B.J. 2010. Chromium (VI) is more toxic than chromium (III) to freshwater algae: A paradigm to revise? Ecotoxicology and Environmental Safety. Vol. 73(5) p. 743–749. DOI 10.1016/j.ecoenv.2010.01.011.

VILAS-BOAS J.A., CARDOSO S.J., SENRA M.V.X., RICO A., DIAS R.J.P. 2020a. Ciliates as model organisms for the ecotoxicological risk assessment of heavy metals: A meta–analysis. Ecotoxicology and Environmental Safety. Vol. 199, 110669 pp. 11. DOI 10.1016/j.ecoenv.2020.110669.

VILAS-BOAS J.A., SENRA M.V.X., DIAS R.J.P. 2020b. Ciliates in ecotoxicological studies: A minireview. Acta Limnologica Brasi-liensia. Vol. 32, e202. DOI 10.1590/s2179-975x6719.

WEISSE T. 2017. Functional diversity of aquatic ciliates. European Journal of Protistology. Vol. 61 p. 331–358. DOI 10.1016/j.ejop.2017.04.001.
Go to article

Authors and Affiliations

Fernando Luis Castro Echavez
1
Julio César Marín Leal
2

  1. University of La Guajira, Faculty of Engineering, Environmental Engineering Program, PICHIHÜEL Research group, km 5 vía a Maicao, 440002, Riohacha, Colombia
  2. University of Zulia, Faculty of Engineering, School of Civil Engineering, Department of Sanitary and Environmental Engineering (DISA), Maracaibo, Venezuela
Download PDF Download RIS Download Bibtex

Abstract

Municipal solid waste collection points (MSWCPs) are places where residents of municipalities can leave their waste free of charge. MSWCPs should operate in every municipality in Poland. The Geographic Information System (GIS) and analytical hierarchy process (AHP) were used in conjunction as tools to determine potential locations of MSWCPs. Due to possible social conflicts related to the location of MSWCPs, three variants of buffer zones for a residential area were adopted. As a result of the spatial analysis carried out using the GIS software, 247 potential locations were identified in variant no. 1 (which accounted for 7.1% of commune area), 167 for variant no. 2 (6.3% of commune area), and 88 for variant no. 3 (3.8% of commune area). The most favourable locations for MSWCPs were determined using the AHP method with additional criteria for which weights were calculated as follows: the area of a designated plot (0.045), actual designation of a plot in the local spatial development plan (0.397), distance from the centre of the village (0.096) and the commune (0.231), and population density of a village (0.231). The highest weights (over 50%) in the AHP analysis were obtained for 12 locations in variant no. 3, two of which had an area over 3 ha. The adopted methodology enabled to identify quasi-optimal solutions for MSWCP locations in the analysed rural commune. This research has the potential to influence future waste management policies by assisting stakeholders in the MSWCP location.
Go to article

Authors and Affiliations

Mateusz Malinowski
1
ORCID: ORCID
Sylwia Guzdek
2
ORCID: ORCID
Agnieszka Petryk
3
ORCID: ORCID
Klaudia Tomaszek
4
ORCID: ORCID

  1. University of Agriculture in Cracow, Department of Bioprocesses Engineering, Energetics and Automatization, ul. Balicka 116b, 30-149 Kraków, Poland
  2. Cracow University of Economics, Department of Microeconomics, Kraków, Poland
  3. Cracow University of Economics, Department of Spatial Management, Kraków, Poland
  4. University of Agriculture in Cracow, Department of Mechanical Engineering and Agrophysics, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

This paper summarizes the arguments and counterarguments within the scientific discussion on the impact of energy-efficient development on promoting the national green brand. The primary purpose of the research is to provide an overview of the scientific background devoted to the relationship between the energy efficiency policy and the country’s green brand to identify the potential research gaps and highlight the prospects for particular research directions. The systematization of scientific publications presented in the Scopus database showed a rapid tendency for publication activity on the investigated theme from 2000 to 2020. However, there has remained a deficiency in investigating the role of energy efficiency policy in formulating the country’s green brand. Therefore, it is appropriate to screen out the relevant publications to detect the future research directions in boosting energy efficiency for strengthening Ukraine’s green brand. To obtain the objectives of this study, the paper is presented in the following logical sequence: determining the keywords to find the relevant publications; searching the publications; conducting the evaluation analysis by specific metrics; applying the bibliometric analysis for the investigation of keywords and their co-occurrence. The co-occurrence analysis was performed using the VOSviewer software tools. The study sample consists of 3090 publications indexed in the Scopus database. The study involved documents published from 2000 to 2020. The research identified the most productive authors, prestigious scientific journals, and the most contributing countries and institutions. The publications were clustered into five thematic groups, which indicate the main research directions. The authors specified the prosperous lines for future research.
Go to article

Bibliography

Ailawadi et al. 2001 – Ailawadi, K.L., Neslin, S.A. and Gedenk, K. 2001. Pursuing the value-conscious consumer: Store brands versus national brand promotions. Journal of Marketing 65(1), pp. 71–89. doi: 10.1509/jmkg.65.1.71.18132.
Bassols, N. 2016. Branding and promoting a country amidst a long-term conflict: The case of Colombia. Journal of Destination Marketing and Management 5(4), pp. 314–324, doi: 10.1016/j.jdmm.2016.10.001.
Batra et al. 2000 – Batra, R., Ramaswamy, V., Alden, D.L., Steenkamp, J.-B. and Ramachander, S. 2000. Effects of brand local and nonlocal origin on consumer attitudes in developing countries. Journal of Consumer Psychology 9(2), pp. 83–95, DOI: 10.1207/s15327663jcp0902_3.
Butt et al. 2017 – Butt, M.M., Mushtaq, S., Afzal, A., Khong, K.W., Ong, F.S. and Ng, P.F. 2017. Integrating behavioural and branding perspectives to maximize green brand equity: A holistic approach. Business Strategy and the Environment 26(4), pp. 507–520, DOI: 10.1002/bse.1933.
Cabinet of Ministers of Ukraine. Audit of the economy of Ukraine. [Online] https://nes2030.org.ua/docs/doc-audit.pdf [Accessed: 2021-06-30].
Chygryn, O. and Krasniak, V. 2015. Theoretical and applied aspects of the development of environmental investment in Ukraine. Marketing and management of innovations 3, pp. 226–234.
Chygryn et al. 2021 – Chygryn, O., Rosokhata, A., Rybina, O. and Stoyanets, N. 2021. Green competitiveness: The evolution of concept formation. Paper presented at the E3S Web of Conferences 234 doi: 10.1051/e3sconf/202123400004.
Dzwigol, H. 2020. Innovation in Marketing Research: Quantitative and Qualitative Analysis. Marketing and Management of Innovations 1, pp. 128–135, DOI: 10.21272/mmi.2020.1-10.
El Amri et al. 2020 – El Amri, A., Boutti, R., Oulfarsi, S., Rodhain, F. and Bouzahir, B. 2020. Carbon financial markets underlying climate risk management, pricing and forecasting: Fundamental analysis. Financial Markets, Institutions and Risks 4(4), pp. 31–44, DOI: 10.21272/fmir.4(4).31- 44.2020.
Goncharenko, T. 2020. From Business Modelling to the Leadership and Innovation in Business: Bibliometric Analysis (Banking as a Case). Business Ethics and Leadership 4(1), pp. 113–125, DOI: 10.21272/bel.4(1).113-125.2020.
Haberl et al. 2020 – Haberl, H., Wiedenhofer, D., Virág, D., Kalt, G., Plank, B., Brockway, P., Creutzig, F. 2020. A systematic review of the evidence on decoupling of GDP, resource use and GHG emissions, part II: Synthesizing the insights. Environmental Research Letters 15(6), DOI: 10.1088/1748-9326/ab842a.
Hakobyan et al. 2019 – Hakobyan, N., Khachatryan, A., Vardanyan, N., Chortok, Y. and Starchenko, L. 2019. The Implementation of Corporate Social and Environmental Responsibility Practices into Competitive Strategy of the Company. Marketing and Management of Innovations 2, pp. 42–51, DOI: 10.21272/mmi.2019.2-04.
Hussain et al. 2020 – Hussain, S.A., Haq, M.A.U. and Soomro, Y.A. 2020. Factors Influencing Consumers’ Green Purchase Behavior: Green Advertising as Moderator. Marketing and Management of Innovations 4, pp. 144–153, DOI: 10.21272/mmi.2020.4-11.
Kharazishvili et al. 2021 – Kharazishvili, Y., Kwilinski, A., Sukhodolia, O., Dzwigol, H., Bobro, D. and Kotowicz, J. 2021. The systemic approach for estimating and strategizing energy security: The case of Ukraine. Energies 14(8), DOI: 10.3390/en14082126.
Khomenko et al. 2020 – Khomenko, L., Saher, L. and Polcyn, J. 2020. Analysis of the marketing activities in the blood service: bibliometric analysis. Health Economics and Management Review 1, pp. 20–36, DOI: 10.21272/hem.2020.1-02.
Kuzior et al. 2021 – Kuzior, A., Kwilinski, A. and Hroznyi, I. 2021. The factorial-reflexive approach to diagnosing the executors’ and contractors’ attitude to achieving the objectives by energy supplying companies. Energies 14(9), DOI: 10.3390/en14092572.
Li et al. 2018 – Li, X., Du, J. and Long, H. 2018. A comparative study of Chinese and foreign green development from the perspective of mapping knowledge domains. Sustainability (Switzerland) 10(12) doi: 10.3390/su10124357.
Noble et al. 2002 – Noble, C.H., Sinha, R.K. and Kumar, A. 2002. Market orientation and alternative strategic orientations: A longitudinal assessment of performance implications. Journal of Marketing, 66(4), pp. 25–39, doi: 10.1509/jmkg.66.4.25.18513.
Panchenko et al. 2020 – Panchenko, V., Harust, Yu., Us, Ya., Korobets, O. and Pavlyk, V. 2020. Energy- Efficient Innovations: Marketing, Management and Law Supporting. Marketing and Management of Innovations 1, pp. 256–264, DOI: 10.21272/mmi.2020.1-21.
Pavlyk, V. 2020. Institutional Determinants Of Assessing Energy Efficiency Gaps In The National Economy. SocioEconomic Challenges 4(1), pp. 122–128, DOI: 10.21272/sec.4(1).122-128.2020.
Polcyn, J. 2021. Eco-efficiency and human capital efficiency: Example of small-and medium-sized family farms in selected European countries. Sustainability (Switzerland) 13(12), DOI: 10.3390/su13126846.
Scopus. [Online] https://www.scopus.com/search/form.uri?display=basic [Accessed: 2021-06-11].
Singh, S.N. 2019. Private Investment and Business Opportunities in Ethiopia: A Case Study of Mettu Town in Ethiopia. Business Ethics and Leadership 3(4), pp. 91–104, DOI: 10.21272/bel.3(4).91-104.2019.
Vasylieva et al. 2017 – Vasylieva, T., Lieonov, S., Makarenko, I. and Sirkovska, N. 2017. Sustainability information disclosure as an instrument of marketing communication with stakeholders: markets, social and economic aspects. Marketing and Management of Innovations 4, pp. 350–357, DOI: 10.21272/mmi.2017.4-31.
Yelnikova, Y. and Golochalova, I. 2020. Social Bonds as an Instrument of Responsible Investment. Financial Markets, Institutions and Risks 4(4), pp. 119–128, DOI: 10.21272/fmir.4(4).119-128.2020.
Yelnikova, Y. and Kuzior, A. 2020. Overcoming The Socio-Economic Consequences Of Military Conflict in Ukraine And The Impact Investment Of Post-Conflict Recovery Of Anti-Terrorist Operation. Socio- Economic Challenges 4(3), pp. 132–142, DOI: 10.21272/sec.4(3).132-142.2020.
Zhylinska et al. 2021 – Zhylinska, O., Firsova, S., Bilorus, T. and Aksom, H. 2021. Employer Brand Management: Methodological Aspects. Marketing and Management of Innovations 1, pp. 158–169, DOI: 10.21272/mmi.2021.1-12.
Go to article

Authors and Affiliations

Yana Us
1
ORCID: ORCID
Tetyana Pimonenko
1
ORCID: ORCID
Oleksii Lyulyov
1
ORCID: ORCID

  1. Department of Marketing, Sumy State University, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

This article is devoted to topical issues of gender equality in the energy sector. It is a retrospective analysis of the problem of gender equality over the past 50 years in various countries and sectors of the economy. The situation with the improvement of the gender balance in general is changing, but unevenly, which increases the relevance of attention to the gender factor in policy development, particularly in the energy sector. It has been established that in the energy sector, there remain so-called “glass walls” and “glass ceilings” for the development of women’s professional careers, which leads to horizontal and vertical segregation. The main barriers to gender balance in the energy sector are highlighted. The institutional conditions for ensuring gender equality in the energy sector have allowed for a more comprehensive view of the problem of gender occupational segregation. A number of institutional problems of gender equality in the energy sector are highlighted and characterized. These include: inconsistency of formal norms of gender equality and existing economic practices; lack of gender mainstreaming in energy policy making due to insufficient attention to social relations; the creation of additional tensions in industrial relations to ensure gender equality; unemployment of able-bodied women due to segregation in the labor market in the energy sector., Using a number of practical proposals for ensuring gender equality at the industrial and company levels, the authors propose a conceptual model of institutional support for gender equality in the energy sector. The implementation of these proposals would help eliminate gender imbalances in the energy sector and promote the development of energy companies on a sustainable basis.
Go to article

Bibliography


Bennedsen et al. 2019 – Bennedsen, M., Simintzi, E., Tsoutsoura, M. and Wolfenzon, D. 2019. Gender Pay Gap Shrinks when Companies are Required to Disclose Them. Harvard Business Review. January 23. [Online] https://hbr.org/2019/01/research-gender-pay-gaps-shrink-when-companies-arerequired-to-disclose-them [Accessed: 2021-08-15].
Blau, F.D. and Kahn, L.M. 2017. The Gender Wage Gap: Extent, Trends, and Explanations. Journal of Economic Literature 55(3), pp. 789–865.
Cirella et al. 2020 – Cirella, G., Goncharuk, A., lo Storto, C. and Russo, A. 2020. Exploring Social Sustainability and Economic Practices: Multi-Journal Compendium. Sustainability 12, pp. 1–7, DOI: 10.3390/su12051718.
Dołęga, W. 2019. Selected aspects of national economy energy efficiency. Polityka Energetyczna – Energy Policy Journal 22(3), pp. 19–32, DOI: 10.33223/epj/111987.
Gagnidze, I. 2018. The Role of International Educational and Science Programs for Sustainable Development (Systemic Approach). Kybernetes 47(2), pp. 409–424, DOI: 10.1108/K-03-2017-01.
GETI 2021. The Global Energy Talent Index Report 2021. Global Energy Talent Index (GETI). [Online] https://www.getireport.com/reports/2021/ [Accessed: 2021-08-19].
GWNET 2019. Women for Sustainable Energy: Strategies to Foster Women’s Talent for Transformational Change. Global Women’s Network for the Energy Transition (GWNET), 100 pp. [Online] https://www.globalwomennet.org/wp-content/uploads/2020/02/Gwnet-study.pdf [Accessed: 2021-08-19].
IRENA 2019. Renewable Energy: A Gender Perspective. International Renewable Energy Agency (IRENA), 92 pp. [Online] https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2019/Jan/IRENA_ Gender_perspective_2019.pdf [Accessed: 2021-08-19].
Lowndes, V. 2010. The Institutional Approach. Edit. By Marsh, D. and Stoker, G. Theories and Methods in Political Science. Basingstoke: Palgrave, pp. 65. McKinsey and Company 2020. Women in the Workplace 2020, 63 pp. [Online] https://wiw-report.s3.amazonaws. com/Women_in_the_Workplace_2020.pdf [Accessed: 2021-08-15].
Ossowska, L.J and Janiszewska, D.A. 2020. Toward sustainable energy consumption in the European Union. Polityka Energetyczna – Energy Policy Journal 23(1), pp. 37–48. DOI: 10.33223/epj/119371.
SSSU 2020. Socio-demographic characteristics of Ukrainian households in 2019 (Sotsialʹno-demohrafichni kharakterystyky domohospodarstv Ukrayiny). Statistical collection. State Statistics Service of Ukraine (SSSU). [Online] http://www.ukrstat.gov.ua/druk/publicat/Arhiv_u/17/Arch_cdhd_zb.htm [Accessed: 2021-11-04] (in Ukrainian).
UN 2019. Policy Brief 12 Energy and Gender. Accelerating SDG 7 Achievement SDG 7 Policy Briefs in Support of the High-Level Political Forum 2019. United Nations (UN), 207 pp. [Online] https://sustainabledevelopment. un.org/content/documents/22877UN_FINAL_ONLINE_20190523.pdf [Accessed: 2021-08-12].
UNDP 2019. Human Development Index (HDI). United Nations Development Program (UNDP). [Online] http://hdr.undp.org [Accessed: 2021-07 07].
UNFPA 2019. Business Guidelines – How Large, Medium and Small Businesses Benefit from Equality and Domestic Violence Policies (Kerivni pryntsypy dlya biznesu – Yak velykyy, seredniy ta malyy biznes vyhraye vid polityky rivnosti ta zapobihannya domashnʹomu nasylʹstvu). United Nations Population Fund (UNFPA), 58 pp. [Online] https://ukraine.unfpa.org/uk/BADVGuide [Accessed: 2021-08-20] (in Ukrainian).
USAID 2021. Gender aspects of employment in the energy sector of Ukraine (Henderni aspekty zaynyatosti v enerhetychnomu sektori Ukrayiny). Energy Security Project Report. Kyiv: U.S. Agency of International Development (USAID), 80 pp. [Online] http://poruch.com.ua/wp-content/uploads/2021/05/ Gender_energy_report-short-web-1.pdf?fbclid=IwAR2ZRl8yHcH-O0l2m-1sxVgvMn7QUe10hDVU-2e50fQ4Y2AohzOzNemamjCY [Accessed: 2021-07-10] (in Ukrainian).
WB 2020a. The World Bank in Gender. The World Bank (WB). [Online] https://www.worldbank.org/en/topic/gender/overview [Accessed: 2021-08-12].
WB 2020b. Women, Business and the Law 2020: 50 years of women’s rights. The World Bank (WB) [Online] https://www.worldbank.org/en/news/infographic/2020/03/03/women-business-and-the-law-2020-50-years-of-womens-rights [Accessed: 2021-08-11].
WB 2021. Gender Statistics. The World Bank (WB). [Online] https://databank.worldbank.org/reports.aspx?source=283&series=SG.IND.WORK.EQ [Accessed: 2021-08-12].
WEF 2020. Global Gender Gap Report 2020. World Economic Forum (WEF), 371 pp. [Online] http://www3.weforum.org/docs/WEF_GGGR_2020.pdf [Accessed: 2021-08-14].
WEF 2021. Global Gender Gap Report 2021. World Economic Forum (WEF), 405 pp. [Online] http://www3.weforum.org/docs/WEF_GGGR_2021.pdf [Accessed: 2021-08-14].
Wodon et al. 2020 – Wodon, Q., Onagoruwa, A., Malé, C., Montenegro, C., Nguyen, H., and de la Brière, B. 2020. How Large Is the Gender Dividend? Measuring Selected Impacts and Costs of Gender Inequality. The Cost of Gender Inequality Notes Series. Washington, DC: World Bank. [Online] https://openknowledge.worldbank.org/handle/10986/33396 [Accessed: 2021-08-11].
Go to article

Authors and Affiliations

Olena Shatilova
1
ORCID: ORCID
Tetiana Sobolieva
1
ORCID: ORCID
Oleksandr Vostryakov
1
ORCID: ORCID

  1. Management, SHEE “Kyiv National Economic University named after Vadym Hetman”, Kyiv, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

In this article, in accordance with the results of calculations, the authors argue that at the end of 2019, the main problems of the vast majority of regions of Ukraine are low environmental and energy efficiency and insufficient environmental protection measures. The cluster analysis allowed us to identify common territorial groups in terms of their conditions of existence and to develop practical recommendations for priority measures of state management. The quality of clustering was checked using the silhouette measure indicator, which was used to justify the optimal number of regions, which proved to be five. Cluster І includes the Dnipropetrovsk and Zaporizhia regions. The gradual replacement of heavy industry with high-tech activities is inevitable. Cluster ІІІ includes the Volyn, Ternopil, Kherson, Khmelnytsky, Zhytomyr and Rivne regions. It is necessary to further develop the economy of the regions in compliance with environmental standards while taking into account the recommendations of the first cluster. Cluster IV consists of Donetsk and Luhansk regions. It is impossible to fully restore the economy of the eastern regions and its infrastructure in these conditions. Therefore, the task of public administration today is to ensure social standards of living and support the least protected segments of the population. Cluster V was built on the basis of Zakarpattia and Chernivtsi regions. The priority of state regulation should be the development of small and medium enterprises. Cluster II includes all other areas. Their economic growth must be transformed not only into the social sphere but also into technological re-equipment. The change of commodity orientation and the departure from raw material production in favor of technological is a necessary condition for maintaining the competitiveness of the economy in today’s globalization. Increasing the cost of environmental measures should be a priority.
Go to article

Bibliography

Belinska et al. 2021 – Belinska, Y., Matvejciuk, L., Shmygol, N., Pulina, T. and Antoniuk, D. 2021. EU agricultural policy and its role in smoothing the sustainable development of the EU’s agricultural areas. IOP Conference Series: Earth and Environmental Science 628(1), 012030, DOI: 10.1088/1755-1315/628/1/012030.
Gakhovich, N.G. 2012. Ecologization of industrial production as a necessary condition for overcoming disproportion. [In:] World economic disproportion: features, tendencies, influence on the economy of Ukraine: scientific report, ed. Corresponding Member NAS of Ukraine L.V. Shinkaruk; NAS of Ukraine, In-t. Of Economics and predicted. NAS of Ukraine, pp. 94–98.
Geets, V.M. 2000. Instability and economic growth. V.M. Gay. K. In-t. Economics. forecast., 344 p. Gitis, L.H. 2003. Statistical classification and cluster analysis. L.H. Gitis. М., 157 p.
Kartikeyan et al. 2013 – Kartikeyan, T., Ragavan, R. and Vembandasamy, K. 2013. Hierarchical K-Means Clustering Algorithm for an E-Care of Diabetes Mellitus.
Kuchaki et al. 2012 – Kuchaki, R.M., Asghari, V.Z. and Emami, C.N. 2012. A Survey of Hierarchical clustering algorithms. The Journal of Mathematics and Computer Science 5(3), pp. 229–240.
Logutova, T.G. 2012. The problem of resource provision in the world economy. T.G. Logutova, О.V. Poltoratska, Theoretical and practical aspects of economics and intellectual property: a collection of scientific papers: in 2 issues; PDTU – Mariupol, Vip. 1., T. 1, pp. 205–211.
Maley, O.V. 2013. On the issue of development of the modern waste management system in Ukraine. О.В. Malei, A.O. Klyuchka, Ecological management in the general management system: collection of abstracts of the Thirteenth annual all-Ukrainian scientific conference, Sumy, April 17–18, 2013 / Resp. O.M. Telizhenko. Sumy: Sumy State University, pp. 91–94.
Ogol, D.O. 2015. Economic growth: essence, quality and sustainability. Actual problems of economy 2, pp. 67–72. [Online] http://nbuv.gov.ua/UJRN/ape_2015_2_11 [Accessed: 2021-09-02].
Perevozova et al. 2019 – Perevozova, I., Shmygol, N., Tereshchenko, D., Kandahura, K. and Katerna, O. 2019. Introduction of creative economy in international relations: Aspects of development security. Journal of Security and Sustainability Issues 9(1), pp. 139–154, DOI: 10.9770/jssi.2019.9.1(11).
Pistunov, I.M. 2008. Cluster analysis in economics: textbook. way. I.M. Pistunov, O.P. Antonyuk, I.Y. Turchaninov. Dnepropetrovsk: Nat. min. University, 84 p. Popovych, Z. 2016. Economic growth and prospects for innovative development. Economy of Ukraine 12, pp. 41–48.
Sasirekha, K. and Baby, P. 2013. Agglomerative Hierarchical Clustering Algorithm-A Review. Vol. 3. Sergienko-Berdyukova, L.V. 2015. Prerequisites for the formation and implementation of the concept of circular economy. Problems of theory and methodology of accounting, controlan analysis 3(33), pp. 327–350.
Simkiv, L.E. 2014. Qualitative economic growth in Ukraine, its assessment and ways of providing. Innovative economy 2, pp. 21–25. [Online] http://nbuv.gov.ua/UJRN/inek_2014_2_4 [Accessed: 2021- 09-02].
Shmygol et al. 2018 – Shmygol, N., Galtsova, O. and Varlamova, I. 2018. Developing a methodology to assess the environmental and economic performance index based on international research to solve the economic and environmental problems of Ukraine. Baltic Journal of Economic 4, pp. 366–375, DOI: 10.30525/2256-0742/2018-4-4-366-374.
Shmygol et al. 2020a – Shmygol, N., Cherniavska, O., Pulina, T. and Zavgorodniy, R. 2020a. Economic assessment of the implementation of the resource-efficient strategy in the oil and gas sector of the economy on the basis of distribution of trade margins between extracting and processing enterprises Polityka Energetyczna – Energy Policy Journal 23(3), pp. 135–146, DOI: 10.33223/epj/126998.
Shmygol et al. 2020b – Shmygol, N., Łuczka, W., Trokhymets, O., Pawliszczy, D. and Zavgorodniy, R. 2020b. Model of diagnostics of resource efficiency in oil and gas sector of economy of Ukraine. E3S Web of Conferences 166, DOI: 10.1051/e3sconf/202016613005.
Shmygol et al. 2021 – Shmygol, N., Solovyov, O., Kasianok, M., Cherniavska, O. and Pawliszczy, D. Model of sectoral competitiveness index by environmental component. IOP Conference Series: Earth and Environmental Science 628(1), DOI: 10.1088/1755-1315/628/1/012023.
Skrypnyk, N.E. 2017. Factors and preconditions of economic growth in Ukraine. N.Y. Skripnik, A.V. Bulygina, Eastern Europe: Economics, Business and Management 6, pp. 11–15.
Go to article

Authors and Affiliations

Nadiia Shmygol
1
ORCID: ORCID
Olga Galtsova
2
ORCID: ORCID
Kostiantyn Shaposhnykov
3
ORCID: ORCID
Saule Bazarbayeva
4
ORCID: ORCID

  1. «Zaporizhzhia Polytechnic» National University, Ukraine
  2. Classic Private University, Ukraine
  3. State Scientific Institution “Institute for Modernization of the Content of Education” of the Ministry of Education and Science of Ukraine, Ukraine
  4. L.N. Gumilyov Eurasian National University, Kazakhstan
Download PDF Download RIS Download Bibtex

Abstract

The evolution of the economy and the formation of Industry 4.0 lead to an increase in the importance of intangible assets and the digitization of all processes at energy enterprises. This involves the use of technologies such as the Internet of Things, Big Data, predictive analytics, cloud computing, machine learning, artificial intelligence, robotics, 3D printing, augmented reality etc. Of particular interest is the use of artificial intelligence in the energy sector, which opens up such prospects as increased safety in energy generation, increased energy efficiency, and balanced energy-generation processes. The peculiarity of this particular instrument of Industry 4.0 is that it combines the processes of digitalization and intellectualization in the enterprise and forms a new part of the intellectual capital of the enterprise. The implementation of artificial intelligence in the activities of energy companies requires consideration of the features and stages of implementation. For this purpose, a conceptual model of artificial intelligence implementation at energy enterprises has been formed, which contains: the formation of the implementation strategy; the design process; operation and assessment of artificial intelligence. The introduction of artificial intelligence is a large-scale and rather costly project; therefore, it is of interest to assess the effectiveness of using artificial intelligence in the activities of energy companies. Efficiency measurement is proposed in the following areas: assessment of economic, scientific and technical, social, marketing, resource, financial, environmental, regional, ethical and cultural effects as well as assessment of the types of risks associated with the introduction of artificial intelligence.
Go to article

Bibliography

Armenakis et al. 1993 – Armenakis, A.A., Harris, S.G. and Mossholder, K.W. 1993. Creating Readiness for Organizational Change. Human Relations 46, pp. 681–703.
Artificial intelligence the next digital frontier? McKinsey Global Institute. July 2017. 80 p. [Online] https://www.mckinsey.com/~/media/mckinsey/industries/advanced%20electronics/our%20insights/how%20 artificial%20intelligence%20can%20deliver%20real%20value%20to%20companies/mgi-artificial-intelligence- discussion-paper.ashx [Accessed: 2021-07-15].
Bakke, D. 2005. Joy a work: A Revolutionary Approach to Fun on the Job. Seattle: PVG, 314 pp.
Behrens, W. and Hawranek, P.M. 1978. Manual for the preparation of industrial feasibility studies. NY: Unated Nations, 404 pp.
Berger, R. 2013. How to Survive in the VUCA World. Hamburg: Roland Berger, 245 pp.
Blommaert, Т. and Broek, S. 2017. Management in Singularity: From linear to exponential management. Vakmedianet; 1 edition, 172 pp.
Borowski, P.F. 2016. Development strategies for electric utilities. Acta Energetica 4, pp. 16–21.
Borowski, P. 2021. Innovative Processes in Managing an Enterprise from the Energy and Food Sector in the Era of Industry 4.0. Processes 9(2), 381, DOI: 10.3390/pr9020381.
Bostrom, N. 2014. Superintelligence: Paths, Dangers, Strategies. Oxford University Press, 352 pp.
Cheatham et al. 2019 – Cheatham, B., Javanmardian, K. and Samandari, H. 2019. Confronting the risks of artificial intelligence. [Online] https://www.mckinsey.com/business-functions/mckinsey-analytics/our-insights/confronting-the-risks-of-artificial-intelligence [Accessed: 2021-07-15].
Doroshuk, H. 2019. Organizational development: theory, methodology, practice (Організаційний розвиток: теорія, методологія, практика). Odesa: Osvita Ukrainy, 368 pp. (in Ukrainian).
Doroshuk, H. 2020. Reform of the electricity sector in Ukraine – liberalization of the market and corporatization of companies. Polityka Energetyczna – Energy Policy Journal 23(4), pр. 105–122. [Online] https://epj.min-pan.krakow.pl/Reform-of-the-electricity-sector-in-Ukraine-liberalization-of-the-market- and-corporatization,127664,0,2.html/ [Accessed: 2021-07-15].
Edvinsson, L. and Malone, M. 1997. Intellectual Capital: Realizing your Company’s True Value by Finding its Hidden Brainpower. New York, NY: Harper Collins.
Firer, S. and Williams, S.M. 2003. Intellectual capital and traditional measures of corporate performance. Journal of Intellectual Capital 4(3) , pp. 348–360, DOI: 10.1108/14691930310487806.
Hoe, S.L. 2019. The topicality of the learning organization: Is the concept still relevant today? [In:] The Oxford Handbook of the Learning Organization, Oxford University Press: Oxford, UK, pp. 18–32.
Jackson, P.C. Jr. 2019. Introduction to Artificial Intelligence. New York: Dover Publication Inc., 170 pp. Jensen, P.E. 2005. A contextual theory of learning and the learning organization. Knowledge Process Management 12, pp. 53–64, DOI: 10.1002/kpm.217.
Jones, M.T. 2017. A Beginner’s Guide to Artificial Intelligence, Machine Learning and Cognitive Computing. [Online] https://developer.ibm.com/articles/cc-beginner-guide-machine-learning-ai-cognitive/ [Accessed: 2021-07-15].
Kinelski, G. 2020. The main factors of successful project management in the aspect of energy enterprises’ efficiency in the digital economy environment. Polityka Energetyczna – Energy Policy Journal 23(3), pр. 5–20, DOI: 10.33223/epj/126435.
Koistinen, P. 2021. Toward learning organization – Practices in nuclear power plants. [In:] Human Factors in the Nuclear Industry, Elsevier BV: Amsterdam, The Netherlands, pp. 239–247.
Laloux, Fr. 2014. Reinventing Organizations: A Guide to Creating Organizations Inspired by the Next Stage of Human Consciousness. Brussels: Nelson&Parker, 379 pp.
Levy, F. 2009. A simulated approach to valuing knowledge capital. Washington: The George Washington University, 189 pp.
Nazari, J.A. and Herremans, I.M. 2007. Extending VAIC model: measuring intellectual capital components. Journal of Intellectual Capital 8(4), DOI: 10.1108/14691930710830774.
Oklander et al. 2018 – Oklander, M., Oklander, T., Yashkina, O., Pedko, I. and Chaikovska, M. 2018. Analysis of technological innovations in digital marketing. Eastern-European Journal of Enterprise Technologies 5/3 (95), pp. 80–91, DOI: 10.1088/1755-1315/440/2/022026.
Pan et al. 2020 – Pan, T., Hu, T. and Geng, J. 2020. View learning organization in a situational perspective. IOP Conference Series: Earth and Environmental Science 440 pp.
Piano, S.L. 2020. Ethical principles in machine learning and artificial intelligence: Cases from the field and possible ways forward. Humanities and Social Science Communication 7, DOI: 10.1057/s41599-020-0501-9.
Romer, P.M. 1994. The Origins of Endogenous Growth. The Journal of Economic Perspectives 8(1), pp. 3–22.
Sozontov et al. 2019 – Sozontov, A., Ivanova, M. and Gibadullin, A. 2019. Implementation of artificial intelligence in the electric power industry. [In:] E3S Web of Conferences 114, DOI: 10.1051/e3sconf/201911401009. EDP Sciences.
Toffler, A. 1984. The Third Wave. NY: Bantam, 560 pp.
Tortorella et al. 2020 – Tortorella, G.L., Vergara, A.M.C., Garza-Reyes, J.A. and Sawhney, R. 2020. Organizational learning paths based upon Industry 4.0 adoption: An empirical study with Brazilian manufacturers. International Journal of Production Economics 219, pp. 284–294, DOI: 10.1016/j.ijpe.2019.06.023.
Von Ketelhod, Wöcke, A. 2008. The impact of electricity crises on the consumption behaviour of small and medium enterprises. Journal of Energy in Southern Africa 19(1), pp. 4–12
Go to article

Authors and Affiliations

Hanna Doroshuk
1
ORCID: ORCID

  1. Department of Menegement, Odessa Polytechnic State University, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

The article aims to explore the determinants of the process of attracting financial resources for implementing renewable (alternative) energy development projects in Ukraine. The authors review and systematize the sources of funding and innovative financial instruments available for developing renewable energy sources (RES) in developing countries. Based on this, a pool of financial resources/RES development tools available for investment in Ukraine has been formed. It is proposed to build a model of the optimal structure of sources of financing renewable energy development projects. The research is founded on the forecasted schedule for increasing the share of RES in the national energy balance of Ukraine up until 2035. The limitations are connected with the lack of factual data on sources/instruments of funding in the field of RES. The model enables the prediction of the amount of funds that need to be allocated to finance renewable energy development projects, while optimizing the structure of their potential funding. The originality/value of the article lies firstly in the innovative application of the optimization model for forecasting the aggregate structure of funding sources in the energy sector; secondly, in the possibility of testing the model in practice and monitoring RES development projects in the territorial communities of the Carpathian region of Ukraine on the basis of the project-educational center for the development of innovations and investments in the region; thirdly, the proposed model can be used in the activities of state authorities and institutions of Ukraine for forming the policy of supporting alternative energy development projects.
Go to article

Bibliography


AC 2021. “Agents of Change” of Vasyl Stefanyk Precarpathian National University. [Online] http://agen-tyzmin.pnu.edu.ua/ua [Accessed: 2021-08-25].
Bilyavs`ky`j, M. 2020. Guidelines for the development of alternative energy in Ukraine until 2030 (Орієнтири розвитку альтернативної енергетики України до 2030 р.). The Razumkov Centre [Online] https://razumkov.org.ua/statti/oriientyry-rozvytku-alternatyvnoi-energetyky-ukrainy-do-2030r#a12 [Accessed: 2021-08-25] (in Ukrainian).
Bjarne, S. 2018. The importance of project finance for renewable energy projects Energy Economics. Volume 69, January 2018, рр. 280–294, DOI: 10.1016/j.eneco.2017.11.006.
CMU 2017. On approval of the Energy Strategy of Ukraine for the period up to 2035 “Security, en- ergy efficiency, competitiveness” (Про схвалення Енергетичної стратегії України на період до 2035 року “Безпека, енергоефективність, конкурентоспроможність”). [Online] https://zakon.rada.gov.ua/laws/show/605-2017-%D1%80?lang=uk#Text [Accessed: 2021-06-25] (in Ukrainian).
DEPC 2009. Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC. [Online] https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32009L0028 [Accessed: 2021-06-22].
FMEAE 2015. The Energy Transition in Buildings Platform. Federal Ministry for Economic Affairs and Energy. [Online] https://www.bmwi.de/Redaktion/EN/Textsammlungen/Energy/energy-transition-buildings-platform.html?cms_artId=1328378 [Accessed: 2021-08-25].
GF 2020. Crowdfunding for development and climate finance. Globalfields. [Online] https://www.global- fields.co.uk/insights/crowdfunding-for-development-and-climate-finance [Accessed: 2021-08-25].
Goncharuk et al. 2021 – Goncharuk, A.G., Hromovenko, K., Pahlevanzade, A. and Hrinchenko, Y. 2021. Energy poverty leap during the pandemic: the case of Ukraine. Polityka Energetyczna – Energy Policy Journal 24(2), pp. 5–18, DOI: 10.33223/epj/136521.
IRENA 2009. Statute of the International Renewable Energy Agency (IRENA). International Renewa- ble Energy Agency. [Online] https://irena.org/-/media/Files/IRENA/Agency/About-IRENA/Statute/IRENA_FC_Statute_signed_in_Bonn_26_01_2009_incl_declaration_on_further_authentic_versions. ashx?la=en&hash=FAB3B5AE51B8082B04A7BBB5BDE978065EF67D96&hash=FAB3B5AE51B-8082B04A7BBB5BDE978065EF67D96 [Accessed: 2021-06-21].
IRENA 2021. Renewable Power Generation Costs in 2020. International Renewable Energy Agency. [Online] https://www.irena.org/publications/2021/Jun/Renewable-Power-Costs-in-2020 [Accessed: 2021-06-21].
KPMG 2019. Renewable energy sources in Ukraine (Відновлювані джерела енергії в Україні). KPMG Ukraine. [Online] https://home.kpmg/content/dam/kpmg/ua/pdf/2019/09/Renewables-Report_2019-ua.pdf [Accessed: 2021-08-25] (in Ukrainian).
MDCTU 2021. Ministry of Development of Communities and Territories of Ukraine. [Online] https://www.minregion.gov.ua/ [Accessed: 2021-08-29].
MEcU 2021. Ministry of Economy of Ukraine. [Online] h ttps://me.gov.ua/old/?lang=en-GB [Accessed: 2021-08-29].
MEnU 2021. Ministry of Energy of Ukraine. [Online] http://mpe.kmu.gov.ua [Accessed: 2021-08-29].
Nigam et al. 2018 – Nigam, N., Mbarek, S. and Benetti, C. 2018. Crowdfunding to finance eco-innovation: case studies from leading renewable energy platforms. Journal of Innovation Economics & Management 26(2), pp. 195–219. [Online] https://www.cairn.info/revue-journal-of-innovation-economics-2018-2-page-195.htm [Accessed: 2021-08-25].
NRSDGU 2017. National Report “Sustainable Development Goals: Ukraine” (Національна доповідь «Цілі Сталого Розвитку: Україна»). [Online] https://ukraine.un.org/uk/49413-2017-nacionalna-do-povid-cili-stalogo-rozvitku-ukraina [Accessed: 2021-04-25] (in Ukrainian).
Nyenno et al. 2020 – Nyenno, I., Selivanova, N., Korolenko, N. and Truba, V. 2020. The energy policy risk management system model: theories and practices. Polityka Energetyczna – Energy Policy Journal 23(4), pp. 33–48, DOI: 10.33223/epj/127699.
RE 2020. Renewable Energy 2020: With What Ukrainians will Start Next Year. [Online] https://ua-energy.org/uk/posts/vidnovliuvana-enerhetyka-2020-z-chym-ukraintsi-uviidut-u-nastupnyi-rik [Accessed: 2021-08-25].
SAEE 2021. State support for energy saving – the program of “warm loans” State Agency for Energy Efficiency and Energy Saving of Ukraine. [Online] https://saee.gov.ua/uk/consumers/tepli-kredyty [Accessed: 2021-08-25].
SFRD 2021. State Fund for Regional Development. [Online] https://new.dfrr.minregion.gov.ua/pro-dfrr [Accessed: 2021-08-29].
SG 2019. Pioneering Poland pumps up environmental credentials and considers local green bonds. Societe Generale. [Online] https://wholesale.banking.societegenerale.com/en/insights/clients-successes/clients-successes-details/news/pioneering-poland-pumps-environmental-credentials-and-considers-local-green-bonds/ [Accessed: 2021-08-25].
SSSU 2021. Energy consumption from renewable sources for 2007–2020. State Statistics Service of Ukraine. [Online] http://www.ukrstat.gov.ua/ [Accessed: 2021-06-25].
UE 2021. Without the “green” tariff: how renewable power generation is looking for new business models [Online] https://ua-energy.org/en/posts/30-07-2021-a2ce02d8-7437-4045-aefc-58557371cba8 [Accessed: 2021-08-25].
UN 2021. 17 Goals to Transform Our World. United Nations. [Online] https://www.un.org/sustainabledevelopment/sustainable-development-goals/ [Accessed: 2021-08-01].
UNCHE 1972. United Nations Conference on the Human Environment. [Online] https://www.un.org/ga/search/view_doc.asp?symbol=A/CONF.48/14/REV.1 [Accessed: 2021-04-25].
UNDPU 2015. United Nations Development Program (UNDP) in Ukraine. [Online] https://www.ua.undp.org/content/ukraine/uk/home/sustainable-development-goals.html [Accessed: 2021-04-25].
USELF 2018. USELF – Financing of Alternative Energy by the EBRD. [Online] https://eenergy.com.ua/korysni-porady/uself-finansuvannya-alternatyvnoyi-energetyky/ [Accessed: 2021-06-25].
Zhyber, T. and Solopenko, T. 2020. The implementation of Ukraine’s energy policy using budget programs. Polityka Energetyczna – Energy Policy Journal 23(4), pp. 91–104, DOI: 10.33223/epj/127300.
Go to article

Authors and Affiliations

Svitlana O. Kropelnytska
1
ORCID: ORCID
Tetiana V. Mayorova
2
ORCID: ORCID

  1. Department of Finance ; Project and Educational Centre „Agents of Changes” PNU, Vasyl Stefanyk Precarpathian National University, Ukraine
  2. Department of Corporate Finance and Controlling, Vadym Hetman Kyiv National Economic University, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

This article is devoted to the worldwide development of renewable energy in connection to the development of the socio-economic system and employment transformations. It is emphasized that the use of renewable energy sources is growing extremely fast globally, and it is generating positive socio-economic effects such as creating jobs worldwide. It is noted that in contrast to the situation in the field of traditional energy, the number of vacancies in the field of renewable energy continues to grow; photovoltaic, bioenergy, hydropower and wind forms of renewable energy are powerful employers in the world economy. It is noted that the increase in the number of people employed in the field of renewable energy is a consequence of the decentralized nature of the sector, as a result of which, renewable energy technologies produce more vacancies per unit of investment compared to traditional electricity generation technologies. It has been emphasized that the further development of renewable energy depends on the volume of investment in the creation of production facilities, which contributes to the further creation of jobs. Furthermore, it has been determined that the problem of renewable energy staffing is also extremely relevant for Ukraine. It is noted that the current system of training for this energy sector does not meet the long-term requirements; the increase of energy efficiency and the development of renewable energy transform the qualification requirements for employees, which requires the transformation of approaches to the training and development of employees.
Go to article

Bibliography


“Alternative” employment 2020. Is the personnel market keeping up with the changes in the energy sector? («Alternativnaya» zanyatost. Uspevayet li rynok kadrov za izmeneniyami v sektore energetiki?) [Online] http://economica.com.ua/solnechnaia_enerhyia/article/alternatyvnaia_zaniatost.html [Accessed: 2021-07-16] (in Russian).
AEEP 2021. Africa-EU Energy Partnership. [Online] https://africa-eu-energy-partnership.org/ [Accessed: 2021-07-31].
APN 2021. Asia-Pacific Network for Global Change Research. [Online] https://www.apn-gcr.org/ [Accessed: 2021-07-29].
BP 2021. BP Statistical Review of World Energy, Edition 2021. [Online] https://www.bp.com/en/global/ corporate/energy-economics/statistical-review-of-world-energy.html [Accessed: 2021-08-17].
Deloitte 2018. International Renewable Energy Trends (Mezhdunarodnyye tendentsii v oblasti vozobnovlyayemykh istochnikov energii). Deloitte, Insights. Deloitte Development LLC. [Online] https://www2.deloitte.com/content/dam/Deloitte/ru/Documents/energy-resources/Russian/global-renewable-energy-trends.pdf [Accessed: 2021-08-08] (in Russian).
EC 2019. Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions “The European Green Deal”. European Commission. Brussels, 11.12.2019, COM(2019) 640 final.
ESMAP 2021. Energy Sector Management Assistance Program. [Online] https://www.esmap.org/ [Accessed: 2021-07-30].
IRENA 2018. Transformation of the global energy system. Roadmap to 2050 (Preobrazovaniye globalnoy energeticheskoy sistemy. Dorozhnaya karta do 2050). [Online] https://www.irena.org/-/media/ Files/IRENA/Agency/Publication/2018/Apr/IRENA_Global_Energy_Transformation_2018_summary_ RU.pdf?la=en&hash=65D7B55F58A18EFA01D7F0FB0A74DA691F9C57F9 [Accessed: 2021- 07-21] (in Russian).
IRENA 2019. Renewable Energy Employment by Country. [Online]. https://www.irena.org/Statistics/View-Data-by-Topic/Benefits/Renewable-Energy-Employment-by-Country [Accessed: 2021-08-17].
IRENA 2020. Global Renewables Outlook: Energy Transformation 2050. [Online] https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2020/Apr/IRENA_Global_Renewables_Outlook_2020.pdf [Accessed: 2021-08-01].
IRENA 2020. Renewable energy and jobs. 2020 Annual Review (Vozobnovlyayemaya energetika i rabochiye mesta. Ezhegodnyy obzor za 2020 g.) [Online] https://irena.org/-/media/Files/IRENA/Agency/Publication/ 2020/Sep/Key_Findings_Jobs_Review_2020_RU.pdf?la=en&hash=DB49345C378E61214D- 197BA5FED1729AD36633F7 [Accessed: 2021-07-09] (in Russian).
IRENA 2020. Renewable Energy and Jobs. Annual Review 2020. IRENA. [Online]. https://www.irena.org/publications/2020/Sep/Renewable-Energy-and-Jobs-Annual-Review-2020 [Accessed: 2021-08-08].
IRENA 2020. The Post-Covid Recovery. [Online] https://irena.org/-/media/Files/IRENA/Agency/Publication/2020/Jun/IRENA_Post-COVID_Recovery_2020.pdf [Accessed: 2021-07-30].
IRENA 2020. The quantity of jobs in the renewable energy sector continues to grow and totals 11.5 million worldwide (Kolichestvo rabochikh mest v sektore vozobnovlyayemykh istochnikov energii prodolzhayet rasti i naschityvayet 11.5 mln po vsemu miru). [Online] https://www.irena.org/-/media/Files/IRENA/ Agency/Press-Release/2020/Sep/PRESS-RELEASE--Jobs-Russian.pdf?la=en&hash=527ACF- 3DE078EC9EEAAACC452469DCB61861FDA4 [Accessed: 2021-07-14] (in Russian).
Kalinina et al. 2019 – Kalinina, S., Mikhaylushin, L., Korovchuk, Y. and Kushnarenko, O. 2019. Monitoring of International Labor Migration in the Context of the World Economy Labour Resources Providing Problems. Advances in Economics, Business and Management Research (MDSMES) 99. Atlantis Press. 2019, pp. 389–392, DOI: 10.2991/mdsmes-19.2019.74.
Kalinina et al. 2020 – Kalinina, S., Lyndiuk, O. and Buchyk, V. 2020. Development of renewable energy in Ukraine in the context of ensuring public employment. Polityka Energetyczna – Energy Policy Journal 23(4), DOI: 10.33223/epj/130319.
Lanska, S. and Mishchenko, S. 2020. Theoretical And Methodological Aspects Of Labor Market Development Under The Influence Of Destabilizing Factors. Norwegian Journal of development of the International Science 50(3), pp. 38–45.
MEDREC 2021. Cooperation, efficiency, and Innovation for sustainability in the Mediterranean. [Online] https://www.medrec.org/about [Accessed: 2021-07-29].
REnKnow.Net 2021. Renewable Energy Research for Global Markets REnKnow.Net. [Online] http://renknow.net/ [Accessed: 2021-07-29].
SFERA 2021. Solar Facilities for the European Research Area. [Online] https://sfera.sollab.eu/ [Accessed: 2021-07-29].
Tkachuk, Y. 2020. Personnel for the power industry: what do power companies think about professional education in Ukraine (Kadry dlya energetiki: chto dumayut energokompanii o professionalnom obrazovanii v Ukraine). [Online] https://kosatka.media/category/blog/news/kadry-dlya-energetiki-chto-dumayut-energokompanii-o-professionalnom-obrazovanii-v-ukraine [Accessed: 2021-08-09] (in Russian).
TNA 2021. Technology Needs Assessment – UNEP DTU Partnership. [Online] https://tech-action.unepdtu.org/ [Accessed: 2021-07-30].
UARE 2019. Renewable energy: a chance for employment growth in Ukraine (Vozobnovlyayemaya energetika: shans dlya rosta zanyatosti v Ukraine) [Online] https://uare.com.ua/ru/novyny/556-vozobnovlyaemaya-energetika-shans-dlya-rosta-zanyatosti-v-ukraine.html [Accessed: 2021-07-21] (in Russian).
US Office of Electricity 2020. Grid Modernization and Smart Grid. [Online] https://www.energy.gov/oe/activities/technology-development/grid-modernization-and-smart-grid [Accessed: 2021-07-21].
Go to article

Authors and Affiliations

Svitlana Kalinina
1
ORCID: ORCID
Olena Lyndiuk
1
ORCID: ORCID
Vasyl Savchenko
1
ORCID: ORCID
Valeriya Podunay
1
ORCID: ORCID
Svitlana Lanska
1
ORCID: ORCID
Eduard Savchenko
1
ORCID: ORCID

  1. Theoretical and Applied Economics Department, Ukrainian State Employment Service Training Institute, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

The importance of increasing the level of renewable energy sources is connected with the fact that its share in the total volume of energy consumption is still insufficient. This is why this article focuses on the development of the motivation system aimed at the more active transition to renewable sources consumption in the balanced combination alongside the traditional sources. The research question is whether digital public goods (DPG) may be a mean to support “Affordable and Clean Energy’’ use. The theoretical approach to our research problem is stakeholder’s theory, while the concept applied to the motivation mechanism implementation is the United Nations Organization’s concept of sustainable development goals (SDG). The research design is as follows: study of the actual data of energy structure of the world economy; identification of the current instruments of renewable energy distribution; analysis of the DPG as a perspective form of the sustainable energy behavior introduced [AO1] in the digitalized environment; definition of the energy industry stakeholders; development of the architecture of energy consumption by DPG application to reach SDG “Affordable and Clean Energy”. The main findings of the study are that DPG has been found to be a relevant means for the motivation and support of sustainable energy behavior through the architecture of energy consumption, based on research and development, customer relationship management, corporate social responsibility – sustainable development, technical implementation, and the diversity of traditional and alternative sources of energy.
Go to article

Bibliography


Boosting Virtual Reality Learning within Higher Business Management Education. [Online] http://www.vrinsight.org [Accessed: 2021-09-07].
Chan, N.W. and Kotchen, M.J. 2014. A generalized impure public good and linear characteristics model of green consumption. Resource and Energy Economics 37, pp. 1–16, DOI: 10.1016/j.reseneeco.2014.04.001.
Digital Public Goods Definition – Official web-site Digital Public Goods Alliance. [Online] https://digitalpublicgoods.net/registry/ [Accessed: 2021-09-07].
Eberhard, A. et al. 2015 – Eberhard, A., Metternich, J., Tisch, M., Chryssolouris, G., Sihn, W., ElMaraghy, H., Hummel, V. and Ranz, F. 2015. Learning Factories for Research, Education, and Training. Procedia CIRP 32, pp. 1–6.
Estefam, A. 2021. Strategic overview of digital public participation tools for urban planning. Journal of Science-Informed Design, DOI: 10.33797/SIDE.21.008.
Greenstein, S. 2013. Digital Public Goods. IEEE 33(5), pp. 62–63, DOI: 10.1109/MM.2013.96.
Gurumurthy, A. and Chami, N. 2019. Digital Public Goods: A Precondition for Realising SDGs. Global Governance Spotlight 4, pp. 1-5. [Online] https://www.researchgate.net/publication/343547426_Digital_ Public_Goods_A_ Precondition_for_Realising_SDGs [Accessed: 2021-09-07].
HEIn4 2021. Boosting the role of HEIs in the industrial transformation towards the Industry 4.0 paradigm in Georgia and Ukraine. [Online] http://www.hein4.net [Accessed: 2021-09-02].
Hulshof, D. and Mulder, M. 2020. The impact of renewable energy use on firm profit. Energy Economics 92, Article 104957, DOI: 10.1016/j.eneco.2020.104957.
İkiz, A. Ed. 2019. Energy Economics. Economic dynamics of global energy geopolitics. Hershey PA, USA, IGI Global Engineering Science Reference, 333 p. [Online] https://www.researchgate.net/publication/337198803_ Energy_Economics [Accessed: 2021-09-07].
Jarke, J. 2021. Co-Creating Digital Public Services. [In:] Co-creating Digital Public Services for an Ageing Society. Public Administration and Information Technology 6, pp. 15–52. Springer, Cham, DOI: 10.1007/978-3-030-52873-7_3.
Karlsson-Vinkhuyzen, S.I. and Jollands, N. 2013. Human security and energy security: a sustainable energy system as a public good. [In:] H. Dyer and M.J. Trombetta (Eds.), International Handbook of Energy Security 23, pp. 507–526, Edward Elgar Publishing, DOI: 10.4337/9781781007907.00036.
Norouzi, N. and Norouzi, M. 2020. Energy Analysis Framework. An Introduction to the Energy Economics. Scholars’ Press, 391 p. [Online] https://www.researchgate.net/publication/342393402_An_Introduction_ to_ the_Energy_Economics [Accessed: 2021-09-21].
Sackey, S. et al. 2017 – Sackey, S., Bester, A. and Adams, D. 2017. Industry 4.0 Learning Factory Didactic Design Parameters for Industrial Engineering Education in South Africa. South Africa Journal for Industrial Engineering 28(1), pp. 114–124.
Sæbø, J.I. et al. 2021 – Sæbø, J.I., Nicholson, B., Nielsen, P. and Sahay, S. 2021. Digital Global Public Goods. [Online] https://www.researchgate.net/publication/354088457_Digital_Global_Public_Goods [Accessed: 2021-09-13].
Steg, L. et al. 2021 – Steg, L., Perlaviciute, G, Sovacool, B. K., Bonaiuto, M., Diekmann, A., Filippini, M., Hindriks, F., Bergstad, C. J., Matthies, E., Matti, S., Mulder, M., Nilsson, A., Pahl, S., Roggenkamp, M., Schuitema, G., Stern, P.C., Tavoni, M., Thøgersen, J. and Woerdman, E. 2021. A Research Agenda to Better Understand the Human Dimensions of Energy Transitions. Front. Psychol. 12, Article 672776, DOI: 10.3389/fpsyg.2021.672776.
Szalbierz, Z. and Ropuszyńska-Surma, E. 2017. Energy security as a public good. E3S Web of Conferences 14, Article 01005, DOI: 10.1051/e3sconf/20171401005.
Udayasankaran, J.G. et al. 2021 – Udayasankaran, J.G., Kallander, K., Woods, T., Landry, M., Benjamin, P., Harris, L., Nordhaug, L., Fourie, C., Blaschke, S., Grubb, B., Bendor, A. and Downey, M. 2021. Understanding the Relationship between Digital Public Goods and Global Goods in the Context of Digital Health. Digital Public Goods Alliance, Digital Square, UNICEF Health and Information Communication Technology (ICT) Divisions. [Online] https://www.researchgate.net/publication/350959100_Understanding_the_Relationship_between_Digital_Public_Goods_and_Global_ Goods_in_the_Context_of_Digital_Health [Accessed: 2021-09-20].
Wiser, R. and Pickle, S. 1997. Green Marketing, Renewables, and Free Riders: Increasing Customer Demand for a Public Good. [Online] https://www.researchgate.net/publication/252267623_Green_ Marketing_Renewables_and_Free_ Riders_Increasing_Customer_Demand_for_a_Public_Good [Accessed: 2021-09-21].
Yin, Y. et al. 2021 – Yin, Y., Dong, Y., Wang, K., Wang, D. and Jones, B.F. 2021. Science as a Public Good: Public Use and Funding of Science. Proceedings of the 1st Virtual Conference on Implications of Information and Digital Technologies for Development. [Online] https://www.researchgate.net/ publication/351298734_Science_as_a_ Public_Good_Public_Use_and_Funding_of_Science/citations [Accessed: 2021-09-20].
Go to article

Authors and Affiliations

Iryna Nyenno
1
ORCID: ORCID
Vyacheslav Truba
2
ORCID: ORCID
Iryna Lomachynska
3
ORCID: ORCID
Olena Mazur
1
ORCID: ORCID

  1. Management and Innovations, Odessa I.I Mechnikov National University, Ukraine
  2. Civil and Law Disciplines, Odessa I.I. Mechnikov National University, Ukraine
  3. Economics and Entrepreneurship, Odessa I.I. Mechnikov National University, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

The introduction of energy conservation and resource conservation measures has a positive impact on the environment and is one of the components of sustainable development at the macro level. In turn, at the micro level, such measures lead to a systematic decrease in the production costs of companies and thereby expand their economic and financial security. This article is devoted to the development of methodological tools for modeling the environmental and economic effect of added value created in the energy service market. For this, the peculiarities and components of the energy service contract have been identified. It has been established that one of the indicators of the conclusion of such a contract is the indicator of energy efficiency and environmental friendliness of measures in the structure of the added value of an energy service company. An analysis of existing models of added value created in the energy service market is carried out. A model of economic value added is taken as the basis for modeling the ecological and economic effect of added value created in the energy service market. The rationale is that such value-added is a modification of the economic profit indicator, which measures the financial result of a company, considering not only accounting costs but also the opportunity costs of invested capital for energy efficiency and environmental measures.
Go to article

Bibliography


Bertoldi et al. 2019 – Bertoldi, P., Boza-Kiss, B. and Toleikyte, A. 2019. Energy Service Market in the EU. Publications Office of the European Union, Luxembourg.
Borysiak, O. and Brych, V. 2021. Methodological Approach to Assessing the Management Model of Promoting Green Energy Services in the Context of Development Smart Energy Grids. Financial and Credit Activity: Problems of Theory and Practice 4(39), pp. 302–309, DOI: 10.18371/fcaptp.v4i39.241319.
Borysova et al. 2021 – Borysova, T., Monastyrskyi, G., Borysiak, O. and Protsyshyn, Y. 2021. Priorities of Marketing, Competitiveness, and Innovative Development of Transport Service Providers under Sustainable Urban Development. Marketing and Management of Innovations 3, pp. 78–89, DOI: 10.21272/mmi.2021.3-07.
Boza-Kiss et al. 2019 – Boza-Kiss, B., Toleikyté, A. and Bertoldi, P. 2019. Energy Service Market in the EU – Status review and recommendations. Scientific and Technical Report. European ESCO Market Reports series. European Commission, Luxembourg.
Brych et al. 2020 – Brych, V., Manzhula, V., Borysiak, O., Liakhovych, G., Halysh, N. and Tolubyak, V. 2020. Communication Model of Energy Service Market Participants in the Context of Cyclic Management City Infrastructure. 2020 10th International Conference on Advanced Computer Information Technologies (ACIT), pp. 678-681, DOI: 10.1109/ACIT49673.2020.9208902.
Brych et al. 2021 – Brych, V., Mykytyuk, P., Halysh, N., Borysiak, O., Zhekalo, G. and Sokol, M. 2021. Management Model of Energy Enterprises Innovative Development Within Physiological Working Conditions. Propósitos y Representaciones, 9(SPE3), 1173. [Online] http://revistas.usil.edu.pe/index.php/pyr/article/view/1173 [Accessed: 2021-10-16].
Brych et al. 2021 – Brych, V., Zatonatska, T., Dluhopolskyi, O., Borysiak, O. and Vakun, O. 2021. Estimating the Efficiency of the Green Energy Services’ Marketing Management Based on Segmentation. Marketing and Management of Innovations 3, pp. 188–198, DOI: 10.21272/mmi.2021.3-16.
Davydov, O.I. 2017. Models of value added of enterprises: economic content and features of construction. Scientific Bulletin of the International Humanities University, 28, pp. 167–172. [Online] http://nbuv.gov.ua/j-pdf/Nvmgu_eim_2017_28_35.pdf [Accessed: 2021-11-05].
Fraser, M. and Montross, C. 1998. Energy service companies – the sky’s the limit! [Online] https://www.semanticscholar.org/paper/Energy-service-companies-The-sky’s-the-limit-Fraser-Montross/42c8a2c8507421fc50ecc2256e3a709ff56f837b [Accessed: 2021-11-05].
Hansen et al. 2009 – Hansen, S.J., Bertoldi, P. and Langlois, P. 2009. ESCOs Around the World: Lessons Learned in 49 Countries. Lilburn, The Fairmont Press.
Kovtoniuk et al. 2021 – Kovtoniuk, K., Molchanova, E., Dluhopolskyi, O., Weigang, G. and Piankova, O. 2021. The factors’ analysis of influencing the development of digital trade in the leading countries. 11th International Conference on Advanced Computer Information Technologies (September 15–17, 2021). Deggendorf, Germany, pp. 290–293.
Koziuk et al. 2020 – Koziuk, V., Hayda, Y., Dluhopolskyi, O. and Kozlovskyi, S. 2020. Ecological performance: ethnic fragmentation versus governance quality and sustainable development. Problemy Ekorozwoju / Problems of Sustainable Development 15(1), pp. 53–64. Law of Ukraine “On the introduction of new investment opportunities, ensuring the rights and legitimate interests of business entities for large-scale energy modernization”, April 9, 2015, №327-VIII.
Liakhovych et al. 2021 – Liakhovych, G., Kupchak, V., Borysiak, O., Huhul, O., Halysh, N., Brych, V. and Sokol, M. 2021. Innovative human capital management of energy enterprises and the role of shaping the environmental behavior of consumers of green energy based on the work of smart grids. Propósitos y Representaciones 9(SPE3), 1293. [Online] https://revistas.usil.edu.pe/index.php/pyr/article/view/1293 [Accessed: 2021-10-26].
Maki et al. 2021 – Maki, E., Kannari, L., Hannula, I. and Shemeikka, J. 2021. Decarbonisation of a district heating system with a combination of solar heat and bioenergy: A techno-economic case study in the Northern European context. Renewable Energy 175, pp. 1174–1199, DOI: 10.1016/j.renene.2021.04.116.
Milinchuk, O.V. 2016. Value-Based Management Effectiveness: Key Indicators. Bulletin of Zhytomyr State Technological University 1, pp. 86–96.
Penate-Valentín et al. 2021 – Penate-Valentín, M.C., Sanchez-Carreira, M.C. and Pereira, A. 2021. The promotion of innovative service business models through public procurement. An analysis of Energy Service Companies in Spain. Sustainable Production and Consumption 27, pp. 1857–1868. Report extract ESCO contracts. 2021. [Online] https://www.iea.org/reports/energy-service-companies-escos-2/esco-contracts [Accessed: 2021-11-10].
Romanenko, O.V. 2013. Strategic enterprise value analysis. Scientific notes of the National University “Ostroh Academy”: Economics series 21, pp. 256–261.
Sotnik, I.N. and Mazin, Y.A. 2015. Energy service companies in the market of resource-saving goods and services in Ukraine. Actual economic problems 1, pp. 321–328. The site of the energy service company “Ecological Systems”. [Online] https://www.ecosys.com.ua [Accessed: 2021-11-10].
Urge-Vorsatz et al. 2007 – Urge-Vorsatz, D., Koppel, S. and Liang, C. 2007. An Assessment of Energy Service Companies (ESCOs) Worldwide. Central European University. [Online] www.worldenergy.org [Accessed: 2021-09-23].
Van Der Kam et al. 2019 – Van Der Kam, M., Peters, A., Van Sark, W. and Alkemade, F. 2019. Agent- based modelling of charging behaviour of electric vehicle drivers. Journal of Artificial Societies and Social Simulation, 22(4), 7, DOI: 10.18564/jasss.4133.
Vence, X. and Pereira, A. 2019. Eco-innovation and Circular Business Models as drivers for a circular economy. Contaduría y Administración 64(1), pp. 1–19.
Volkov, D.L. 2008. Value-Based Management Theory: Financial and Accounting Aspects. SPb.: Medical High School.
Go to article

Authors and Affiliations

Oleksandr Dluhopolskyi
1
ORCID: ORCID
Vasyl Brych
2
ORCID: ORCID
Olena Borysiak
2
ORCID: ORCID
Mykhailo Fedirko
2
ORCID: ORCID
Nataliya Dziubanovska
2
ORCID: ORCID
Nataliya Halysh
2
ORCID: ORCID

  1. West Ukrainian National University, Ternopil Volodymyr Hnatiuk National Pedagogical University, Ukraine
  2. West Ukrainian National University, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

In the contemporary world, natural gas is one of the focuses of hybrid wars and is used as a tool of international economic and political pressure to gain appropriate benefits. The long-term pressure of Russia on Ukraine using a combination of military, political, economic, information and energy tools is one of the most striking cases of applying natural gas as a weapon in a hybrid war. Exploring the case of Ukraine, the authors confirmed the hypothesis about the change in the impact of the prices of natural gas on the performance of its industrial consumers during a hybrid war. The study covered three industrial sectors that are major consumers of natural gas – the metallurgy, chemical and pharmaceutical industries. The data of nine key companies of these industries for the period 2006–2019 were analyzed; this period was divided into two parts – before the hybrid war (2006–2013) and during it (2014–2019). The authors identified the heterogeneity of the influence of natural gas prices on the performance of different industrial enterprises. However, since the onset of the hybrid war, all of them have shown a reducing correlation of natural gas prices with all the analyzed performance indicators – operating profitability, material-output ratio, and labor productivity. The study managed to build reliable regression models that allow defining the prices of natural gas for the chemical industry and metallurgy, above which these industries in Ukraine become unprofitable. The defined critical levels have a practical implication since they can be tools for regulating natural gas prices for various industrial sectors.
Go to article

Authors and Affiliations

Anatoliy G. Goncharuk
1
ORCID: ORCID
Valeria Liashenko-Shcherbakova
1
ORCID: ORCID
Natalia Chaika
1
ORCID: ORCID

  1. Department of Management, International Humanitarian University, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

This article is aimed at the scientific and methodological substantiation of conceptual provisions for the transformation of the national energy system of Ukraine through the formation of eco- -energy clusters. The article analyses international reports on the development of green energy in different countries. An analysis of the dynamics of energy consumption in Ukraine on the basis of renewable sources for 2007–2019 is performed. An algorithm for making a management decision on the transition to renewable energy sources is proposed. In order to transform the national energy system, a conceptual approach to the formation of an eco-energy cluster as an element of innovation infrastructure based on smart specialization is substantiated. It is proven that this structure should be in the form of the partnership of energy companies, business structures, research institutions, higher education institutions, institutions of logistics, energy and innovation infrastructure, and government agencies. This, in turn, will provide a synergistic effect (economic, environmental, social) by improving a number of existing legislations on alternative energy sources, which would increase the economic efficiency of their production, such as: the development of investment projects to attract additional investments in this industry; state guarantees to producers of “clean” energy for its purchase at fixed tariffs; ensuring the level of energy security of Ukraine through the modernization of the network of existing power plants to increase the level of their reliability and uninterrupted operation; the reduction of greenhouse gas emissions from the combustion of traditional fuels.
Go to article

Bibliography


BMU 2018. Schulze: GreenTech ist Modernisierungstreiber unserer Wirtschaft. [Online]. https://www.bmu.de/pressemitteilung/schulze-greentech-ist-modernisierungstreiber-unserer-wirtschaft/ [Accessed: 2021-09-01].
Boyle, G. 2012. Renewable Energy: Power for a Sustainable Future. 3rd ed., Oxford University Publication, Oxford, pp. 378–384.
Deloitte 2017. Trends to watch in alternative energy. [Online] https://www2.deloitte.com/ru/en/pages/energy-and-resources/articles/gx-alternative-energy-trends.html [Accessed: 2021-09-01].
Devlin, G. and Bleackley, M. 1988. Strategic Alliances Guidelines for success. Long Range Planning 21(5), pp. 18–23.
Diekman, J. and Traber, T. 2012. Erneuerbare Energien: Quotenmodelle keine Alternative zum EEG. DIW Wochenbericht, 45, pp. 15–20.
Donovan, Ch.W. 2015. Renewable Energy Finance: Powering the Future. Imperial College Business School, London, pp. 132–145.
Dussauge et al. 2000 – Dussauge, P., Garrette, B. and Mitchell, W. 2000. Learning from competing partners: Outcomes and durations of scale and link alliances in Europe, North America and Asia. Strategic Management Journal 21(2), pp. 99–103.
Dźwigoł et al. 2021a – Dźwigoł, H., Kwilinski, A. and Trushkina, N. 2021a. Green Logistics as a Sustainable Development Concept of Logistics Systems in a Circular Economy. Proceedings of the 37th International Business Information Management Association (IBIMA), 1–2 April 2021 (pp. 10862– 10874), Cordoba, Spain: IBIMA Publishing.
Dźwigoł et al. 2021b – Dźwigoł, H., Trushkina, N. and Kwilinski, A. 2021b. The Organizational and Economic Mechanism of Implementing the Concept of Green Logistics. Virtual Economics 4(2), pp. 74–108, DOI: 10.34021/ve.2021.04.02(3).
European Environment Agency 2019. Paving the way for a circular economics. Insights on status and potentials. EEA Report No. 11/2019. Publications Office of the European Union. Luxemburg.
Feldman, V. P. and Audretsch, D. B. 1999. Innovation in Cities: Science based Diversity. Specialization and Localized Competition – European Economic Review 43, pp. 409–429.
Feser, E.J. 1998. Old and New Theories of Industry Clusters. London: SelectedWorks. Fox, B. and Flynn, D. 2014. Wind Power Integration: Connection and System operational aspects. The Institution of Engineering and Technology, London.
Henning, H.-M. 2015. Phases of transformation of the energy system (Phasen der Transformation des Energiesystems). Energiewirtschaftliche Tagesfragen 1(2), pp. 10–13 (in German).
Ivanov et al. 2019 – Ivanov, S., Dźwigoł, H. and Trushkina, N. 2019. Proposals for the Formation of a Transport and Logistics Cluster as an Institution of Regional Development (on the Example of Donetsk Economic Region). Economic Herald of the Donbas 4(58), pp. 51–60, DOI: 10.12958/1817- 3772-2019-4(58)-51-60.
Kwilinski et al. 2020 – Kwilinski, A., Zaloznova, Yu., Trushkina, N. and Rynkevych, N. 2020. Organizational and methodological support for Ukrainian coal enterprises marketing activity improvement. E3S Web of Conferences 168, Article 00031, DOI: 10.1051/e3sconf/202016800031.
Liashenko et al. 2021 – Liashenko, V., Ivanov, S. and Trushkina, N. 2021. A Conceptual Approach to Forming a Transport and Logistics Cluster as a Component of the Region’s Innovative Infrastructure (on the Example of Prydniprovsky Economic Region of Ukraine). Virtual Economics 4(1), pp. 19–53, DOI: 10.34021/ve.2021.04.01(2).
Meier, P. and Vagliasindi, M. 2015. World Bank Group. The design and sustainability of renewable energy incentives: An economic analysis (Directions in development), IBRR, the World Bank, Washington, pp. 220–230.
Nate et al. 2021 – Nate, S., Bilan, Y., Cherevatskyi, D., Kharlamova, G., Lyakh, O. and Wosiak, A. 2021. The Impact of Energy Consumption on the Three Pillars of Sustainable Development. Energies 14, 1372, DOI: 10.3390/en14051372.
Nyenno et al. 2020 – Nyenno, I., Selivanova, N., Korolenko, N. and Truba, V. 2020. The energy policy risk management system model: theories and practices. Polityka Energetyczna – Energy Policy Journal 23(4), pp. 33–48, DOI: 10.33223/epj/127699.
Porter, M.E. 1998. Clusters and New Economics of Competition. Harward Business Review, November– December, pp. 77–90.
Rutko, D. 2016. Foreign experience in the development of innovative clusters. Science and Innovation 1(155), pp. 18–22.
Serdyuk, O.S. and Trushkina, N.V. 2017a. Regarding the prospects for the development of the thermal energy sector in the context of environmental policy. Economics and society 12, pp. 449–453.
Serdyuk, O.S. and Trushkina, N.V. 2017b. Regarding the prospects for the development of renewable energy in Ukraine. Economics of the enterprise: modern problems of theory and practice: materials of the sixth International Scientific-Practical Conference (Odessa, September 22–23, 2017). Odessa: Atlant, pp. 262–264.
Serdyuk, O.S. and Trushkina, N.V. 2017c. Regarding the development of renewable energy in the context of the Energy Strategy of Ukraine. World scientific extent: collection of scientific articles. Agenda Publishing House, Coventry, United Kingdom, pp. 17–21.
State Statistics Service of Ukraine 2020. ‘Energy consumption from renewable sources for 2007–2019. Kyiv.
Swann, G.M.P. and Preveser, M.A. 1996. Comparison of the Dynamics of Industrial Clustering in Computing and Biotechnology. Research Policy 25(7), pp. 1139–1157.
Terrados et al. 2009 – Terrados, J., Almonacid, G. and Perez-Higueras, P. 2009. Proposal for a combined methodology for renewable energy planning. Application to a Spanish region. Renewable and Sustainable Energy Reviews 13, pp. 2022–2030.
Trieb, F. 2013. Integration erneuerbarer Energiequellen bei hohen Anteilen an der Stromversorgung. Energiewirtschaftliche Tagesfragen 7, pp. 28–32.
Trushkina et al. 2021 – Trushkina, N., Dźwigoł, H. and Kwilinski, A. 2021. Cluster Model of Organizing Logistics in the Region (on the Example of the Economic District “Podillya”). Journal of European Economics 20(1), pp. 127–145, DOI: 10.35774/jee2021.01.127.
World Energy Outlook 2020. The future of world energy during a pandemic COVID-19. [Online] http://uwea.com.ua/ua/news/entry/ [Accessed: 2021-09-03].
Xavier, Y.M. de A. 2015. Energy Law in Brazil: oil, gas and biofuels. Springer International Publishing, Switzerland.
Yuan et al. 2014 – Yuan, J., Luo, G. and Chen, J. 2014. Renewable energy in China. North China Electric Power University, Beijing.
Go to article

Authors and Affiliations

Nataliia Trushkina
1
ORCID: ORCID
Alireza Pahlevanzade
2
ORCID: ORCID
Alborz Pahlevanzade
3
ORCID: ORCID
Yevgen Maslennikov
4
ORCID: ORCID

  1. Department of Regulatory Policy and Entrepreneurship Development, Institute of Industrial Economics of National Academy of Science of Ukraine, Ukraine
  2. Vice-Rector for International Relations, International Humanitarian University, Ukraine
  3. Department of International Law and Comparative Law, International Humanitarian University, Ukraine
  4. Department of Management and Innovations, Odessa I.I. Mechnikov National University, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

Pellagra is a rare disease caused by niacin deficiency or a disruption of its metabolism. Its manifestations are dermatitis with pronounced photosensitivity, gastrointestinal symptoms, and neuropsychiatric ailments. Currently pellagra is developed in people who chronically abuse alcohol or are treated with medications from specific pharmacological groups (immunosuppressive and anti-tuberculosis drugs).
Although the root cause of the disease was established in the mid-twentieth century, a detailed explanation of the processes leading to the development of symptoms has not yet been proposed. They include complex abnormalities at the molecular, metabolic, and immunological levels. Diagnostics is based primarily on the clinical presentation of the disease, while auxiliary tests play secondary role. The low prevalence of the disease, meaning that physicians are unfamiliar with its re-cognition, often leads to delays in diagnosis and appropriate treatment. The therapy is causal and based on administering niacinamide. Failure to implement treatment in the early stages of the disease leads to the patient’s death.
The aim of this literature review is to summarize the current state of knowledge on the pathomechanisms of pellagra, highlighting the clinical implications, and key elements of diagnostic and therapeutic manage-ment that are important in the treatment of pellagra patients.
Go to article

Bibliography

1. Karthikeyan K., Thappa D.M.: Pellagra and skin. Int J Derm. 2002; 41 (8): 476–481.
2. Cao S., Wang X., Cestodio K.: Pellagra, an Almost-Forgotten Differential Diagnosis of Chronic Diarrhea: More Prevalent Than We Think. Nutrition in Clinical Practice. Nutr Clin Pract. 2019; 35 (5): 860–863.
3. Hegyi J., Schwartz R.A., Hegyi V.: Pellagra: Dermatitis, dementia, and diarrhea. Int J Derm. 2004; 43 (1): 1–5.
4. Prinzo Z.W.: Pellagra and its prevention and control in major emergencies. WHO. 2000; NHD/00.01: 1–32.
5. Narasimha V.L., Ganesh S., Reddy S., et al.: Pellagra and Alcohol Dependence Syndrome: Findings From a Tertiary Care Addiction Treatment Centre in India. MCA. 2019; 54 (2): 148–151.
6. Redzic S., Gupta V.: Niacin Deficiency. StatPearls 2021.
7. Elvehjem C.A., Madden R.J., Strong F.M., Woolley D.W.: Relation of Nicotinic Acid And Nicotinic Acid Amide To Canine Black Tongue. J Am Chem Soc. 1937; 59 (9): 1767–1768.
8. Stratigos J.D., Katsambas A.: Pellagra: a still existing disease. Br J Dermatol. 1977; 96 (1): 99–106.
9. Tymoczko J.L., Berg J.M., Stryer L.: Biochemistry. A Short Course. W.H. Freeman Company 2013.
10. Jacobson M.K., Jacobson E.L.: Vitamin B3 in Health and Disease: Toward the Second Century of Discovery. In: Methods in Molecular Biology. Methods Mol Biol. 2018; 1813: 3–8.
11. Horwitt M.K., Harvey C.C., Rothwell W.S., Cutler J.L., Haffron D.: Tryptophan-Niacin Relationships in Man. J Nutr. 1956; 60 (Suppl. 1): 1–43.
12. Badawy A.A.-B.: Pellagra and Alcoholism: A Biochemical Perspective. Alcohol Alcohol. 2014; 49 (3): 238–250.
13. Carpenter K.J.: The Relationship of Pellagra to Corn and the Low Availability of Niacin in Cereals. Experientia Suppl. 1983; 44: 197–222.
14. Judd L.E., Poskitt B.L.: Pellagra in a patient with an eating disorder. Br J Dermatol. 1991; 125 (1): 71–72.
15. Yamaguchi S., Miyagi T., Sogabe Y., et al.: Depletion of Epidermal Langerhans Cells in the Skin Lesions of Pellagra Patients. Am J Dermatopath. 2017; 39 (6): 428–432.
16. Kipsang J.K., Choge J.K., Marinda P.A., Khayeka-Wandabwa C.: Pellagra in isoniazid preventive and antiretroviral therapy. IDCases. 2019; 17: e00550.
17. Chauchan R., Vyas P., Mabena D.: Pellagra in an HIV-infected Individual: a Cause of Chronic Diarrhoea. Med J Armed Forces India. 1997; 53 (4): 303–304.
18. Murray R.K., Granner D.K., Rodwell V.W.: Harper’s Illustrated Biochemistry, Twenty-Seventh Edition. The McGraw-Hill Companies 2012.
19. Shah G.M., Shah R.G., Veillette H., Kirkland J.B., Pasieka J.L., Warner R.R.P.: Biochemical Assessment of Niacin Deficiency Among Carcinoid Cancer Patients. Am J Gastroenterol. 2005; 100 (10): 2307– 2314.
20. Periyasamy S., John S., Padmavati R., et al.: Association of Schizophrenia Risk With Disordered Niacin Metabolism in an Indian Genome-wide Association Study. JAMA Psychiatry. 2019; 76 (10): 1026–1034.
21. Sugita K., Ikenouchi-Sugita A., Nakayama Y., et al.: Prostaglandin E2 is critical for the development of niacin-deficiency-induced photosensitivity via ROS production. Sci Rep. 2013; 3 (1): 2973.
22. Wan P., Moat S., Anstey A.: Pellagra: a review with emphasis on photosensitivity. Br J Dermatol. 2011; 164 (6): 1188–1200.
23. Taylor R.G., Levy H.L., McInnes R.R.: Histidase and histidinemia. Clinical and molecular considerations. Mol Biol Med. 1991; 8 (1): 101–116.
24. Beretich G.R. Jr.: Do high leucine/low tryptophan dieting foods (yogurt, gelatin) with niacin supplementation cause neuropsychiatric symptoms (depression) but not dermatological symptoms of pellagra? Med Hypotheses. 2005; 65 (3): 628–629.
25. Savvidou S.: Pellagra: A Non-Eradicated Old Disease. Clin Pract. 2014; 4 (1): 637.
26. Duncan K.O., Bolognia J.L., Schaffer J.V., Ko C.J.: Dermatology Essentials. Elsevier 2014.
27. Crook M.A.: The importance of recognizing pellagra (niacin deficiency) as it still occurs. Nutrition. 2014; 30 (6): 729–730.
28. Szepietowski J., Wiśnicka B.: Zmiany skórne u chorych z zespołami otępiennymi. Polska Medycyna Paliatywna. 2004; 3 (1): 33–37.
29. Tadil S., Darla R.: Pemphigus Pellagrosus masquerading as cutaneous adverse drug reaction. Int J Derm. 2020; 2 (1): 34–37.
30. Zhang X.-J., Wang A.-P., Shi T.-Y., et al.: The psychosocial adaptation of patients with skin disease: a scoping review. BMC Public Health. 2019; 19: 1404.
31. Roosta N., Black D., Peng D., Riley L.: Skin disease and stigma in emerging adulthood: impact on healthy development. J Cutan Med Surg. 2010; 14 (6): 285–290.
32. Yuksel P.E., Sen. S., Aydin F., Senturk N., Sen N., Cengiz N., et al.: Phenobarbital-induced pellagra resulted in death. Cutan Ocul Toxicol. 2013; 33 (1): 76–78.
33. Mousa T.Y., Mousa O.Y.: Nicotinic Acid Deficiency. StatPearls 2020. 34. Wei W., Bo L.: Case report of mental disorder induced by niacin deficiency. Shanghai Arch Psychiatry. 2012; 24 (6): 352–354.
35. Niacin. Fact Sheet for Health Professionals. https://ods.od.nih.gov/factsheets/Niacin-HealthProfessional/ (access on 1st February 2021).
36. Piqué-Duran E., Pérez-Cejudo J.A., Cameselle D., Palacios-Llopis S., García-Vázquez O.: Pellagra: A Clinical, Histopathological, and Epidemiological Study of 7 Cases. Actas Dermosifiliogr. 2012; 103 (1): 51–58.
37. Frank G.P., Voorend D.M., Chamdula A., van Oosterhout J.J., Koop K.: Pellagra: A non-communicable disease of poverty. Trop Doct. 2012; 42 (3): 182–184.
38. Milovanović D., Djukić A., Stepanović R., Peković D., Vranjesecić D.: [Hatnup disease (report of 2 cases in one family)]. Srp Arh Celok Lek. 2000; 128 (3–4): 97–103.
39. Vanucchi H., Favaro F.M., Cunha D.F., Marchini J.F.: Assessment of zinc nutritional status of pellagra patients. Alcohol Alcohol. 1995; 30 (3): 297–302.
40. Wang S.Q., Balagula Y., Osterwalder U.: Photoprotection: a Review of the Current and future Technologies. Dermatol Ther. 2010; 23 (1): 31–47.
41. Pellagra Treated With Tryptophan. Nutr Rev. 1987; 45 (7): 142–148.
42. Allen J.A., Peterson A., Sufit R., et al.: Post-epidemic eosinophilia-myalgia syndrome associated with L-tryptophan. Arthritis Rheum. 2011; 63 (11): 3633–3639.
43. Burgdorf W.H.C., Plewig G., Wolff H.H., Landthaler M.: Dermatologia Braun-Falco. Wydawnictwo Czelej 2017. 44. Bilgili S.G., Karadag A.S., Calka O., Altun F.: Isoniazid-induced pellagra. Cutan Ocul Toxicol. 2011; 30 (4): 317–319.
Go to article

Authors and Affiliations

Przemysław Hałubiec
1
ORCID: ORCID
Monika Leończyk
1
Filip Staszewski
1
Monika Łazarczyk
1
Andrzej Kazimierz Jaworek
1
Anna Wojas-Pelc
1

  1. Department of Dermatology, Jagiellonian University Medical College, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

With the steady increase in the incidence of breast cancer in women, treatment that includes not only tumor removal but also breast reconstruction is becoming a more relevant issue for oncologic and plastic surgeons. Mastectomy recently evolved as a form of primary prevention of hereditary breast cancer, commonly performed in combination with simultaneous reconstruction. A case of 44-year-old woman who underwent right mastectomy with adjuvant radiotherapy is presented. Due to the patient’s positivity for BRCA1 mutation and her wishes, a risk-reducing mastectomy with nipple-areola complex preservation and bilateral deep inferior epigastric artery perforator flap reconstruction were performed in one-stage. In selected cases this method appears to be the best possible procedure for simultaneous preventative and reconstructive management in patients with genetically determined breast cancer who have undergone mastectomy with radiotherapy.
Go to article

Bibliography

1. Wojciechowska U., Didkowska J., Michałek I., et al.: Cancer in Poland in 2018. Polish National Cancer Registry, Warsaw 2020.
2. Kuchenbaecker K.B., Hopper J.L., Barnes D.R., et al.: Risks of breast, ovarian, and contralateral breast cancer for BRCA1 and BRCA2 mutation carriers. JAMA. 2017; 317: 2402–2416. doi: 10.1001/jama.2017.7112
3. Ulatowski Ł., Kaniewska A.: The Use Of The Diep Flap In The Modern Reconstructive Surgery. Pol J Surg. 2015; 87 (9): 472–481. doi: 10.1515/pjs-2015-0091
4. Bletsis P., Bucknor A., Chattha A., et al.: Evaluation of Contralateral and Bilateral Prophylactic Mastectomy and Reconstruction Outcomes: Comparing Alloplastic and Autologous Reconstruction. Ann Plast Surg. 2018 Apr; 80 (4): 144–149. doi: 10.1097/SAP.0000000000001358
5. Nestle-Krämling C., Kühn T.: Role of Breast Surgery in BRCA Mutation Carriers. Breast Care. 2012; 7: 378–382. doi: 10.1159/000343717
6. Rocco N., Montagna G., Criscitiello C., et al.: Nipple Sparing Mastectomy as a Risk-Reducing Procedure for BRCA-Mutated Patients. Genes. 2021; 12 (2): 253. doi: 10.3390/genes12020253
7. Daar D.A., Abdou S.A., Rosario L., et al.: Is There a Preferred Incision Location for Nipple-Sparing Mastectomy? A Systematic Review and Meta-Analysis. Plast Reconstr Surg. 2019 May; 143 (5): 906e– 919e. doi: 10.1097/PRS.0000000000005502
8. Chirurgiczne leczenie zmian nowotworowych piersi. Konsensus Polskiego Towarzystwa Chirurgii Onkologicznej. Eds. Z.I. Nowecki, A. Jeziorski. Biblioteka chirurga onkologa. Tom 5. Via Medica, Gdańsk 2016.
9. Ulatowski Ł., Noszczyk B.: BREAST-Q questionnaire: tool for evaluation of quality of life following breast reconstruction with DIEP/SIEA flap. Pol J Surg. 2018; 90 (4): 16–20. doi: 10.5604/01.3001.0012.0758
Go to article

Authors and Affiliations

Łukasz Ulatowski
1
Piotr Gierej
1
Maria Molska
1

  1. Department of Plastic Surgery, Medical Centre for Postgraduate Education, Professor W. Orlowski Memorial Hospital, 231st Czerniakowska Street, 00-416 Warsaw, Poland

Bibliography

1. Lenfant C.: Chest pain of cardiac and noncardiac origin. Metabolism. 2010; 59 (Suppl. 1): S41–46. doi: 10.1016/j.metabol.2010.07.014
2. Hochman J.S., Tamis J.E., Thompson T.D., et al.: Sex, clinical presentation, and outcome in patients with acute coronary syndromes. N Engl J Med. 1999; 341 (4): 226–232. doi: 10.1056/ NEJM199907223410402
3. Lanza G.A., De Vita A., Kaski J.C.: “Primary” microvascular angina: Clinical characteristics, pathogenesis and management. Interv Cardiol Rev. 2018; 13 (3): 108–111. doi: 10.15420/ icr.2018.15.2
4. Lanza G.A.: Cardiac syndrome X: A critical overview and future perspectives. Heart. 2007; 93 (2): 159–166. doi: 10.1136/hrt.2005.067330
5. Cheng T.O.: Cardiac syndrome X versus metabolic syndrome X. Int J Cardiol. 2007; 119 (2): 137–138. doi: 10.1016/j.ijcard.2006.06.062
6. Lichtlen P.R., Bargheer K., Wenzlaff P.: Long-term prognosis of patients with anginalike chest pain and normal coronary angiographic findings. J Am Coll Cardiol. 1995; 25 (5): 1013–1018. doi: 10.1016/0735-1097 (94)00519-V
7. Lamendola P., Lanza G.A., Spinelli A., et al.: Long-term prognosis of patients with cardiac syndrome X. Int J Cardiol. 2010; 140 (2): 197–199. doi: 10.1016/j.ijcard.2008.11.026
8. Di Monaco A., Lanza G.A., Bruno I., et al.: Usefulness of impairment of cardiac adrenergic nerve function to predict outcome in patients with cardiac syndrome X. Am J Cardiol. 2010; 106 (12): 1813–1818. doi: 10.1016/j.amjcard.2010.07.052
9. Singh M., Singh S., Arora R., Khosla S.: Cardiac syndrome X: Current concepts. Int J Cardiol. 2010; 142 (2): 113–119. doi: 10.1016/j.ijcard.2009.11.021
10. Ryan T.J.: The Coronary Angiogram and Its Seminal Contributions to Cardiovascular Medicine over Five Decades. Circulation. 2002; 106 (6). doi: 10.1161/01.CIR.0000024109.12658.D4
11. Kemp H.G., Vokonas P.S., Cohn P.F., Gorlin R.: The anginal syndrome associated with normal coronary arteriograms. Report of a six year experience. Am J Med. 1973; 54 (6): 735–742. doi: 10.1016/0002-9343 (73)90060-0
12. Cannon R.O., Epstein S.E.: “Microvascular angina” as a cause of chest pain with angiographically normal coronary arteries. Am J Cardiol. 1988; 61 (15): 1338–1343. doi: 10.1016/0002-9149 (88) 91180-0
13. Fox K., Alonso Garcia M.A., Ardissino D., et al.: Guidelines on the management of stable angina pectoris: Executive summary — The Task Force on the Management of Stable Angina Pectoris of the European Society of Cardiology. Eur Heart J. 2006; 27 (11): 1341–1381. doi: 10.1093/eurheartj/ ehl001
14. Montalescot G., Sechtem U., Achenbach S., et al.: 2013 ESC guidelines on the management of stable coronary artery disease. Eur Heart J. 2013; 34 (38): 2949–3003. doi: 10.1093/eurheartj/eht296
15. Ong P., Camici P.G., Beltrame J.F., et al.: International standardization of diagnostic criteria for microvascular angina. Int J Cardiol. 2018; 250: 16–20. doi: 10.1016/j.ijcard.2017.08.068
16. Knuuti J., Wijns W., Achenbach S., et al.: 2019 ESC guidelines for the diagnosis and management of chronic coronary syndromes. Eur Heart J. 2020; 41 (3): 407–477. doi: 10.1093/eurheartj/ehz425
17. Diver D.J., Bier J.D., Ferreira P.E., et al.: Clinical and arteriographic characterization of patients with unstable angina without critical coronary arterial narrowing (from the TIMI-IIIA trial). Am J Cardiol. 1994; 74 (6): 531–537. doi: 10.1016/0002-9149 (94)90739-0
18. Reis S.E., Holubkov R., Smith A.J.C., et al.: Coronary microvascular dysfunction is highly prevalent in women with chest pain in the absence of coronary artery disease: Results from the NHLBI WISE study. Am Heart J. 2001; 141 (5): 735–741. doi: 10.1067/mhj.2001.114198
19. Noel Bairey Merz C., Eteiba W., Pepine C.J., Johnson B.D., Shaw L.J., Kelsey S.F.: Cardiac syndrome X: Relation to microvascular angina and other conditions. Curr Cardiovasc Risk Rep. 2007; 1 (2): 167–175. doi: 10.1007/s12170-007-0027-3
20. Bugiardini R., Merz C.N.B.: Angina with “normal” coronary arteries: A changing philosophy. J Am Med Assoc. 2005; 293 (4): 477–484. doi: 10.1001/jama.293.4.477
21. Krumholz H.M., Douglas P.S., Lauer M.S., Pasternak R.C.: Selection of patients for coronary angiography and coronary revascularization early after myocardial infarction: Is there evidence for a gender bias? Ann Intern Med. 1992; 116 (10): 785–790. doi: 10.7326/0003-4819-116-10-785
22. Kaski J.C.: Overview of gender aspects of cardiac syndrome X. Cardiovasc Res. 2002; 53 (3): 620–626. doi: 10.1016/s0008-6363 (01)00460-6
23. Pasceri V., Lanza G.A., Buffon A., Montenero A.S., Crea F., Maseri A.: Role of abnormal pain sensitivity and behavioral factors in determining chest pain in syndrome X. J Am Coll Cardiol. 1998; 31 (1): 62–66. doi: 10.1016/s0735-1097 (97)00421-x
24. Ford T.J., Stanley B., Good R., et al.: Stratified Medical Therapy Using Invasive Coronary Function Testing in Angina: The CorMicA Trial. J Am Coll Cardiol. 2018; 72 (23): 2841–2855. doi: 10.1016/j. jacc.2018.09.006
25. Kanatsuka H., Eastham C.L., Marcus M.L., Lamping K.G.: Effects of nitroglycerin on the coronary microcirculation in normal and ischemic myocardium. J Cardiovasc Pharmacol. 1992; 19 (5): 755–763.
26. Russo G., Di Franco A., Lamendola P., et al.: Lack of effect of nitrates on exercise stress test results in patients with microvascular angina. Cardiovasc Drugs Ther. 2013; 27 (3): 229–234. doi: 10.1007/ s10557-013-6439-z
27. Ohba K., Sugiyama S., Sumida H., et al.: Microvascular coronary artery spasm presents distinctive clinical features with endothelial dysfunction as nonobstructive coronary artery disease. J Am Heart Assoc. 2012; 1 (5): e002485. doi: 10.1161/JAHA.112.002485
28. Maseri A., Crea F., Kaski J.C., Crake T.: Mechanisms of angina pectoris in syndrome X. J Am Coll Cardiol. 1991; 17 (2): 499–506. doi: 10.1016/S0735-1097 (10)80122-6
29. Lanza G.A., Crea F.: Primary coronary microvascular dysfunction: Clinical presentation, pathophysiology, and management. Circulation. 2010; 121 (21): 2317–2325. doi: 10.1161/ CIRCULATIONAHA.109.900191
30. Nihoyannopoulos P., Kaski J.C., Crake T., Maseri A.: Absence of myocardial dysfunction during stress in patients with syndrome X. J Am Coll Cardiol. 1991; 18 (6): 1463–1470. doi: 10.1016/0735- 1097 (91)90676-z
31. Panza J.A., Laurienzo J.M., Curiel R. V, et al.: Investigation of the mechanism of chest pain in patients with angiographically normal coronary arteries using transesophageal dobutamine stress echocardiography. J Am Coll Cardiol. 1997; 29 (2): 293–301. doi: 10.1016/s0735-1097 (96)00481-0
32. Ong P., Athanasiadis A., Borgulya G., Mahrholdt H., Kaski J.C., Sechtem U.: High prevalence of a pathological response to acetylcholine testing in patients with stable angina pectoris and unobstructed coronary arteries: The ACOVA study (abnormal coronary vasomotion in patients with stable angina and unobstructed coronary arteries. J Am Coll Cardiol. 2012; 59 (7): 655–662. doi: 10.1016/j.jacc.2011.11.015
33. White C.W., Wright C.B., Doty D.B., et al.: Does Visual Interpretation of the Coronary Arteriogram Predict the Physiologic Importance of a Coronary Stenosis? N Engl J Med. 1984; 310 (13): 819–824. doi: 10.1056/NEJM198403293101304
34. Hulten E., Di Carli M.F.: FFR CT : Solid PLATFORM or Thin Ice? J Am Coll Cardiol. 2015; 66 (21): 2324–2328. doi: 10.1016/j.jacc.2015.09.065
35. Thomson L.E.J., Wei J., Agarwal M., et al.: Cardiac magnetic resonance myocardial perfusion reserve index is reduced in women with coronary microvascular dysfunction: A national heart, lung, and blood institute-sponsored study from the women’s ischemia syndrome evaluation. Circ Cardiovasc Imaging. 2015; 8 (4). doi: 10.1161/CIRCIMAGING.114.002481
36. Gould K.L., Johnson N.P., Bateman T.M., et al.: Anatomic versus physiologic assessment of coronary artery disease: Role of coronary flow reserve, fractional flow reserve, and positron emission tomography imaging in revascularization decision-making. J Am Coll Cardiol. 2013; 62 (18): 1639–1653. doi: 10.1016/j.jacc.2013.07.076
37. Galiuto L., Sestito A., Barchetta S., et al.: Noninvasive Evaluation of Flow Reserve in the Left Anterior Descending Coronary Artery in Patients With Cardiac Syndrome X. Am J Cardiol. 2007; 99 (10): 1378–1383. doi: 10.1016/j.amjcard.2006.12.070
38. Lee B.K., Lim H.S., Fearon W.F., et al.: Invasive evaluation of patients with angina in the absence of obstructive coronary artery disease. Circulation. 2015; 131 (12): 1054–1060. doi: 10.1161/ CIRCULATIONAHA.114.012636
39. Ng M.K.C., Yeung A.C., Fearon W.F.: Invasive assessment of the coronary microcirculation: Superior reproducibility and less hemodynamic dependence of index of microcirculatory resistance compared with coronary flow reserve. Circulation. 2006; 113 (17): 2054–2061. doi: 10.1161/CIRCULATIO-NAHA.105.603522
40. Beltrame J.F.: Defining the coronary slow flow phenomenon. Circ J. 2012; 76 (4): 818–820. doi: 10.1253/circj.CJ-12-0205
41. Gibson C.M., Cannon C.P., Daley W.L., et al.: TIMI frame count: A quantitative method of assessing coronary artery flow. Circulation. 1996; 93 (5): 879–888. doi: 10.1161/01.CIR.93.5.879
42. Odaka Y., Takahashi J., Tsuburaya R., et al.: Plasma concentration of serotonin is a novel biomarker for coronarymicrovascular dysfunction in patients with suspected angina and unobstructive coronary arteries. Eur Heart J. 2017; 38 (7): 489–496. doi: 10.1093/eurheartj/ehw448
43. Rasmi Y., Roshani-Asl E., KhademAnsari M., SeyedMohammadza M., Rostamzadeh A.: Angiopoie-tin-2 as a biomarker for patients with Cardiac Syndrome X. J Am Coll Cardiol. 2016; 68 (16): C24. doi: 10.1016/j.jacc.2016.07.092
44. Uğurlu M., Karahan Z., Sezer F., et al.: OP-024 A Novel Biomarker in Syndrome X Disease: Mr-Proadrenomedullin. Am J Cardiol. 2016; 117: S9. doi: 10.1016/j.amjcard.2016.04.070
45. Cannon R.O. 3rd, Camici P.G., Epstein S.E.: Pathophysiological Dilemma of Syndrome X. Circulation. 1992; 85 (3): 883–892.
46. Rosano G.M., Ponikowski P., Adamopoulos S., et al.: Abnormal autonomic control of the cardiovascular system in syndrome X. Am J Cardiol. 1994; 73 (16): 1174–1179. doi: 10.1016/0002- 9149 (94)90177-5
47. Börjesson M., Albertsson P., Dellborg M., et al.: Esophageal dysfunction in syndrome X. Am J Cardiol. 1998; 82 (10): 1187–1191. doi: 10.1016/s0002-9149 (98)00598-0
48. Kao C.H., Hsieh J.F., Tsai C.S., Ho Y.J., Lee J.K.: Evidence of abnormal esophageal motility in syndrome X by radionuclide esophageal transit test. Digestion. 2000; 62 (1): 26–30. doi: 10.1159/ 000007774
49. Brunelli C., Nobili F., Spallarossa P., et al.: Cerebral blood flow reserve in patients with syndrome X. Coron Artery Dis. 1996; 7 (8): 587–590. doi: 10.1097/00019501-199608000-00005
50. Zeiher A.M., Krause T., Schächinger V., Minners J., Moser E.: Impaired endothelium-dependent vasodilation of coronary resistance vessels is associated with exercise-induced myocardial ischemia. Circulation. 1995; 91 (9): 2345–2352. doi: 10.1161/01.cir.91.9.2345
51. Lin C.-P., Lin W.-T., Leu H.-B., Wu T.-C., Chen J.-W.: Differential mononuclear cell activity and endothelial inflammation in coronary artery disease and cardiac syndrome X. Int J Cardiol. 2003; 89 (1): 53–62. doi: 10.1016/s0167-5273 (02)00428-x
52. Newby D.E., Flint L.L., Fox K.A.A., Boon N.A., Webb D.J.: Reduced responsiveness to endothelin-1 in peripheral resistance vessels of patients with syndrome X. J Am Coll Cardiol. 1998; 31 (7): 1585–1590. doi: 10.1016/S0735-1097 (98)00143-0
53. Kidawa M., Krzeminska-Pakula M., Peruga J.Z., Kasprzak J.D.: Arterial dysfunction in syndrome X: Results of arterial reactivity and pulse wave propagation tests. Heart. 2003; 89 (4): 422–426. doi: 10.1136/heart.89.4.422
54. Shmilovich H., Deutsch V., Roth A., Miller H., Keren G., George J.: Circulating endothelial progenitor cells in patients with cardiac syndrome X. Heart. 2007; 93 (9): 1071–1076. doi: 10.1136/ hrt.2005.077909
55. Trott D.W., Fadel P.J.: Inflammation as a mediator of arterial ageing. Exp Physiol. 2019; 104 (10): 1455–1471. doi: 10.1113/EP087499
56. Dollard J., Kearney P., Clarke G., Moloney G., Cryan J.F., Dinan T.G.: A prospective study of C-reactive protein as a state marker in Cardiac Syndrome X. Brain Behav Immun. 2015; 43: 27–32. doi: 10.1016/j.bbi.2014.07.011
57. Demir B., Önal B., Özyazgan S., et al.: Does Inflammation Have a Role in the Pathogenesis of Cardiac Syndrome X? A Genetic-Based Clinical Study With Assessment of Multiple Cytokine Levels. Angiology. 2015; 67 (4): 355–363. doi: 10.1177/0003319715590057
58. Recio-Mayoral A., Rimoldi O.E., Camici P.G., Kaski J.C.: Inflammation and microvascular dysfunction in cardiac syndrome X patients without conventional risk factors for coronary artery disease. JACC Cardiovasc Imaging. 2013; 6 (6): 660–667. doi: 10.1016/j.jcmg.2012.12.011
59. Recio-Mayoral A., Mason J.C., Kaski J.C., Rubens M.B., Harari O.A., Camici P.G.: Chronic inflammation and coronary microvascular dysfunction in patients without risk factors for coronary artery disease. Eur Heart J. 2009; 30 (15): 1837–1843. doi: 10.1093/eurheartj/ehp205
60. Konst R.E., Guzik T.J., Kaski J.C., Maas A.H.E.M., Elias-Smale S.E.: The pathogenic role of coronary microvascular dysfunction in the setting of other cardiac or systemic conditions. Cardiovasc Res. 2020; 116 (4): 817–828. doi: 10.1093/cvr/cvaa009
61. Ahmed A., Hollan I., Curran S.A., et al.: Brief Report: Proatherogenic Cytokine Microenvironment in the Aortic Adventitia of Patients with Rheumatoid Arthritis. Arthritis Rheumatol. 2016; 68 (6): 1361–1366. doi: 10.1002/art.39574
62. Karbalaei M., Sahebkar A., Keikha M.: Helicobacter pylori infection and susceptibility to cardiac syndrome X: A systematic review and meta-analysis. World J Meta-Analysis. 2021; 9 (2): 208–219. doi: 10.13105/wjma.v9.i2.208
63. Li J.J., Zhu C.G., Nan J.L., et al.: Elevated circulating inflammatory markers in female patients with cardiac syndrome X. Cytokine. 2007; 40 (3): 172–176. doi: 10.1016/j.cyto.2007.09.005
64. Tenekecioglu E., Yilmaz M., Demir S., et al.: HDL-cholesterol is associated with systemic inflammation in cardiac syndrome X. Minerva Med. 2015; 106 (3): 133–141.
65. Aslan G., Polat V., Bozcali E., Opan S., Çetin N., Ural D.: Evaluation of serum sST2 and sCD40L values in patients with microvascular angina. Microvasc Res. 2019; 122: 85–93. doi: 10.1016/j. mvr.2018.11.009
66. Akasaka T., Sueta D., Arima Y., et al.: CYP2C19 variants and epoxyeicosatrienoic acids in patients with microvascular angina. IJC Hear Vasc. 2017; 15: 15–20. doi: 10.1016/j.ijcha.2017.03.001
67. Akasaka T., Sueta D., Arima Y., et al.: Association of CYP2C19 variants and epoxyeicosatrienoic acids on patients with microvascular angina. Am J Physiol — Hear Circ Physiol. 2016; 311 (6): H1409–H1415. doi: 10.1152/ajpheart.00473.2016
68. Güler G.B., Güler E., Hatipoğlu S., et al.: Assessment of 25-OH vitamin D levels and abnormal blood pressure response in female patients with cardiac syndrome X. Anatol J Cardiol. 2016; 16 (12): 961–966. doi: 10.14744/AnatolJCardiol.2016.6862
69. Horváth Z., Csuka D., Vargova K., et al.: Elevated C1rC1sC1inh levels independently predict atherosclerotic coronary heart disease. Mol Immunol. 2013; 54 (1): 8–13. doi: 10.1016/j. molimm.2012.10.033
70. Horváth Z., Csuka D., Vargova K., et al.: Association of Low Ficolin-Lectin Pathway Parameters with Cardiac Syndrome X. Scand J Immunol. 2016; 84 (3): 174–181. doi: 10.1111/sji.12454
71. Cenko E., Amaduzzi P.L., Bugiardini R.: Microvascular angina as a cause of ischemia: An update. In: Gender Differences in the Pathogenesis and Management of Heart Disease. Springer International Publishing; 2018: 135–163. doi: 10.1007/978-3-319-71135-5_9
72. Kaski J.C.: Cardiac syndrome X in women: The role of oestrogen deficiency. Heart. 2006; 92 (Suppl. 3): 5–9. doi: 10.1136/hrt.2005.070318
73. Gilligan D.M., Badar D.M., Panza J.A., Quyyumi A.A., Cannon R.O.: Acute vascular effects of estrogen in postmenopausal women. Circulation. 1994; 90 (2): 786–791. doi: 10.1161/01. CIR.90.2.786
74. Lim T.K., Choy A.J., Khan F., Belch J.J., Struthers A.D., Lang C.C.: Therapeutic development in cardiac syndrome X: A Need to target the underlying pathophysiology: REVIEW. Cardiovasc Ther. 2009; 27 (1): 49–58. doi: 10.1111/j.1755-5922.2008.00070.x
75. Opherk D., Mall G., Zebe H., et al.: Reduction of coronary reserve: a mechanism for angina pectoris in patients with arterial hypertension and normal coronary arteries. Circulation. 1984; 69 (1): 1–7. doi: 10.1161/01.CIR.69.1.1
76. Meeder J.G., Blanksma P.K., Crijns H.J.G.M., et al.: Mechanisms of angina pectoris in syndrome X assessed by myocardial perfusion dynamics and heart rate variability. Eur Heart J. 1995; 16 (11): 1571–1577. doi: 10.1093/oxfordjournals.eurheartj.a060780
77. Saghari M., Assadi M., Eftekhari M., et al.: Frequency and severity of myocardial perfusion abnormalities using Tc-99m MIBI SPECT in cardiac syndrome X. BMC Nucl Med. 2006; 6: 1–8. doi: 10.1186/1471-2385-6-1
78. Kaski J.C., Rosano G.M.C., Collins P., Nihoyannopoulos P., Maseri A., Poole-Wilson P.A.: Cardiac syndrome X: Clinical characteristics and left ventricular function. Long-term follow-up study. J Am Coll Cardiol. 1995; 25 (4): 807–814. doi: 10.1016/0735-1097 (94)00507-M
79. Furgała A., Kolasińska-Kloch W., Kloch M., Laskiewicz J., Thor P.J.: Heart rate variability in cardiological syndrome X patients | Zmienność rytmu serca u chorych z kardiologicznym zespołem X. Folia Cardiol. 2003; 10 (4).
80. Adamopoulos S., Rosano G.M., Ponikowski P., et al.: Impaired baroreflex sensitivity and sympathovagal balance in syndrome X. Am J Cardiol. 1998; 82 (7): 862–868. doi: 10.1016/s0002- 9149 (98)00493-7
81. Crea F., Camici P.G., Merz C.N.B.: Coronary microvascular dysfunction: An update. Eur Heart J. 2014; 35 (17): 1101–1111. doi: 10.1093/eurheartj/eht513
82. Chen J.W., Hsu N.W., Ting C.T., Lin S.J., Chang M.S.: Differential coronary hemodynamics and left ventricular contractility in patients with syndrome X. Int J Cardiol. 2000; 75 (1): 49–57. doi: 10.1016/ s0167-5273 (00)00285-0
83. Mammana C., Salomone O.A., Kautzner J., Schwartzman R.A., Kaski J.C.: Heart rate-independent prolongation of QTc interval in women with syndrome X. Clin Cardiol. 1997; 20 (4): 357–360. doi: 10.1002/clc.4960200411
84. Gulli G., Cemin R., Pancera P., Menegatti G., Vassanelli C., Cevese A.: Evidence of parasympathetic impairment in some patients with cardiac syndrome X. Cardiovasc Res. 2001; 52 (2): 208–216. doi: 10.1016/S0008-6363 (01)00369-8
85. Antonio L.G., Alessandro G., Christian P., et al.: Abnormal Cardiac Adrenergic Nerve Function in Patients With Syndrome X Detected By [123I]Metaiodobenzylguanidine Myocardial Scintigraphy. Circulation. 1997; 96 (3): 821–826. doi: 10.1161/01.CIR.96.3.821
86. Lee W.L., Chen J.-W.W., Kong C.W., et al.: Changes in Cardiac Autonomic Activities in Patients with Syndrome X: A Study of Spectral Analysis of Heart Rate Variability. Angiology. 1996; 47 (10): 929–939. doi: 10.1177/000331979604701001
87. Eriksson B., Jansson E., Kaijser L., Sylvan C.: Exercise performance, autonomic control and skeletal muscle function in syndrome X. Circulation. 1997; 96 (8S).
88. Rosano G.M., Kaski J.C., Arie S., et al.: Failure to demonstrate myocardial ischaemia in patients with angina and normal coronary arteries. Evaluation by continuous coronary sinus pH monitoring and lactate metabolism. Eur Heart J. 1996; 17 (8): 1175–1180. doi: 10.1093/oxfordjournals.eurheartj. a015034
89. Bøtker H.E., Sonne H.S., Frøbert O., Andreasen F.: Enhanced exercise-induced hyperkalemia in patients with syndrome X. J Am Coll Cardiol. 1999; 33 (4): 1056–1061. doi: 10.1016/S0735-1097(98) 00683-4
90. Villasante Fricke A.C., Iacobellis G.: Epicardial Adipose Tissue: Clinical Biomarker of Cardio- Metabolic Risk. Int J Mol Sci. 2019; 20 (23). doi: 10.3390/ijms20235989
91. Kalçik M., Yesin M., Güner A., et al.: Echocardiographic measurement of epicardial adipose tissue thickness in patients with microvascular angina. Interv Med Appl Sci. 2019; 11 (2): 106–111. doi: 10.1556/1646.11.2019.12
92. Lanza G.A., Colonna G., Pasceri V., Maseri A.: Atenolol versus amlodipine versus isosorbide-5- mononitrate on anginal symptoms in syndrome X. Am J Cardiol. 1999; 84 (7): 854–856. doi: 10.1016/S0002-9149 (99)00450-6
93. Leonardo F., Fragasso G., Rossetti E., et al.: Comparison of trimetazidine with atenolol in patients with syndrome X: effects on diastolic function and exercise tolerance. Cardiologia. 1999; 44 (12): 1065–1069.
94. Erdamar H., Sen N., Tavil Y., et al.: The effect of nebivolol treatment on oxidative stress and antioxidant status in patients with cardiac syndrome-X. Coron Artery Dis. 2009; 20 (3): 238–244. doi: 10.1097/MCA.0b013e32830936bb
95. Ozçelik F., Altun A., Ozbay G.: Antianginal and anti-ischemic effects of nisoldipine and ramipril in patients with syndrome X. Clin Cardiol. 1999; 22 (5): 361–365. doi: 10.1002/clc.4960220513
96. Zhang X., Li Q., Zhao J., et al.: Effects of combination of statin and calcium channel blocker in patients with cardiac syndrome X. Coron Artery Dis. 2014; 25 (1): 40–44. doi: 10.1097/ MCA.0000000000000054
97. Ong P., Athanasiadis A., Sechtem U.: Pharmacotherapy for coronary microvascular dysfunction. Eur Hear J — Cardiovasc Pharmacother. 2015; 1 (1): 65–71. doi: 10.1093/ehjcvp/pvu020
98. Pizzi C., Manfrini O., Fontana F., Bugiardini R.: Angiotensin-converting enzyme inhibitors and 3-hydroxy-3-methylglutaryl coenzyme A reductase in cardiac Syndrome X: role of superoxide dismutase activity. Circulation. 2004; 109 (1): 53–58. doi: 10.1161/01.CIR.0000100722.34034.E4
99. Chen J.W., Hsu N.W., Wu T.C., Lin S.J., Chang M.S.: Long-term angiotensin-converting enzyme inhibition reduces plasma asymmetric dimethylarginine and improves endothelial nitric oxide bioavailability and coronary microvascular function in patients with syndrome X. Am J Cardiol. 2002; 90 (9): 974–982. doi: 10.1016/S0002-9149 (02)02664-4
100. Pauly D.F., Johnson B.D., Anderson R.D., et al.: In women with symptoms of cardiac ischemia, nonobstructive coronary arteries, and microvascular dysfunction, angiotensin-converting enzyme inhibition is associated with improved microvascular function. Am Heart J. 2011; 162 (4): 678–684. doi: 10.1016/j.ahj.2011.07.011
101. Kayikcioglu M., Payzin S., Yavuzgil O., Kultursay H., Can L.H., Soydan I.: Benefits of statin treatment in cardiac syndrome-X1. Eur Heart J. 2003; 24 (22): 1999–2005. doi: 10.1016/S0195-668X (03)00478-0
102. Fábián E., Varga A., Picano E., Vajo Z., Rónaszéki A., Csanády M.: Effect of simvastatin on endothelial function in cardiac syndrome X patients. Am J Cardiol. 2004; 94 (5): 652–655. doi: 10.1016/j.amjcard.2004.05.035
103. Mehta P.K., Goykhman P., Thomson L.E.J., et al.: Ranolazine improves angina in women with evidence of myocardial ischemia but no obstructive coronary artery disease. JACC Cardiovasc Imaging. 2011; 4 (5): 514–522. doi: 10.1016/j.jcmg.2011.03.007
104. Tagliamonte E., Rigo F., Cirillo T., et al.: Effects of ranolazine on noninvasive coronary flow reserve in patients with myocardial ischemia but without obstructive coronary artery disease. Echocardiography. 2015; 32 (3): 516–521. doi: 10.1111/echo.12674
105. Villano A., Di Franco A., Nerla R., et al.: Effects of ivabradine and ranolazine in patients with microvascular angina pectoris. Am J Cardiol. 2013; 112 (1): 8–13. doi: 10.1016/j.amjcard.2013.02.045
106. Chen J.W., Lee W.L., Hsu N.W., et al.: Effects of short-term treatment of Nicorandil on exercise- induced myocardial ischemia and abnormal cardiac autonomic activity in microvascular angina. Am J Cardiol. 1997; 80 (1): 32–38. doi: 10.1016/S0002-9149 (97)00279-8
107. Nalbantgil S., Altintiğ A., Yilmaz H., Nalbantgil I., Önder R.: The effect of trimetazidine in the treatment of microvascular angina. Int J Angiol. 1999; 8 (1): 40–43. doi: 10.1007/BF01616842
108. Adamson D.L., Webb C.M., Collins P.: Esterified estrogens combined with methyltestosterone improve emotional well-being in postmenopausal women with chest pain and normal coronary angiograms. Menopause. 2001; 8 (4): 233–238. doi: 10.1097/00042192-200107000-00003
109. Emdin M., Picano E., Lattanzi F., l’Abbate A.: Improved exercise capacity with acute aminophylline administration in patients with syndrome X. J Am Coll Cardiol. 1989; 14 (6): 1450–1453. doi: 10.1016/0735-1097 (89)90380-X
110. Yoshio H., Shimizu M., Kita Y., et al.: Effects of short-term aminophylline administration on cardiac functional reserve in patients with syndrome X. J Am Coll Cardiol. 1995; 25 (7): 1547–1551. doi: 10.1016/0735-1097 (95)00097-N
111. Elliott P.M., Krzyzowska-Dickinson K., Calvino R., Hann C., Kaski J.C.: Effect of oral aminophylline in patients with angina and normal coronary arteriograms (cardiac syndrome X). Heart. 1997; 77 (6): 523–526. doi: 10.1136/hrt.77.6.523
112. Fukumoto Y., Mohri M., Inokuchi K., et al.: Anti-ischemic effects of fasudil, a specific Rho-kinase inhibitor, in patients with stable effort angina. J Cardiovasc Pharmacol. 2007; 49 (3): 117–121. doi: 10.1097/FJC.0b013e31802ef532
113. Mohri M., Shimokawa H., Hirakawa Y., Masumoto A., Takeshita A.: Rho-kinase inhibition with intracoronary fasudil prevents myocardial ischemia in patients with coronary microvascular spasm. J Am Coll Cardiol. 2003; 41 (1): 15–19. doi: 10.1016/S0735-1097 (02)02632-3
114. Olgin J.E., Takahashi T., Wilson E., Vereckei A., Steinberg H., Zipes D.P.: Effects of Thoracic Spinal Cord Stimulation on Cardiac Autonomic Regulation of the Sinus and Atrioventricular Nodes. J Cardiovasc Electrophysiol. 2002; 13: 475–481.
115. Hautvast R.W.M., Blanksma P.K., DeJongste M.J.L., et al.: Effect of spinal cord stimulation on myocardial blood flow assessed by positron emission tomography in patients with refractory angina pectoris. Am J Cardiol. 1996; 77 (7): 462–467. doi: 10.1016/S0002-9149 (97)89338-1
116. Murray S., Carson K.G.S., Ewings P.D., Collins P.D., James M.A.: Spinal cord stimulation significantly decreases the need for acute hospital admission for chest pain in patients with refractory angina pectoris. Heart. 1999; 82 (1): 89 LP-92. doi: 10.1136/hrt.82.1.89
117. Sharma U., Ramsey H.K., Tak T.: The role of enhanced external counter pulsation therapy in clinical practice. Clin Med Res. 2013; 11 (4): 226–232. doi: 10.3121/cmr.2013.1169
Go to article
Download PDF Download RIS Download Bibtex

Abstract

Background: To assess and compare mid-term outcomes and the quality of life (QoL) in patients with multivessel coronary artery disease (MVD) and moderate ischemic mitral regurgitation (IMR), treated with either coronary artery bypass grafting (CABG; group I) or CABG + mitral annulo-plasty (CABG+MA; group II) in 12-months follow-up after surgery.
Methods: We prospectively analyzed 74 patients (50.7% female, 66 [67–72] years) with at least moderate IMR, 3–24 weeks after myocardial infarction (MI). The effective regurgitation orifice (ERO) was used for a quantitative IMR assessment. To evaluate QoL we used a Short Form-36 (SF-36) questionnaire.
Results: Patients in group II spent more time in the hospital, expired more infection complications and received more often in-hospital complications requiring use amines and intra-aortic balloon pump as compared to those in group I. Analysis of SF-36 showed that all patients treated surgically notable improved their QoL during 12 months of follow-up.
Conclusions: We observed a significant improvement in QoL among patients with MVD in 12 months follow-up after surgery irrespective of treatment type.
Go to article

Bibliography

1. Neumann F.J., Sousa-Uva M., Ahlsson A., Alfonso F., Banning A.P., Benedetto U., et al.: 2018 ESC/ EACTS Guidelines on myocardial revascularization. Eur Heart J. 2019; 40 (2): 87–165.
2. Baumgartner H., Falk V., Bax J.J., De Bonis M., Hamm C., Holm P.J., et al.: 2017 ESC/EACTS Guidelines for the management of valvular heart disease. Eur Heart J. 2017; 38 (36): 2739–2791.
3. Hays R.D.: The Medical Outcomes Study (MOS) Measures of Patient Adherence. Retrieved April 19, 2004, from the RAND Corporation web site: http://www.rand.org/health/surveys/MOS.adherence.measures.pdf.
4. Cerqueira M., Weissman N., Dilsizian V., et al.: Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. Circulation. 2002; 105 (4): 539–542.
5. Lang R., Bierig M., Devereux R., et al.: Recommendations for Chamber Quantification: A Report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Chamber Quantification Writing Group, Developed in Conjunction with the European Association of Echocardiography, a Branch of the European Society of Cardiology. J Am Soc Echocardiogr. 2005; 18: 1440–1463.
6. Yiu S.F., Enriquez-Sarano M., Tribouilloy C., Seward J.B., Tajik A.J.: Determinants of the degree of functional mitral regurgitation in patients with systolic left ventricular dysfunction: A quantitative clinical study. Circulation 2000; 102: 1400–1406.
7. Srichai M.B., Grimm R.A., Stillman A.E., Gillinov A.M., Rodriguez L.L., Lieber M.L., et al.: Ischemic mitral regurgitation: impact of the left ventricle and mitral valve in patients with left ventricular systolic dysfunction. Ann Thorac Surg. 2005;80 (1): 170–178.
8. Kang D.H., Kim M.J., Kang S.J., Song J.M., Song H., Hong M.K., et al.: Mitral valve repair versus revascularization alone in the treatment of ischemic mitral regurgitation. Circulation. 2006; 114 (1 Suppl): I499–I503.
9. Kim B.J., Kim Y.S., Kim H.J., Ju M.H., Kim J.B., Jung S.H., et al.: Concomitant mitral valve surgery in patients with moderate ischemic mitral regurgitation undergoing coronary artery bypass grafting. J Thorac Dis. 2018; 10 (6): 3632–3642.
10. Bouchard D., Jensen H., Carrier M., Demers P., Pellerin M., Perrault L.P., et al.: Effect of systematic downsizing rigid ring annuloplasty in patients with moderate ischemic mitral regurgitation. J Thorac Cardiovasc Surg. 2014; 147 (5): 1471–1477.
11. Chan K.M., Punjabi P.P., Flather M., Wage R., Symmonds K., Roussin I., et al.: Coronary artery bypass surgery with or without mitral valve annuloplasty in moderate functional ischemic mitral regurgitation: final results of the Randomized Ischemic Mitral Evaluation (RIME) trial. Circulation. 2012; 126 (21): 2502–2510.
12. Fattouch K., Guccione F., Sampognaro R., Panzarella G., Corrado E., Navarra E., et al.: POINT: Efficacy of adding mitral valve restrictive annuloplasty to coronary artery bypass grafting in patients with moderate ischemic mitral valve regurgitation: a randomized trial. J Thorac Cardiovasc Surg. 2009; 138 (2): 278–285.
13. Borger M.A., Alam A., Murphy P.M., Doenst T., David T.E.: Chronic ischemic mitral regurgitation: repair, replace or rethink? Ann Thorac Surg. 2006; 81 (3): 1153–1161.
14. Sundt T.M.: Surgery for ischemic mitral regurgitation. N Engl J Med. 2014; 371 (23): 2228–2289.
15. Wagner A.K., Gandek B., Aaronson N.K., et al.: Cross-cultural comparison of the content of SF-36 translations across 10 countries: result from the IQOLA Project. International Quality of Life Assessment. J Clin Epidemiol 1998; 51: 925–932.
16. Simchen E., Galai N., Braun D., et al.: Sociodemographic and clinical factors associated with low quality of life one year after coronary bypass operations: the Israeli coronary artery bypass study (ISCAB). J Thorac Cardiovasc Surg. 2001; 121: 909–919.
17. Permanyer M., Brotons C., Cascant P., et al.: Assessment of quality of life related health 2 years after coronary surgery. Med Clin (Barc). 1997; 108: 446–451.
18. Al-Ruzzeh S., Athanasiou T., Mangoush O., Wray J., Modine T., George S., Amrani M.: Predictors of poor mid-term health related quality of life after primary isolated coronary artery bypass grafting surgery. Heart. 2005 Dec; 91 (12): 1557–1562.
19. Westlake C., Dracup K., Creaser J., et al.: Correlates of health-related quality of life in patients with heart failure. Heart Lung 2002; 31: 85–93.
20. Smith P.K., Puskas J.D. Ascheim D.D., Voisine P., Gelijns A.C., Moskowitz A.J., et al.: Surgical treatment of moderate ischemia mitral regurgitation. N Engl J Med. 2014; 371: 2178–2188.
21. Baig K., Harling L., Papanikitas J., Attaran S., Ashrafian H., Casula R., et al.: Does coronary artery bypass grafting improve quality of life in elderly patients? Interact Cardiovasc Thorac Surg. 2013; 17 (3): 542–553.
22. Jokinen J.J., Hippeläinen M.J., Turpeinen A.K., Pitkänen O., Hartikainen J.E.: Health-related quality of life after coronary artery bypass grafting: a review of randomized controlled trials. J Card Surg. 2010; 25 (3): 309–317.
23. Dunning J., Waller J.R., Smith B., Pitts S., Kendall S.W., Khan K.: Coronary artery bypass grafting is associated with excellent long-term survival and quality of life: a prospective cohort study. Ann Thorac Surg. 2008; 85: 1988–1993.
24. Rijnhart-de Jong H., Haenen J., Bol Raap G., et al.: Determinants of non-recovery in physical health- related quality of life one year after cardiac surgery: a prospective single Centre observational study. J Cardiothorac Surg. 2020; 15 (1): 234. doi: 10.1186/s13019-020-01273-1
Go to article

Authors and Affiliations

Radosław Piątkowski
1
Jakub Kucharz
2
Monika Gawałko
1 3 4
Monika Budnik
1
Katarzyna Wołosiewicz
5
Barbara Kozub
6
Janusz Kochanowski
1
Marcin Grabowski
1
Grzegorz Opolski
1

  1. 1st Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
  2. Department of Uro-Oncology, Maria Skłodowska-Curie, National Research Institute of Oncology, Warsaw, Poland
  3. Department of Cardiology, Maastricht University Medical Centre and Cardiovascular Research Institute Maastricht, Maastricht, The Netherlands
  4. Institute of Pharmacology, West German Heart and Vascular Centre, University Duisburg-Essen, Germany
  5. 1st Department of Pediatrics, Bielanski Hospital, Warsaw, Poland
  6. Department of Ophthalmology, Medical Centre for Postgraduate Education, Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

White adipose tissue plays an important role in the catabolism of branched chain amino acids (BCAAs). Two initial regulatory steps in BCAAs catabolism are catalyzed by branched chain aminotrans-ferase (BCAT) and branched chain α-keto acid dehydrogenase complex (BCKDH complex), respectively. It has been demonstrated that synthetic ligands for PPARγ receptors increased mRNA levels for enzymes involved in BCAAs catabolism. We hypothesized that feeding rats with diet rich in linoleic acid (LA), a natural PPARγ agonist modifies mRNA levels for enzymes catalyzing BCAAs degradation in adipose tissue. The current pilot study was aimed at the investigation of the effect of diet rich in LA on mRNA levels for BCATm, branched chain α-keto acid dehydrogenase (E1 component of the BCKDH), and mRNA levels for the regulatory enzymes of BCKDH complex, a specific kinase (BDK) and a specific phosphatase (PPM1K) in epididymal white adipose tissue (eWAT). Wistar male rats were fed with high unsaturated fat diet containing mainly linoleic acid (study group) or with the high saturated fat diet (control group). The relative mRNA levels were quantified by reverse transcription PCR. We have found that in rats fed diet rich in LA mRNA level for BCATm decreased, while mRNA amount for BDK increased. There was no difference between mRNA levels for BCKDH E1 and PPM1K. It is con-ceivable that changes in mRNA levels for enzymes involved in BCAAs metabolism in eWAT may lead to modification of BCAAs catabolic rate. Further studies are required to fully elucidate this issue.
Go to article

Bibliography

1. Nie C., He T., Zhang W., Zhang G., Ma X.: Branched chain amino acids: Beyond nutrition metabolism. Int J Mol Sci. 2018; 19 (4): 954. doi: 10.3390/ijms19040954
2. Brosnan J.T., Brosnan M.E.: Branched-chain amino acids: enzyme and substrate regulation. J Nutr. 2006; 136: 207S-11S. doi: 10.1093/jn/136.1.207S
3. Conway M.E., Hutson S.M.: The cytosolic and mitochondrial branched chain aminotransferase. in Branched chain amino acids in clinical nutrition. Ed. R. Rajendram, V.R. Preedy, V.B. Patel. Nutrition and Health. Humana Press, New York, NY. 2015; 25–40. doi: 10.1007/978-1-4939-1923-9_3
4. Cole J.T.: Metabolism of BCAAs. in Branched chain amino acids in clinical nutrition. Ed. R. Rajendram, V.R. Preedy, V.B. Patel. Humana Press, New York, NY. 2015; 13–24. doi: 10.1007/978-1-4939-1923-9_2
5. Yeaman S.J.: The mammalian 2-oxoacid dehydrogenases: a complex family. Trends in Biochemical Sciences. 1986; 11 (7): 293–296.
6. Wynn R.M., Li J., Brautigam C.A., Chuang J.L., Chuang D.T.: Structural and biochemical characterization of human mitochondrial branched-chain α-ketoacid dehydrogenase phosphatase. J Biol Chem. 2012; 287 (12): 9178–9192. doi: 10.1074/jbc.M111.314963
7. Herman M.A., She P., Peroni O.D., Lynch C.J., Kahn B.B.: Adipose tissue branched chain amino acid (BCAA) metabolism modulates circulating BCAA levels. J Biol Chem. 2010; 285 (15): 11348–11356. doi: 10.1074/jbc.M109.075184
8. Sun C., Mao S., Chen S., Zhang W., Liu C.: PPARs-orchestrated metabolic homeostasis in the adipose tissue. Int J Mol Sci. 2021; 22 (16): 8974. doi: 10.3390/ijms22168974
9. Kliewer S.A., Sundseth S.S., Jones S.A., et al.: Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptors alpha and gamma. Proc Natl Acad Sci U S A. 1997; 94 (9): 4318–4323. doi: 10.1073/pnas.94.9.4318
10. Rasouli N., Kern P.A., Elbein S.C., Sharma N.K., Das S.K.: Improved insulin sensitivity after treatment with PPARγ and PPARα ligands is mediated by genetically modulated transcripts. Pharmacogenet Genomics. 2012; 22 (7): 484–497. doi: 10.1097/FPC.0b013e328352a72e
11. Popov K.M., Zhao Y., Shimomura Y., Jaskiewicz J., Kedishvilli N.Y., Inwin J., Goodwin G.W., Harris R.A.: Dietary control and tissue expression of branched-chain alpha-ketoacid dehydrogenase kinase. Arch Biochem Biophys. 1995; 316 (1): 148–154. doi: 10.1006/abbi.1995.1022
12. Gillim S.E., Paxton R., Cook G.A., Harris R.A.: Activity state of the branched-chain alpha-ketoacid dehydrogenase complex in heart, liver, and kidney of normal, fasted, diabetic, and protein-starved rats. Bioch Biophys Res Comm. 1983; 111 (1): 74–81. doi: 10.1016/s0006-291x(83)80119-3
13. Blanchard P.G., Moreira R.J., Castro É., et al.: PPARγ is a major regulator of branched-chain amino acid blood levels and catabolism in white and brown adipose tissues. Metabolism. 2018; 89: 27–38. doi: 10.1016/j.metabol.2018.09.007
14. Palou M., Priego T., Sánchez J., Rodríguez A.M., Palou A., Picó C.: Gene expression patterns in visceral and subcutaneous adipose depots in rats are linked to their morphologic features. Cell Physiol Biochem. 2009; 24 (5–6): 547–556. doi: 10.1159/000257511
15. Nellis M.M., Doering C.B., Kasinski A., Danner D.J.: Insulin increases branched-chain alpha-ketoacid dehydrogenase kinase expression in Clone 9 rat cells. Am J Physiol Endocrinol Metab. 2002; 283 (4): E853-E860. doi: 10.1152/ajpendo.00133.2002
16. Lai M.C., Teng T.H., Yang C.: The natural PPAR agonist linoleic acid stimulated insulin release in the rat pancreas. J Vet Med Sci. 2013; 75 (11): 1449–1454. doi: 10.1292/jvms.13-0189
17. Lian K., Du C., Liu Y., et al.: Impaired adiponectin signaling contributes to disturbed catabolism of branched-chain amino acids in diabetic mice. Diabetes. 2015; 64 (1): 49–59. doi: 10.2337/db14-0312
18. Pérez-Matute P., Martínez J.A., Marti A., Moreno-Aliaga M.J.: Linoleic acid decreases leptin and adiponectin secretion from primary rat adipocytes in the presence of insulin. Lipids. 2007; 42 (10): 913–920. doi: 10.1007/s11745-007-3092-y
19. Harris R.A., Joshi M., Jeoung N.H.: Mechanisms responsible for regulation of branched-chain amino acid catabolism. Biochem Biophys Res Commun. 2004; 313 (2): 391–396. doi: 10.1016/j.bbrc.2003.11.007
20. Zhou M., Lu G., Gao C., Wang Y., Sun H.: Tissue-specific and nutrient regulation of the branched- chain α-keto acid dehydrogenase phosphatase, protein phosphatase 2Cm (PP2Cm). J Biol Chem. 2012; 287 (28): 23397–23406. doi: 10.1074/jbc.M112.351031
21. Shimomura Y., Obayashi M., Murakami T., Harris R.A.: Regulation of branched-chain amino acid catabolism: nutritional and hormonal regulation of activity and expression of the branched-chain alpha-keto acid dehydrogenase kinase. Curr Opin Clin Nutr Metab Care. 2001; 4 (5): 419–423. doi: 10.1097/00075197-200109000-00013
22. Harris R.A., Kobayashi R., Murakami T., Shimomura Y.: Regulation of branched-chain alpha-keto acid dehydrogenase kinase expression in rat liver. J Nutr. 2001; 131 (3): 841S–845S. doi: 10.1093/jn/131.3.841S
23. Green C.R., Wallace M., Divakaruni A.S., et al.: Branched-chain amino acid catabolism fuels adipocyte differentiation and lipogenesis. Nat Chem Biol. 2016; 12 (1): 15–21. doi: 10.1038/nchembio.1961
24. Koh P.L., Ho J.P., Pang C., Tan H.C., Kovalik J.P.: PH-10 — The role of leucine in stimulation of adipocyte lipolysis. Diabetes Res Clin Pract. 2016; 120: 181–182. doi: 10.1016/S0168-8227(16)31406-1
25. Liang H., Mokrani A., Chisomo-Kasiya H., et al.: Dietary leucine affects glucose metabolism and lipogenesis involved in TOR/PI3K/Akt signaling pathway for juvenile blunt snout bream Megalobrama amblycephala. Fish Physiol Biochem. 2019; 45 (2): 719–732. doi: 10.1007/s10695-018-0594-x
26. Nilsen M.S., Jersin R.Å., Ulvik A., et al.: 3-Hydroxyisobutyrate, a strong marker of insulin resistance in type 2 diabetes and obesity that modulates white and brown adipocyte metabolism. Diabetes. 2020; 69 (9): 1903–1916. doi: 10.2337/db19-1174
Go to article

Authors and Affiliations

Małgorzata Knapik-Czajka
1
Justyna Bieleń
1
Monika Zajonz
1
Anna Gawędzka
1
Jagoda Drąg
1
Małgorzata Belczyk
1

  1. Department of Biochemical Analytics, Jagiellonian University Medical College, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

Microvascular angina (MVA) is a condition characterized by the presence of angina-like chest pain, a positive response to exercise stress tests, and no significant stenosis of coronary arteries in coronary angiography, with absence of any other specific cardiac diseases. The etiology of this syndrome is still not known and it is probably multifactorial. Coronary microvascular dysfunction is proposed as the main pathophysiological mechanism in the development of MVA. Altered somatic and visceral pain perception and autonomic imbalance, in addition to myocardial ischemia, has been observed in subjects with MVA, involving dynamic variations in the vasomotor tone of coronary microcirculation with consequent tran-sient ischemic episodes. Other theories suggest that MVA may be a result of a chronic inflammatory state in the body that can negatively influence the endothelium or a local imbalance of factors regulating its function. This article presents the latest information about the epidemiology, diagnostics, etiopathogen-esis, prognosis, and treatment of patients with MVA.
Go to article

Authors and Affiliations

Jarosław Jarczewski
1
Aleksandra Jarczewska
1
Andrzej Boryczko
1
Adrian Poniatowski
1
Agata Furgała
1
ORCID: ORCID
Andrzej Surdacki
2
Krzysztof Gil
1

  1. Department of Pathophysiology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
  2. Second Department of Cardiology, Institute of Cardiology, Jagiellonian University Medical College, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

There are only very few studies on the anatomy of the deep brachial artery — DBA (arteria profunda brachii), both regarding its course, branching pattern and contribution to the cubital rete. Most of the textbooks are based on data which remain unchanged for years. The aim of this article was to summarize the current knowledge on this vessel, based on the anatomical and clinical studies and other sources available including also own cadaveric study. We tried to present also some controversies regarded to the nomenclature of the branches of the DBA.
Go to article

Bibliography

1. Standring S.: Gray’s Anatomy. The Anatomical Basis of Clinical Practice. Churchill Livingstone Elsevier 2008. ISBN 978-0-8089-2371-8.
2. Spodnik J.H.: Polsko angielsko łacińskie mianownictwo anatomiczne. Edra, Urban & Partner, Wrocław 2017. ISBN 978-83-65625-53-3.
3. Aleksandrowicz R., Gołąb B., Narkiewicz O.: Mianownictwo anatomiczne — wydanie V. PZWL Warszawa 1989. ISBN 83-200-1311-9.
4. Kahn C.I., MacNeil M., Fanola C.L., Whitney E.R.: Complex arterial patterning in an anatomical donor. Translational Research in Anatomy. 2018 Sept; 12: 11–19; https://doi.org/10.1016/j.tria.2018.06.001
5. Żytkowski A., Tubbs R.S., Iwanaga J., Clarke E., Polguj M., Wysiadecki G.: Anatomical normality and variability: Historical perspective and methodological consideration. Translational Research in Anatomy. 2021 Jun; 23: 100105. https://doi.org/10.1016/j.tria.2020.100105
6. Tubbs R.S., Parmar A., Noordeh N., Rogers C., Rogers N., Loukas M., Shoja M.M., Cohen Gadol A.A.: Surgical anatomy of the radial nerve and profunda brachii artery within the triangular interval. Ital J Anat Embryol. 2008 Jul–Sep; 113 (3): 129–134. PMID: 19205584.
7. Menck J., Döbler A., Döhler J.R.: Vascularization of the humerus. Langenbecks Arch Chir. 1997; 382 (3): 123–127. PMID: 9324609.
8. Casoli V., Kostopoulos E., Pélissier P., Caix P., Martin D., Baudet J.: The middle collateral artery: anatomic basis for the “extreme” lateral arm flap. Surg Radiol Anat. 2004 Jun; 26 (3): 172–177. https://doi.org/10.1007/s00276-003-0206-y. Epub 2004 Jan 17. PMID: 14730394.
9. Katsaros J., Schusterman M., Beppu M., Banis J.C. Jr, Acland R.D.: The lateral upper arm flap: anatomy and clinical applications. Ann Plast Surg. 1984 Jun; 12 (6): 489–500. https://doi.org/10.1097/00000637-198406000-00001. PMID: 6465806.
10. Hammer H., Bugyi I.: Free transfer of a lateral upper arm flap. Handchir Mikrochir Plast Chir. 1988 Jan; 20 (1): 20–26. PMID: 2895050.
11. Wenig B.L.: The lateral arm free flap for head and neck reconstruction. Otolaryngol Head Neck Surg. 1993 Jul; 109 (1): 116–119. https://doi.org/10.1177/019459989310900121. PMID: 8336957.
12. Lim A.Y., Pereira B.P., Kumar V.P.: The long head of the triceps brachii as a free functioning muscle transfer. Plast Reconstr Surg. 2001 Jun; 107 (7): 1746–1752. https://doi.org/10.1097/00006534-200106000-00016. PMID: 11391194.
13. Piquilloud G., Villani F., Casoli V.: The medial head of the triceps brachii. Anatomy and blood supply of a new muscular free flap: the medial triceps free flap. Surg Radiol Anat. 2011 Jul; 33 (5): 415–420. https://doi.org/10.1007/s00276-010-0739-9. Epub 2010 Oct 26. PMID: 20976453.
14. Naveen K., Jyothsna P., Nayak S.B., Mohandas R.K., Swamy R.S., Deepthinath R., Shetty S.D.: Variant origin of an arterial trunk from axillary artery continuing as profunda brachii artery—a unique arterial variation in the axilla and its clinical implications. Ethiop J Health Sci. 2014 Jan; 24 (1): 93–96. https://doi.org/10.4314/ejhs.v24i1.13. PMID: 24591805.
15. Aastha, Jain A., Kumar M.S.: An unusual variation of axillary artery: a case report. J Clin Diagn Res. 2015 Jan; 9 (1): AD05–7. https://doi.org/10.7860/JCDR/2015/11680.5477. Epub 2015 Jan 1. PMID: 25737968.
16. Celik H.H., Aldur M.M., Tunali S., Ozdemir M.B., Aktekin M.: Multiple variations of the deep artery of arm: double deep artery of arm and deep artery of arm with the superior ulnar collateral artery. A case report. Morphologie. 2004 Dec; 88 (283): 188–190. https://doi.org/10.1016/s1286-0115(04)98147-7. PMID: 15693422.
17. Vitale N., Lucarelli K., Di Bari N., Milano A.D.: Anomalous origin of a grafted left internal mammary artery from the deep brachial artery. Eur Heart J. 2021 Mar 21; 42 (12): 1182. https://doi.org/10.1093/eurheartj/ehab015
18. Iwanaga J., Singh V., Ohtsuka A., et al.: Acknowledging the use of human cadaveric tissues in research papers: Recommendations from anatomical journal editors. Clinical Anat. 2021; 2–4. https://doi.org/10.1002/ca.23671
19. Walocha J.A., Szczepański W., Miodoński A.J., Gorczyca J., Skrzat J., Bereza T., Ceranowicz P., Lorkowski J., Stachura J.: Application of acrylic emulsion Liquitex R (Binney and Smith) for the preparation of injection specimens and immunohistochemical studies — an observation. Folia Morphol. 2003; 62 (2): 157–161.
20. Crocco J.A.: The Classic Collector’s Edition Gray’s Anatomy. Bounty Books, New York 1977. ISBN 0-517-223651.
21. Panagouli E., Tsaraklis A., Gazouli I., Anagnostopoulou S., Venieratos D.: A rare variation of the axillary artery combined contralaterally with an unusual high origin of a superficial ulnar artery: description, review of the literature and embryological analysis. Ital J Anat Embryol. 2009 Oct–Dec; 114 (4): 145–156. PMID: 20578671.
22. Clarke E., Mazurek A., Radek M., Żytkowski A., Twardokęs W., Polguj M., Wysiadecki G.: Superficial brachial artery — A case report with commentaries on the classification. Trans Res in Anat. 2021; 23: 100112. https://doi.org/10.1016/j.tria.2021.100112
23. Yücel A.H.: Unilateral variation of the arterial pattern of the human upper extremity with a muscle variation of the hand. Acta Med Okayama. 1999 Apr; 53 (2): 61–65. https://doi.org/10.18926/AMO/31629. PMID: 10358720
24. Cavdar S., Zeybek A., Bayramiçli M.: Rare variation of the axillary artery. Clin Anat 2000; 13 (1): 66–68. https://doi.org/10.1002/(SICI)1098-2353(2000)13:166::AID-CA8>3.0.CO;2-M.
25. Dalin L., Jingqiang Y., Kun Z., Yunhui C.: Surgical treatment of deep brachial artery aneurysm. Ann Vasc Surg. 2011 Oct; 25 (7): 983.e13–6. https://doi.org/10.1016/j.avsg.2011.05.006.
26. Griffin L., Garland S.J., Ivanova T., Hughson R.L.: Blood flow in the triceps brachii muscle in humans during sustained submaximal isometric contractions. Eur J Appl Physiol. 2001 May; 84 (5): 432–437. https://doi.org/10.1007/s004210100397. PMID: 11417431
27. de Paula R.C., Erthal R., Fernandes R.M.P., Babinski M.A., Silva J.G., Chagas C.A.A.: Alomalous origin of the deep brachial artery (profunda brachii) observed in bilateral arms: case report. J Vasc Bras. 2013; 12 (1): 53–56.
28. Osiak K., Elnazir P., Mazurek A., Pasternak A.: Prevalence of the persistent median artery in patients undergoing surgical open carpal tunnel release: A case series. Trans Res in Anat; 2021; 23: 100113. https://doi.org/10.1016/j.tria.2021.100113
29. Rodriguez-Niedenführ M., Burton G.J., Deu J., Sañudo J.R.: Development of the arterial pattern in the upper limb of staged human embryos: normal development and anatomic variations. J Anat 2001; 199 (4): 407–417. PMID: 11693301.
30. Dubreuil-Chambardel L.: Variations des Arteres du Membre Superieur. Paris: Masson et Cie, 1926.
Go to article

Authors and Affiliations

Wojciech Przybycień
1
Michał Zarzecki
1
Agata Musiał
1
Paweł Depukat
1
Bartłomiej Kruszyna
1
Agata Mazurek
1
Julia Jaszczyńska
1
Kinga Glądys
1
Ewa Walocha
2
Ewa Mizia
1
Grzegorz Wysiadecki
3
Jerzy Walocha
1

  1. Department of Anatomy, Jagiellonian University Medical College, Kraków, Poland
  2. Department of Clinical Nursing, Institute of Nursing and Obstetrics, Jagiellonian University Medical College, Kraków, Poland
  3. Department of Normal and Clinical Anatomy, Chair of Anatomy and Histology, Medical University of Łódź, Łódź, Poland
Download PDF Download RIS Download Bibtex

Abstract

Objectives: Accidental exposure to non-fire related carbon monoxide (CO) in young people is largely unquantified. Our aim was to estimate the possibility of exposure to CO and the awareness of intoxication in the population of students living in Kraków, one of the largest academic cities in Poland.
Methods: Anonymous questionnaires about CO poisoning were distributed among medical and non- medical students living in Kraków.
Results: 1081 questionnaires were collected — 16% of study participants knew a person who had been poisoned with carbon monoxide, 51.2% of students using a bathroom water heater believed that they had no risk of CO poisoning. Medical students gained significantly higher scores in the CO-poisoning knowl-edge test than non-medical ones.
Conclusions: There is still unsatisfactory awareness of CO poisoning among non-medical students in Kraków.
Go to article

Bibliography

1. Krzyżanowski M., Seroka W., Skotak K., Wojtyniak B.: Mortality and Hospital Admissions Due to Carbon Monoxide Poisoning in Poland. Saf Fire Tech. 2014; 33 (1): 75–82.
2. Gomółka E., Gawlikowski T.: Estimation of carbon monoxide poisonings frequency, based on carboxyhemoglobin determinations performed in Toxicology Laboratory in Krakow in years 2002– 2010. Przegl Lek. 2011; 68 (8): 413–416.
3. Świderska A., Sein Anand J.: Selected data concerning acute intoxications with xenobiotics in Poland in the year 2010. Przegl Lek. 2012; 69 (8): 409–414.
4. Jakóbik K., Chochorowska A., Czekaj A., et al.: Statistical Yearbook Of Kraków 2015. Statistical Office in Kraków 2015.
5. Czerski G.: Impact Assessment of Selected Factors on the Risk of Poisoning with Combustion Products From Gas Appliances. Saf Fire Tech. 2014; 33 (1): 67–74.
6. Earnest G., Mickelsen R., McCammon J., et al.: Carbon monoxide poisonings from small, gasoline- powered, internal combustion engines: just what is a “well-ventilated area”? Am Ind Hyg Assoc J. 1997; 58 (11): 787–791.
7. Meredith T., Vale A.: Carbon monoxide poisoning. Br Med J Clin Res Ed. 1988; 6615 (296): 77–79.
8. Chang C.: Longitudinal study of carbon monoxide intoxication by diffusion tensor imaging with neuropsychiatric correlation. J Psychiatry Neurosci. 2010; 35 (2): 115–125.
9. Sadovnikoff N., Varon J., Sternbach G.: Carbon monoxide poisoning: An occult epidemic. Postgrad Med. 1992; 92 (4): 86–96.
10. Barret L., Danel V., Faure J.: Carbon Monoxide Poisoning, a Diagnosis Frequently Overlooked. J Toxicol Clin Toxicol. 1985; 23 (4–6): 309–313.
11. Marchewka J., Gawlik I., Dębski G., Popiołek L, Marchewka W., Hydzik P.: Cardiological aspects of carbon monoxide poisoning. Folia Med Cracov. 2017; 57 (1): 75–85.
12. Lehr E.: Carbon monoxide poisoning: a preventable environmental hazard. Am J Public Health Nations Health. 1970; 60 (2): 289–293.
13. Krawczyk P., Cebula G., Drab E., et al.: The impact of the European Resuscitation Council in Poland. Resuscitation. 2008; 77 (2): S60.
14. Pach J., Ogonowska D., Targosz D., Dziuban A., Brzyski P., Pach D.: Students knowledge on carbon monoxide. Przegl Lek. 2010; 67 (8): 583–590.
15. Weaver L.: Carbon Monoxide Poisoning. N Engl J Med. 2009; 360 (12): 1217–1225.
16. Raub J., Mathieu-Nolf M., Hampson N., Thom S.: Carbon monoxide poisoning—a public health perspective. Toxicology. 2000; 145 (1): 1–14.
Go to article

Authors and Affiliations

Iwona Popiołek
1 2
Lech Popiołek
3
Jakub Marchewka
4 5
Grzegorz Dębski
6
Justyna Bolech-Gruca
1
Małgorzata Szumińska
7
Piotr Hydzik
1 2

  1. University Hospital in Kraków, Kraków, Poland
  2. Department of Toxicology and Environmental Diseases, Jagiellonian University Medical College, Kraków, Poland
  3. Private practice, Kraków, Poland
  4. Department of Physiotherapy, University of Physical Education, Kraków, Poland
  5. Department of Orthopedics and Trauma Surgery, 5th Military Hospital, Kraków, Poland
  6. Radiology Department, 5th Military Hospital, Kraków, Poland
  7. Department of Endocrinology, Jagiellonian University Medical College, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

Background: The cause of the increased risk of hypertension in children born prematurely is still unclear. The aim of this study was to analyze the results of blood pressure monitoring and the levels of variety of kidney function markers at the 40–42 weeks postmenstrual age in children born prematurely and to compare them with the values obtained from full-term newborns. The analysis of the differences in the observed parameters could be used to assess the risk of developing hypertension in preterm infants in the following years of life.
Methodology: Prospective cohort study included 37 children born prematurely (<35 weeks of gesta-tion) and 20 full-term newborns. The 24-hour ambulatory blood pressure measurement, serum cystatin C and thrombomodulin levels, urine Neutrophil Gelatinase-Associated Lipocalin (NGAL) concentration, renal ultrasound and bioelectrical impedance were performed.
Results: Analysis of the blood pressure monitoring reveled lower values of diastolic (DBP) and mean blood pressure (MAP) in the preterm group (DBP: 47.69 ± 4.79 vs. 53.96 ± 5.3 mmHg; p <0.01; MAP 64 ± 6.7 vs. 68 ± 6 mmHg; p = 0.02), however the preterm children were significantly smaller at the time of evaluation. Moreover, the pulse pressure was significantly higher in the preterm group (44 ± 7.8 vs. 39.4 ± 5.7 mmHg; p = 0.017). In the preterm group serum cystatin C level was lower (1.397 ± 0.22 vs. 1.617 ± 0.22 mg/l; p <0.01) and NGAL urine concentration was higher (57 ± 84 vs. 15 ± 21 ng/ml; p = 0.04). There was substantial difference in body composition between groups - the total body water was lower in the preterm group (75.6 ± 13 vs. 82 ± 8%; p = 0.015).
Conclusion: At the predicted date of birth, preterm newborns show significant differences in blood pressure profile, body weight composition, and levels of cystatin C and NGAL compared to full-term babies.
Go to article

Bibliography

1. Bayrakci U.S., Schaefer F., Duzova A., Yigit S., Bakkaloglu A.: Abnormal Circadian Blood Pressure Regulation in Children Born Preterm. J Pediatr. 2007. doi: 10.1016/j.jpeds.2007.04.003
2. Keller G., Zimmer G., Mall G., Ritz E., Amann K.: Nephron Number in Patients with Primary Hypertension. N Engl J Med. 2003; 348: 101–108.
3. Cosemans C., Nawrot T.S., Janssen B.G., Vriens A., Smeets K., Baeyens W., et al.: Breastfeeding predicts blood mitochondrial DNA content in adolescents. Sci Rep. 2020; 10: 1–9.
4. Dumeige L., Nehlich M., Viengchareun S., Perrot J., Pussard E., Lombès M.: Preterm birth is associated with epigenetic programming of transgenerational hypertension in mice. Exp Mol Med. 2020; 52: 152–165.
5. Mól N., Kwinta P.: Assesment of body composition using bioelectrical impedance analysis in preterm neonates receiving intensive care. Dev period Med. 2015; 19: 297–304.
6. Dinkel E., Ertel M., Dittrich M., Peters H., Berres M., Schulte-Wissermann H.: Kidney size in childhood sonographical growth charts for kidney length and volume. Pediatric Radiology. 1985; 15: 38–43.
7. Schwartz G.J., Muñoz A., Schneider M.F., Mak R.H., Kaskel F.: New Equations to Estimate GFR in Children with CKD. J Am Soc Nephrol. 2020; 20: 629–637.
8. Keijzer-Veen M.G., Schrevel M., Finken M.J.J., Dekker F.W., Nauta J., Hille E.T.M., et al.: Microalbuminuria and Lower Glomerular Filtration Rate at Young Adult Age in Subjects Born Very Premature and after Intrauterine Growth Retardation. J Am Soc Nephrol. 2005; 16: 2762–2768.
9. Rodríguez M.M., Gómez A.H., Abitbol C.L., Chandar J.J., Duara S.: Histomorphometric Analysis of Postnatal Glomerulogenesis in Extremely Preterm Infants. Pediatr Dev Pathol. 2004; 7. doi: 10.1007/s10024-003-3029-2
10. Faa G., Gerosa C., Fanni D., Nemolato S., Locci A., Cabras T., et al.: Marked interindividual variability in renal maturation of preterm infants: lessons from autopsy. J Matern Neonatal Med. 2010; 23: 129– 133.
11. Sutherland M.R., Gubhaju L., Moore L., Kent A.L., Dahlstrom J.E., Horne R.S., et al.: Accelerated maturation and abnormal morphology in the preterm neonatal kidney. J Am Soc Nephrol. 2011; 22: 1365–1374.
12. Miklaszewska M., Korohoda P., Drożdż D., Zachwieja K., Tomasik T., Moczulska A., et al.: eGFR values and selected renal urine biomarkers in preterm neonates with uncomplicated clinical course. Adv Clin Med. 2019; 28: 1657–1666.
13. Loret de Mola C., de França G.V.A., Quevedo L.A., Horta B.L., Bromet E., Andrade L., et al.: Low birth weight, preterm birth and small for gestational age association with adult depression: systematic review and meta-analysis. Br J Psychiatry. 2014; 205: 340–347.
14. Moledina D.G., Parikh C.R.: Phenotyping of Acute Kidney Injury: Beyond Serum Creatinine. Semin Nephrol. 2018; 38: 3–11.
15. Huen S.C., Parikh C.R.: Molecular phenotyping of clinical AKI with novel urinary biomarkers. Am J Physiol Renal Physiol. 2015; 309: 406–413.
16. Haase M., Kellum J.A., Ronco C.: Subclinical AKI—an emerging syndrome with important consequences. Nat Rev Nephrol. 2012; 8: 735–739.
17. Mori K., Lee H.T., Rapoport D., Drexler I.R., Foster K., Yang J., et al.: Endocytic delivery of lipocalin- siderophore-iron complex rescues the kidney from ischemia-reperfusion injury. J Clin Invest. 2005; 115: 610–621.
18. Ronco C., Kellum J.A., Haase M.: Subclinical AKI is still AKI. Crit Care. 2012; 16: 313.
19. Mól N., Zasada M., Tomasik P., Klimasz K., Kwinta P.: Evaluation of irisin and visfatin levels in very low birth weight preterm newborns compared to full term newborns—A prospective cohort study. PLoS One. 2018; 13: e0204835.
20. Pharoah P.O.D., Stevenson C.J., West C.R.: Association of blood pressure in adolescence with birthweight. Arch Dis Child Fetal Neonatal. 1998; 79: 114–119.
21. Keijzer-veen M.G., Dülger A., Dekker F.W., Nauta J., van der Heijden B.J.: Very preterm birth is a risk factor for increased systolic blood pressure at a young adult age. Pediatr Nephrol. 2010; 25: 509–516.
22. Vohr B.R., Allan W., Katz K.H., Schneider K.C., Ment L.R.: Early predictors of hypertension in prematurely born adolescents. Acta Paediatr. 2010; 99: 1812–1818.
23. Lurbe E., Carvajal E., Torro I., Aguilar F., Alvarez J., Redon J.: Influence of Concurrent Obesity and Low Birth Weight on Blood Pressure Phenotype in Youth. Hypertens. 2009; 75: 211–217.
24. Kistner A., Celsi G., Vanpee M., Jacobson S.H.: Increased blood pressure but normal renal function in adult women born preterm. Pediatr Nephrol. 2000; 15: 215–220.
25. Bayrakci U.S., Schaefer F., Duzova A., Yigit S., Bakkaloglu A.: Abnormal circadian blood pressure regulation in children born preterm. J Pediatr. 2007; 151: 399–403.
26. Hovi P., Andersson S., Räikkönen K., Strang-Karlsson S., Järvenpää A.L., Eriksson J.G., et al.: Ambulatory blood pressure in young adults with very low birth weight. J Pediatr. 2010; 156: 54–59.
27. Doyle L.W., Faber B., Callanan C., Morley R.: Blood pressure in late adolescence and very low birth weight. Pediatrics. 2003; 111: 252–257.
28. Pyhälä R., Räikkönen K., Feldt K., Andersson S., Hovi P., Eriksson J.G., Järvenpää A.L.: Blood pressure responses to psychosocial stress in young adults with very low birth weight: Helsinki study of very low birth weight adults. Pediatrics. 2009; 123: 731–734.
29. Fayos L., Lurbe E., Garcia-Vicent C., Torro I., Aguilar F., Martin J., et al.: First-year blood pressure increase steepest in low birthweight newborns. J Hypertens. 2007; 25: 81–86.
30. Farasat S.M., Morrell C.H., Scuteri A., Ting C.T., Yin F.C.P., Spurgeon H.A., et al.: Pulse pressure is inversely related to aortic root diameter implications for the pathogenesis of systolic hypertension. Hypertens. 2008; 51: 196–202.
31. Thomas F., Blacher J., Benetos A., Safar M.E., Pannier B.: Cardiovascular risk as defined in the 2003 European blood pressure classification: the assessment of an additional predictive value of pulse pressure on mortality. J Hypertens. 2008; 26: 1072–1077.
32. Domanski M.J., Davis B.R., Pfeffer M.A., Kastantin M., Mitchell G.F.: Isolated Systolic Hypertension. Hypertens. 1999; 34: 375–380.
33. O’Rourke M., Frohlich E.D.: Pulse pressure: Is this a clinically useful risk factor? Hypertens. 1999; 34: 372–374.
34. Arulkumaran N., Diwakar R., Tahir Z., Mohamed M., Kaski J.C., Banerjee D.: Pulse pressure and progression of chronic kidney disease. J Nephrol. 2010; 23: 189–193.

Go to article

Authors and Affiliations

Maja Gilarska
1
Dagmara Wolińska
2
Przemko Kwinta
1

  1. Department of Pediatrics, Jagiellonian University Medical College, Kraków, Poland
  2. Department of Pediatrics, University Children Hospital, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

Background: Cardiovascular diseases are the first cause of death globally. Hypercholester-olemia is the most important factor responsible for atherosclerotic plaque formation and increasing cardiovascular risk. Reduction of LDL-C level is the most relevant goal for reduction of cardiovascular risk.
Aims: Real life adherence to guidelines concerning statin therapy in one center study population. Methods: We analyzed data collected in the Department of Internal Diseases from September 2019 to February 2020, obtained from 238 patients hospitalized in this time period. We assessed application of the new 2019 ESC/EAS Guidelines for the Management of Dyslipidaemias in daily clinical practice and compared effectiveness of LLT according to 2016 and 2019 guidelines.
Results: Only 1 in 5 patients with dyslipideamia achieve the 2019 ESC/EAS guideline-recommended levels of LDL-C with relation to their TCVR. We noticed that 20 of patients who did not achieve proper 2019 LDL level, meet the therapy targets established in year 2016. We observed that higher patient TCVR resulted in better compliance with guidelines and ordination of proper LLT. Most patients were on monotherapy with statins.
Conclusions: It could be beneficial to start treatment with double or even triple therapy especially in group with the highest LDL-C levels.
Go to article

Bibliography

1. Cardiovascular diseases. Available from: https://www.who.int/health-topics/cardiovascular-diseases/ #tab=tab_1
2. Poland | Institute for Health Metrics and Evaluation [Internet]. Available from: http://www.healthdata.org/poland
3. Ference B.A., Ginsberg H.N., Graham I., et al.: Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J. 2017; 38 (32): 2459–2472.
4. Navarese E.P., Robinson J.G., Kowalewski M., et al.: Association between baseline LDL-C level and total and cardiovascular mortality after LDL-C lowering a systematic review and meta-analysis. JAMA. 2018; 319 (15): 1566–1579.
5. Zdrojewski T., Solnica B., Cybulska B., et al.: Prevalence of lipid abnormalities in Poland. the NATPOL 2011 survey. Kardiol Pol. 2016; 74 (3): 213–223.
6. Pająk A., Szafraniec K., Polak M., et al.: Changes in the prevalence, treatment, and control of hypercholesterolemia and other dyslipidemias over 10 years in Poland: The WOBASZ study. Pol Arch Med Wewn. 2016; 126 (9): 642–652.
7. Mach F., Baigent C., Catapano A.L., et al.: 2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk. Vol. 41, European Heart Journal. 2020. p. 111–188.
8. Catapano A.L., Graham I., De Backer G., et al.: 2016 ESC/EAS Guidelines for the Management of Dyslipidaemias. Eur Heart J. 2016; 37: 2999–3058.
9. Baigent C., Blackwell L., Emberson J., et al.: Efficacy and safety of more intensive lowering of LDL cholesterol: A meta-analysis of data from 170 000 participants in 26 randomised trials. Lancet. 2010; 376 (9753): 1670–1681.
10. Silverman M.G., Ference B.A., Im K., et al.: Association between lowering LDL-C and cardiovascular risk reduction among different therapeutic interventions: A systematic review and meta-analysis. JAMA. 2016; 316 (12): 1289–1297.
11. Giugliano R.P., Pedersen T.R., Park J.G., et al.: Clinical efficacy and safety of achieving very low LDL- cholesterol concentrations with the PCSK9 inhibitor evolocumab: a prespecified secondary analysis of the FOURIER trial. Lancet. 2017 Oct 28; 390 (10106): 1962–1971.
12. Soran H., Dent R., Durrington P.: Evidence-based goals in LDL-C reduction. Clin Res Cardiol. 2017; 106 (4): 237–248.
13. Masana L., Girona J., Ibarretxe D., et al.: Clinical and pathophysiological evidence supporting the safety of extremely low LDL levels — The zero-LDL hypothesis. J Clin Lipidol. 2018; 12 (2): 292–299. e3.
14. Katzmann J.L., Sorio-Vilela F., Dornstauder E., et al.: Non-statin lipid-lowering therapy over time in very-high-risk patients: effectiveness of fixed-dose statin / ezetimibe compared to separate pill combination on LDL-C. Clin Res Cardiol. 2020; (0123456789).
15. Guglielmi V., Bellia A., Pecchioli S., et al.: Effectiveness of adherence to lipid lowering therapy on LDL-cholesterol in patients with very high cardiovascular risk: A real-world evidence study in primary care. Atherosclerosis. 2017; 263: 36–41.
16. Kaddoura R., Orabi B., Salam A.M.: Efficacy and safety of PCSK9 monoclonal antibodies: an evidence-based review and update. J Drug Assess. 2020; 9 (1): 129–144.
17. Saborowski M., Dölle M., Manns M.P., et al.: Lipid-lowering therapy with pcsk9-inhibitors in the management of cardiovascular high-risk patients: Effectiveness, therapy adherence and safety in a real world cohort. Cardiol J. 2018; 25 (1): 32–41.
18. Novel Drug Approvals for 2015 | FDA [Internet]. Available from: https://www.fda.gov/drugs/new-drugs-fda-cders-new-molecular-entities-and-new-therapeutic-biological-products/novel-drug-ap-provals-2015
19. Zodda D., Giammona R., Schifilliti S.: Treatment Strategy for Dyslipidemia in Cardiovascular Disease Prevention: Focus on Old and New Drugs. Pharmacy. 2018; 6 (1): 10.
20. Szymański F.M., Barylski M., Cybulska B., et al.: Recommendation for the management of dyslipidemia in Poland — Third declaration of sopot. Interdisciplinary expert position statement endorsed by the Polish cardiac society working group on cardiovascular pharmacotherapy. Cardiol J. 2018; 25 (6): 655–665.
21. Koskinas K.C., Windecker S., Pedrazzini G., et al.: Evolocumab for Early Reduction of LDL Cholesterol Levels in Patients With Acute Coronary Syndromes (EVOPACS). J Am Coll Cardiol. 2019 Nov 19; 74 (20): 2452–62.
22. Sabatine M.S., Giugliano R.P., Keech A.C., et al.: Evolocumab and clinical outcomes in patients with cardiovascular disease. N Engl J Med. 2017; 376 (18): 1713–1722.
23. Murphy S.A., Pedersen T.R., Gaciong Z.A., et al.: Effect of the PCSK9 Inhibitor Evolocumab on Total Cardiovascular Events in Patients with Cardiovascular Disease: A Prespecified Analysis from the FOURIER Trial. JAMA Cardiol. 2019; 4 (7): 613–619.
24. Bittner V.A., Szarek M., Aylward P.E., et al.: Effect of Alirocumab on Lipoprotein(a) and Cardiovascular Risk After Acute Coronary Syndrome. J Am Coll Cardiol. 2020; 75 (2): 133–144.
25. Schwartz G.G., Steg P.G., Szarek M., et al.: Alirocumab and cardiovascular outcomes after acute coronary syndrome. N Engl J Med. 2018; 379 (22): 2097–2107.
26. Raal F.J., Kallend D., Ray K.K., et al.: Inclisiran for the treatment of heterozygous familial hypercholesterolemia. N Engl J Med. 2020 Apr 16; 382 (16): 1520–1530.
27. Ferri N., Corsini A.: Clinical Pharmacology of Statins: an Update. Curr Atheroscler Rep. 2020 Jun 3; 22 (7): 26.
28. Ballantyne C.M., Banach M., Mancini G.B.J., et al.: Efficacy and safety of bempedoic acid added to ezetimibe in statin-intolerant patients with hypercholesterolemia: A randomized, placebo-controlled study. Atherosclerosis. 2018; 277: 195–203.
29. Banach M., Duell P.B., Gotto A.M., et al.: Association of Bempedoic Acid Administration with Atherogenic Lipid Levels in Phase 3 Randomized Clinical Trials of Patients with Hypercholester-olemia. JAMA Cardiol. 2020; 1–11.
30. Kam N., Perera K., Zomer E., et al.: Inclisiran as Adjunct Lipid-Lowering Therapy for Patients with Cardiovascular Disease: A Cost-Effectiveness Analysis. Pharmacoeconomics. 2020; 38 (9): 1007–1020.
Go to article

Authors and Affiliations

Patrycja Cecha
1
Anna Chromik
1
Ilona Piotrowska
1
Michał Zabojszcz
1
Magdalena Dolecka-Ślusarczyk
1
Zbigniew Siudak
1

  1. Collegium Medicum, Jan Kochanowski University, Kielce, Poland

This page uses 'cookies'. Learn more