Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Data
  • Type

Search results

Number of results: 61
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Human activities have a complex and multidimensional impact on water quality. The concentration of inhabitants, production and services intensifies influence of urban agglomerations on water in rivers. Among many sources of surface water pollution, the most important are sewage discharges.
The aim of the research was to determine the effect of point discharge of treated industrial and municipal wastewater on the distribution of selected water chemical parameters in the Vistula River in Puławy. The studies were carried out in 2018–2019. Samplings were collected in five sampling points and tested in the hydrochemical laboratory. The obtained data were statistically analysed to investigate differences between the sampling points. The negative impact of wastewater discharge on the water quality in the Vistula was found. However, the pollution level decreased with the flow of the river. The parameters tested at measurement point located 1200 m below the discharge approached the values recorded above the sewage outfall. The presented observations of changes in the concentration of pollutants indicate the self-purification capacity of a river. However, for each watercourse flowing through urbanized areas, it is an individual feature. It depends on a number of factors and requires regular monitoring studies taking into account hydrochemical analysis of watercourses.
Go to article

Bibliography

BOGDAŁ A., KOWALIK T., WITOSZEK K. 2015. Effect of the Goczałkowice Reservoir on the changes of water quality in the Vistula River. Ecological Engineering. Vol. 45 p. 124–134. DOI 10.12912/23920629/60605.

BRYSIEWICZ A., BONISŁAWSKA M., CZERNIEJEWSKI P., KIERASIŃSKI B. 2019. Quality analysis of waters from selected small watercourses within the river basins of Odra River and Wisła River. Rocznik Ochrona Środowiska. Vol. 21 (2). p. 1202–1216.

GACKA-GRZESIKIEWICZ E. (ed.) 1995. Korytarz ekologiczny doliny Wisły. Stan – funkcjonowanie – zagrożenia [Ecological corridor of the Vistula valley. Condition – Operation – Threats]. Warszawa. Fundacja IUCN Poland. ISBN 2-8317-0240-2 pp. 196.

GDOŚ 2002. Natura 2000 – Standardowy formularz danych Dolina Środkowej Wisły [Natura 2000: Standard data form: Valley of Middle Vistula]. PLB140004 pp. 17.

GOPCHAK I., KALKO A., BASIUK T., PINCHUK O., GERASIMOV I., YAROMEN-KO O., SHKIRYNETS V. 2020. Assessment of surface water pollution in Western Bug River within the cross-border section of Ukraine. Journal of Water and Land Development. No. 46 p. 97–103. DOI 10.24425/jwld.2020.134201.

Grupa Azoty 2019. Non-financial statement of the Grupa Azoty Group for the 12 months ended December 31th 2018. Tarnów. Grupa Azoty S.A. pp. 46.

GUS 2020. Bank Danych Lokalnych. Oczyszczalnie ścieków komunalnych [Local Data Bank. Municipal waste water treatment plants]. [Access 15.10.2020]. Available at: bdl.stat.gov.pl/BDL/metadane/podgrupy/222?back=True

JAKUBIAK M., CHMIELOWSKI K. 2020. Identification of urban water bodies ecosystem services. Acta Scientiarum Polonorum. Formatio Circumiectus. Vol. 19(3) p. 73–82.

JAKUBIAK M., PANEK E. 2016. Small water bodies in the valley of the river Rudawa in Krakow – the environmental value. Geomatics and Environmental Engineering. Vol. 10 (1) p. 45–57. DOI 10.7494/geom.2016.10.1.45.

JAKUBIAK M., PANEK E. 2017. Małe zbiorniki wodne w zachodniej części Krakowa [Small water bodies in the western part of Krakow]. Kraków. Wydawnictwa AGH. ISBN 978-83-7464-888-2 pp. 192.

LEWANDOWSKA-ROBAK M., GÓRSKI Ł., KOWALKOWSKI T., DĄBKOWSKA- NASKRĘT H., MIESIKOWSKA I. 2011. The influence of treated sewage discharged from wastewater treatment plant in Tuchola on water quality of Kicz stream. Inżynieria i Ochrona Środowiska. Vol. 14 (3) p. 209–221.

LIGĘZA S., SMAL H. 2003. Skład granulometryczny osadów dennych zbiornika wód zrzutowych Zakładów Azotowych Puławy [Textural differentiation of bottom sediments in the reservoir of Puławy Nitrogen Fertilizer Factory (SE Poland)]. Acta Agrophysica. Vol. 1 (2) p. 271–277.

MAZUR R., KAŁUŻA T., CHMIST J., WALCZAK N., LAKS I., STRZELIŃSKI P. 2016. Influence of deposition of fine plant debris in river floodplain shrubs on flood flow conditions – The Warta River case study. Physics and Chemistry of the Earth. Parts A/B/C. Vol. 94 p. 106–113. DOI 10.1016/j.pce.2015.12.002.

MAZUR R., SITAREK M. 2020. Microbiological bioremediation of the Kamienna Góra dam reservoir. Acta Scientiarum Polonorum. Formatio Circumiectus. Vol. 19(1) p. 47–59. DOI 10.15576/ASP.FC/2020.19.1.47.

MICHAŁKIEWICZ M., MĄDRECKA B., DYSARZ T., JONIAK T., SZELĄG- WASIELEWSKA E. 2011. Wpływ miasta Poznania na jakość wód rzeki Warty [The influence of the city of Poznań on water quality of the Warta River]. Nauka Przyroda Technologie. Vol. 5 (5), #89 p. 1–13.

MPWiK 2017. Plan rozwoju i modernizacji urządzeń wodociągowych i urządzeń kanalizacyjnych Miejskiego Przedsiębiorstwa Wodo-ciągów i Kanalizacji „Wodociągi Puławskie” Spółka z o.o. in Puławy na lata 2017–2021 [Plan for the development and modernization of water supply and sewage devices of the Municipal Water and Sewage Company “Wodociągi Puławskie” Spółka z o.o. in Puławy for 2017–2021]. Puławy. Miejskie Przedsiębiorstwo Wodociągów i Kanalizacji „Wodociągi Puławskie” Spółka z o.o. pp. 17.

PN-EN ISO 9963-1:2001 Jakość wody – Oznaczanie zasadowości – Część 1: Oznaczanie zasadowości ogólnej i zasadowości wobec fenoloftaleiny [Water quality – Determination of alkalinity – Part 1: Determination of total and composite alkalinity].

PN-ISO 6059:1999 Jakość wody – Oznaczanie sumarycznej zawartości wapnia i magnezu – Metoda miareczkowa z EDTA [Water quality – Determination of the sum of calcium and magnesium – EDTA titrimetric method].

POLICHT-LATAWIEC A. 2014. The effect of saline mine waters discharge from hard coal mine on the ecological state of the Vistula River. Acta Horticulturae et Regiotecturae. Vol. 2 p. 43–47. DOI 10.1515/ahr-2014-0011.

POLICHT-LATAWIEC A., KANOWNIK W., ŁUKASIK D. 2013. Effect of point source pollution on the San River water quality. Infrastructure and Ecology of Rural Areas. Vol. 1 (4) p. 253–269.

POLICHT-LATAWIEC A., KAPICA A. 2013. Wpływ kopalni węgla kamiennego a jakość wody rzeki Wisły [Influence of hard coal mine on water quality in the Vistula River]. Annual Set the Environment Protection. Vol. 15 p. 2640–2651.

PYTKA A., JÓŹWIAKOWSKI K., MARZEC M., GIZIŃSKA M., SOSNOWSKA B. 2013. Impact assessment of anthropogenic pollution on water quality of Bochotniczanka River. Infrastructure and Ecology of Rural Areas. Vol. 3(2) p. 15–29.

Rozporządzenie Ministra Gospodarki Morskiej i Żeglugi Śródlądowej z dnia 11 października 2019 r. w sprawie klasyfikacji stanu ekologicznego, potencjału ekologicznego i stanu chemicznego oraz sposobu klasyfikacji stanu jednolitych części wód powierzchniowych, a także środowiskowych norm jakości dla substancji priorytetowych [Regulation of the Minister of Maritime Economy and Inland Navigation of 11 October 2019 on the classification of ecological status, ecological potential, chemical status and the method of classifying the status of surface water bodies as well as environmental quality standards for priority substances]. Dz.U. 2019 poz. 2148.

SIUDAK R., LEWANDOWSKA K. 2016. Program ochrony środowiska dla gminy Miasto Puławy na lata 2016–2020. Załącznik do Uchwały Nr XXXV/328/17 Rady Miasta Puławy z dnia 23 lutego 2017 r. [Environmental protection program for the municipality of the city of Puławy for the years 2016–2020. Annex to Resolution of the City Council of the City of Puławy of February 23, 2017 No. XXXV/328/17]. Suchy Las. Ekostandard Pracowania Analiz Środowiskowych pp. 69.

STEELE M.K., HEFFERNAN J.B. 2014. Morphological characteristics of urban water bodies: mechanisms of change and implications for ecosystem function. Ecological Applications. Vol. 24(5) p. 1070– 1084.

XIAO C., CHEN J., YUAN X., CHEN R., SONG X. 2020. Model test of the effect of river sinuosity on nitrogen purification efficiency. Water. Vol. 12(6), 1677. DOI 10.3390/w12061677

ZEMEŁKA G. 2019. Contamination and environmental risk assessment of heavy metals in sediments of Dobczyce reservoir and its tributaries – a literature review. Geomatics and Environmental Engineering. Vol. 13(1) p. 63–75. DOI 10.7494/geom.2019.13.1.63.
Go to article

Authors and Affiliations

Mateusz Jakubiak
1
ORCID: ORCID
Bartosz Bojarski
2
ORCID: ORCID

  1. AGH University of Science and Technology, Faculty of Mining Surveying and Environmental Engineering, Department of Environmental Management and Protection, al. Mickiewicza 30, 30-059 Krakow, Poland
  2. Polish Academy of Sciences, Institute of Ichthyobiology and Aquaculture in Gołysz, Poland
Download PDF Download RIS Download Bibtex

Abstract

Warna and Pengilon Lakes are very close to each other and connected with the sill, a famous tourist destination in the Dieng Plateau Java. Land-use changes are the main problem that affected the lakes. The conversion of forest into an agricultural area had induced erosion and increased the volume of nutrients discharged to the lake due to high use of fertilisers in potatoes farms. In the dry seasons, water from those lakes was pumped to irrigate agricultural land. This study aimed to determine the water quality of Warna and Pengilon Lakes based on physical, chemical parameters, and phytoplankton communities. Water samples were collected from 4 sites at each lake to analyse biological oxygen demand ( BOD), chemical oxygen demand ( COD), ammonia, nitrate, nitrite, and total nitrogen ( TN). Temperature, pH, dissolved oxygen ( DO), turbidity, and conductivity ( EC) were measured in-situ. During this research, turbidity and BOD in Warna and Pengilon Lakes exceeded the Indonesian water quality standard. Based on the STORET method, the water quality of Lake Warna was assessed as highly polluted for all classes. However, based on the pollution index (PI), Lake Warna was slightly to moderately polluted, as well as the saprobic index was in the β-mesosaprobic phase. Based on the species diversity index of phytoplankton, both Warna and Pengilon Lakes were moderately polluted. The long-term monitoring studies are necessary as an early warning sign of water quality degradation. Therefore, they provide insight into the overall ecological condition of the lake and can be used as a basis for developing suitable lake management.
Go to article

Authors and Affiliations

Tri Retnaningsih Soeprobowati
1 2
ORCID: ORCID
Nurul Layalil Addadiyah
1
Riche Hariyati
1
ORCID: ORCID
Jumari Jumari
1
ORCID: ORCID

  1. Diponegoro University, Faculty of Science and Mathematics, Department of Biology, Jl. Prof. Soedarto, SH. Street, Tembalang, Semarang, 50275, Indonesia
  2. Universitas Diponegoro, School of Postgraduate Studies, Imam Bardjo Street Number 3-5, Semarang, 50241, Indonesia
Download PDF Download RIS Download Bibtex

Abstract

In recent years, a growing problem of water deficit has been observed, which is particularly acute for agriculture. To alleviate the effects of drought, hydrogel soil additives – superabsorbent polymers (SAPs) – can be helpful.
The primary objective of this article was to present a comparison of the advantages resulting from the application of synthetic or natural hydrogels in agriculture. The analysis of the subject was carried out based on 129 articles published between 1992 and 2020. In the article, the advantages of the application of hydrogel products in order to improve soil quality, and crop growth.
Both kinds of soil amendments (synthetic and natural) similarly improve the yield of crops. In the case of natural origin polymers, a lower cost of preparation and a shorter time of biodegradation are indicated as the main advantage in comparison to synthetic polymers, and greater security for the environment.
Go to article

Authors and Affiliations

Beata Grabowska-Polanowska
1
ORCID: ORCID
Tomasz Garbowski
1
ORCID: ORCID
Dominika Bar-Michalczyk
1
ORCID: ORCID
Agnieszka Kowalczyk
1
ORCID: ORCID

  1. Institute of Technology and Life Sciences – National Research Institute, Falenty, Hrabska Av. 3, 09-090 Raszyn, Poland
Download PDF Download RIS Download Bibtex

Abstract

According to the SRES A1B climate change scenario, by the end of the 21st century temperature in Poland will increase by 2–4°C, no increase in precipitation totals is predicted. This will rise crop irrigation needs and necessity to develop irrigation systems. Due to increase in temperature and needs of sustainable agriculture development some changes in crop growing structure will occur. An increase interest in high protein crops cultivation has been noted last years and further extension of these acreage is foreseen. Identifying the future water needs of these plants is crucial for planning and implementing sustainable agricultural production. In the study, the impact of projected air temperature changes on soybean water needs, one of the most valuable high-protein crops, in 2021–2050 in the Kuyavia region in Poland was analysed. The calculations based on meteorological data collected in 1981–2010 were considered as the reference period. Potential evapotranspiration was adopted as a measure of crop water requirements. The potential evapotranspiration was estimated using the Penman–Monteith method and crop coefficient. Based on these estimations, it was found that in the forecast years the soybean water needs will increase by 5% in the growing period (from 21 April to 10 September), and by 8% in June–August. The highest monthly soybean water needs increase (by 15%) may occur in August. The predicted climate changes and the increase in the arable crops water requirements, may contribute to an increase in the irrigated area in the Kuyavia region and necessity of rational management of water resources.
Go to article

Authors and Affiliations

Wiesława Kasperska-Wołowicz
1
ORCID: ORCID
Stanisław Rolbiecki
2
ORCID: ORCID
Hicran A. Sadan
2
ORCID: ORCID
Roman Rolbiecki
2
ORCID: ORCID
Barbara Jagosz
3
ORCID: ORCID
Piotr Stachowski
4
ORCID: ORCID
Daniel Liberacki
4
ORCID: ORCID
Tymoteusz Bolewski
1
ORCID: ORCID
Piotr Prus
5
ORCID: ORCID
Ferenc Pal-Fam
6
ORCID: ORCID

  1. Institute of Technology and Life Sciences – National Research Institute, Hrabska Av. 3, Falenty, 05-090 Raszyn, Poland
  2. Bydgoszcz University of Science and Technology, Faculty of Agriculture and Biotechnology, Department of Agrometeorology, Plant Irrigation and Horticulture, Bydgoszcz, Poland
  3. University of Agriculture in Krakow, Faculty of Biotechnology and Horticulture, Department of Plant Biology and Biotechnology, Krakow, Poland
  4. Poznan University of Life Sciences, Faculty of Environmental Engineering and Mechanical Engineering, Department of Land Improvement, Environmental Development and Spatial Management, Poznań, Poland
  5. Bydgoszcz University of Science and Technology, Faculty of Agriculture and Biotechnology, Laboratory of Economics and Agribusiness Advisory, Bydgoszcz, Poland
  6. Hungarian University of Agriculture and Life Sciences (MATE), Kaposvár, Hungary
Download PDF Download RIS Download Bibtex

Abstract

Models describe our beliefs about how the world functions. In mathematical modelling, we translate those beliefs into the language of mathematics. Mathematical models can yield prognose on the base of applied fertiliser dose. In this work results of finding yield mathematical model according to fertiliser (nitrogen) dose for perennials (willowleaf sunflower Helianthus salicifolious, cup plant Silphium perfoliatum and Jerusalem artichoke Helianthus tuberosus) on marginal land are presented. Models were described as normalised square equations for dependence between yield and fertiliser doses. Experiments were conducted in lisymeters and vases for willowleaf sunflower and cup plant. For Jerusalem artichoke experiments were done in vases only. All experiments have been doing during two years (2018 and 2019) for different fertilisers doses (45, 90 and 135 kg N∙ha–1) in three repetitions. From simulations maximal yield could be achieved for following fertiliser doses – willowleaf sunflower 104 kg N∙ha–1, cup plant 85 kg N∙ha–1 and Jerusalem artichoke 126 kg N∙ha–1.
Go to article

Authors and Affiliations

Marek Hryniewicz
1
ORCID: ORCID
Maria Strzelczyk
1
ORCID: ORCID
Marek Helis
1
ORCID: ORCID
Anna Paszkiewicz-Jasińska
1
ORCID: ORCID
Aleksandra Steinhoff-Wrzesniewska
1
ORCID: ORCID
Kamil Roman
1
ORCID: ORCID

  1. Institute of Technology and Life Sciences – National Research Institute, Falenty, Hrabska Av. 3, 09-090 Raszyn, Poland
Download PDF Download RIS Download Bibtex

Abstract

Changing atmospheric conditions, including above all the deepening extreme weather phenomena, are increasing from year to year. This, in consequence, causes an increase in the incidence of low outflows.
The study compares low water levels for two catchments: Biała Woda and Czarna Woda, and phosphorus and nitrogen load using the Nutrient Delivery Ratio (NDR) model in InVEST software. The objective of the NDR is to map nutrient sources from catchment area and transfer to the river bed. The nutrient loads (nitrogen and phosphorus) spread across the landscape are determined based on a land use (LULC) map and associated loading rates described in literature. The studies have shown that low water levels have been more common recently and pose the greatest threat to the biological life in the aquatic ecosystems. The structure of land use is also of great importance, with a significant impact on the runoff and nitrogen and phosphorus load. Phosphorus and runoff from surface sources to the water of Biała Woda and Czarna Woda catchments area has been reduced in forested areas. Only higher run-offs are observed in the residential buildings zone. The nitrogen load was also greater in the lower (estuary) parts of both catchments, where residential buildings dominate.
Go to article

Authors and Affiliations

Marek T. Kopacz
1
ORCID: ORCID
Zbigniew Kowalewski
1
ORCID: ORCID
Luis Santos
2
Robert Mazur
1
ORCID: ORCID
Vasco Lopes
3
Agnieszka Kowalczyk
4
ORCID: ORCID
Dominika Bar-Michalczyk
4
ORCID: ORCID

  1. AGH University of Science and Technology, Faculty of Mining Surveying and Environmental Engineering, Mickiewicza 30, 30-059, Kraków, Poland
  2. Polytechnic Institute of Tomar, Departamento Arqueologia, Conservação e Restauro e Património, Portugal
  3. Polytechnic Institute of Tomar, School of Technology, Portugal
  4. Institute of Technology and Life Sciences – National Research Institute, Falenty, Hrabska Av. 3, 09-090 Raszyn, Poland
Download PDF Download RIS Download Bibtex

Abstract

The article is devoted to a topical scientific problem in modern conditions – valuation of land in Ukraine. The imperfection of the existing approaches requires further research on the changing conditions of land use and their impact on land pricing.
A methodology for determining the market value of reclaimed land based on a differentiated assessment of its productivity through crop yields is proposed, taking into account natural and climatic zones and other conditions of a particular region. The basis of the methodology is the application of long-term forecast and a set of forecast and simulation models, in particular the model of area climatic conditions and the model of water regime and water regulation technologies on reclaimed land. At that the crop yield model as a complex multiplicative type model takes into account all main factors influencing crop yield formation: weather, climatic and soil conditions, cultivation techniques, water regime of reclaimed land, etc.
The proposed approaches were tested by the method of large – scale machine experiment using a land plot in the zone of Western Polissya of Ukraine as the example. The obtained results indicate that there is a differentiation in land value, which is a proportional derivative of the yield of cultivated crops depending on the conditions of their cultivation. The variation range of the studied indicators in relative form by the ratio of maximum and minimum values to the weighted average value is for cultivated crops – 393%, and for the above soils – 44.6%. Thus, within one object, the estimated value of land in view of available soils and cultivated crops varies from USD2456∙ha–1 to USD4005 ∙ ha–1, averaging USD3522 ∙ ha–1.
Go to article

Authors and Affiliations

Anatoliy Rokochinskiy
1
ORCID: ORCID
Pavlo Volk
1
ORCID: ORCID
Nadia Frolenkova
1
ORCID: ORCID
Olha Tykhenko
2
ORCID: ORCID
Sergiy Shalai
1
ORCID: ORCID
Ruslan Tykhenko
2
ORCID: ORCID
Ivan Openko
2
ORCID: ORCID

  1. National University of Water and Environmental Engineering, Rivne, Ukraine
  2. National University of Life and Environmental Sciences of Ukraine, Str. Vasylkivska, 17, 03040, Kyiv, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

The marshes are the most abundant water sources and ecological rich communities. They have a significant impact on the ecological and economic well-being of the communities surrounding them. However, climatic changes directly impact these bodies of water, especially those marshes which depend on rainwater and flooding for their survival. The Al-Sannya marsh is used as the example of marshes in Southern Iraq for this study between 1987–2017. The research takes place throughout the winter season due to the revival of marshes in southern Iraq at this time of year. The years 1987, 1990, 1995, 2000, 2007, 2014, 2017 are the focus of this study. Satellite imagery from the Landsat 5 (TM) and Landsat 8 (OLI) and the meteorological parameters affecting the marsh were acquired from NASA. The calculation of the areas of water bodies after classification using satellite imagery is done using the maximum likelihood method and comparing it with meteorological parameters. These results showed that these marshes are facing extinction due to the general change of climate and the interference of humans in utilising the drylands of the marsh for agricultural purposes. The vegetation area can be seen to have decreased from 51.15 km2 in 2000 to 8.77 km2 in 2017.
Go to article

Authors and Affiliations

Amal Jabbar Hatem
1
Ali Adnan N. Al-Jasim
1
ORCID: ORCID
Hameed Majeed Abduljabbar
1

  1. University of Baghdad, College of Education for Pure Science (Ibn-Al-Haitham), Department of Physics, Baghdad, Iraq
Download PDF Download RIS Download Bibtex

Abstract

The aim of the study was to assess the P-PO4 and N-NH4 pollution of water in grasslands located on peat soils and to identify the impact of groundwater level on this pollution formation. The research was conducted in 2000– 2010 on grounds of ITP-PIB in Biebrza village (Poland). Within lowland fen a total of 18 monitoring points of groundwater and watercourses were established in 6 separate test stands. The subject of the research was water collected from drainage ditches/channels and groundwater, which was taken from wells installed in organic-soil layer and wells whose bottom was 15–20 cm below this layer. Water samples were collected several times a year, and in the case of groundwater, its level was also measured. It was found that: 1) due to concentration level of P-PO4 and N-NH4, about 46 and 39% of water samples from organic-soil layer and more than 40 and 37% of water samples from mineral- organic-soil layer respectively, were characterized by poor chemical status; 2) due to the exceeding of the limit values of P-PO4 and N-NH4 concentration, water samples from watercourses in over 30 and 27% respectively were not within 1st and 2nd class of surface water quality; 3) P-PO4 and N-NH4 concentrations in each water type were statistically significant and positively correlated with each other; 4) in organic-soil layer the groundwater level changing every 10 cm was a statistically significant factor differentiating the average P-PO4 concentration in groundwater associated with mineral-organic layer of peat soil and average N-NH4 concentration in each type of water.
Go to article

Authors and Affiliations

Andrzej Sapek
1
Stefan Pietrzak
2
ORCID: ORCID
Dominika Juszkowska
2
ORCID: ORCID
Marek Urbaniak
2
ORCID: ORCID

  1. Retired researcher
  2. Institute of Technology and Life Sciences – National Research Institute, 3 Hrabska Avenue, 05-090, Falenty, Poland
Download PDF Download RIS Download Bibtex

Abstract

Unlike many other countries, tropical regions such as Indonesia still lack publications on pedotransfer functions (PTFs), particularly ones dedicated to the predicting of soil bulk density. Soil bulk density affects soil density, porosity, water holding capacity, drainage, and the stock and flux of nutrients in the soil. However, obtaining access to a laboratory is difficult, time-consuming, and costly. Therefore, it is necessary to utilise PTFs to estimate soil bulk density. This study aims to define soil properties related to soil bulk density, develop new PTFs using multiple linear regression (MLR), and evaluate the performance and accuracy of PTFs (new and existing). Seven existing PTFs were applied in this study. For the purposes of evaluation, Pearson’s correlation (r), mean error (ME), root mean square error (RMSE), and modelling efficiency (EF) were used. The study was conducted in five soil types on Bintan Island, Indonesia. Soil depth and organic carbon (SOC) are soil properties potentially relevant for soil bulk density prediction. The ME, RMSE, and EF values were lower for the newly developed PTFs than for existing PTFs. In summary, we concluded that the newly developed PTFs have higher accuracy than existing PTFs derived from literature. The prediction of soil bulk density will be more accurate if PTFs are applied directly in the area that is to be studied.
Go to article

Authors and Affiliations

Evi Dwi Yanti
1
ORCID: ORCID
Asep Mulyono
1
ORCID: ORCID
Muhamad Rahman Djuwansah
1
ORCID: ORCID
Ida Narulita
1
ORCID: ORCID
Risandi Dwirama Putra
2
ORCID: ORCID
Dewi Surinati
3
ORCID: ORCID

  1. Research Center for Geotechnology, Indonesian National Research and Innovation Agency, Bandung, Indonesia
  2. Maritim Raja Ali Haji University, Tanjung Pinang, Indonesia
  3. Research Center for Oceanography, Indonesian National Research and Innovation Agency, Jakarta, Indonesia
Download PDF Download RIS Download Bibtex

Abstract

Nowadays, in order to ensure high quality of municipal services, and thus a high quality of life for the local community, the authorities of both the basic local government unit and managers of municipal enterprises must strive to maintain high standards of sustainable development. The level of quality of life and services provided can be determined by various dimensions, such as: ecological environment, housing conditions, ecological production in the field of consumer goods, balance between built-up areas and green areas, care for agricultural areas, limiting the deepening social stratification, rational economy water or rational waste management. Therefore, the paper presents a theoretical analysis of the main directions of sustainable development in the activities of municipal enterprises.
Go to article

Authors and Affiliations

Piotr Bartkowiak
1
ORCID: ORCID
Anna M. Bartkowiak
2
ORCID: ORCID

  1. Poznan University of Economics and Business, Department of Investments and Real Estate, Niepodległości Av. 10, 61-875 Poznań, Poland
  2. Institute of Technology and Life Sciences – National Research Institute, Falenty, Hrabska Av. 3, 05-090 Raszyn
Download PDF Download RIS Download Bibtex

Abstract

Smart farming is about managing a farm using modern information and communication techniques in order to increase the efficiency and quality of plant and animal production and to optimise human labour inputs. It is an inseparable part of a sustainable agricultural economy, where energy-saving and low-emission solutions are of particular importance, e.g. in livestock construction. Animal buildings are one of the main building elements of a farm. The paper presents the use of modern solutions that may result in lower energy consumption, and thus lower operating costs of the building. They also reduce the consumption of natural resources and the emission of pollutants, and ensure animal welfare and safety of the operators’ work. Rational use of energy depends, among others, on from the used insulation materials for the construction of livestock buildings, technical equipment, i.e. lighting, heating, ventilation, as well as zootechnical devices. The profitability of livestock production can also be supported by the use of solar, wind, water and biomass energy. Photovoltaic cells, solar collectors, wind turbines, heat pumps and agricultural biogas plants are used for this purpose.
Go to article

Authors and Affiliations

Anna M. Bartkowiak
1
ORCID: ORCID

  1. Institute of Technology and Life Sciences – National Research Institute, Falenty, Hrabska Av. 3, 05-090 Raszyn
Download PDF Download RIS Download Bibtex

Abstract

There were done simulations of fuels consumption in the system of electrical energy and heat production based on modernised GTD-350 turbine engine with the use of OGLST programme. In intention the system based on GTD-350 engine could be multifuel system which utilise post-fying vegetable oil, micronised biomass, sludge, RDF and fossil fuels as backup fuels. These fuels have broad spectrum of LHV fuel value from 6 (106 J·kg-1) (e.g. for sludge) to 46 (106 J·kg-1) (for a fuel equivalent with similar LHV as propan) and were simulations scope. Simulation results showed non linear dependence in the form of power function between unitary fuel mass consumption of simulated engine GTD-350 needed to production of 1 kWh electrical energy and LHV fuel value (106 J·kg-1). In this dependence a constant 14.648 found in simulations was multiplied by LHV raised to power –0.875. The R2 determination coefficient between data and determined function was 0.9985. Unitary fuel mass consumption varied from 2.911 (kg·10–3·W–1·h–1) for 6 (106 J·kg-1) LHV to 0.502 (kg·10–3·W–1·h–1) for 46 (106 J·kg-1) LHV. There was assumed 7,000 (h) work time per year and calculated fuels consumption for this time. Results varied from 4,311.19 (103 kg) for a fuel with 6 (106 J·kg-1) LHV to 743.46 (103 kg) for a fuel with 46 (106 J·kg-1) LHV. The system could use fuels mix and could be placed in containers and moved between biomass wastes storages placed in many different places located on rural areas or local communities.
Go to article

Authors and Affiliations

Marek Hryniewicz
1
ORCID: ORCID
Kamil Roman
1
ORCID: ORCID

  1. Institute of Technology and Life Sciences – National Research Institute, Falenty, Hrabska Av. 3, 09-090 Raszyn, Poland
Download PDF Download RIS Download Bibtex

Abstract

Permanent grasslands are the most environment-friendly way of using agricultural lands. Apart from producing fodder, grasslands play many other important non-productive functions. Biodiversity is the key factor decisive for their high natural and productive values. Grasslands play an important role in water retention. Not all types of grasslands may be used agriculturally. Out of 16 types of habitats, 10 may be used for production, the others are biologically valuable. The surface area of permanent grasslands in Poland has markedly decreased during the last decade. Now, they constitute slightly more than 20% of agricultural lands occupying 3127.8 thous. ha (in 2019) including 2764 thous. ha of meadows and 363.8 thous. ha of pastures.
Go to article

Authors and Affiliations

Mirosław Gabryszuk
1
ORCID: ORCID
Jerzy Barszczewski
1
ORCID: ORCID
Barbara Wróbel
1
ORCID: ORCID

  1. Institute of Technology and Life Sciences – National Research Institute, Falenty, Hrabska Av. 3, 05-090 Raszyn, Poland
Download PDF Download RIS Download Bibtex

Abstract

Human activities in relation to aquatic ecosystems result in significant economic losses in the form of contamination of water sources, deteriorating its quality and therefore its availability in lakes, water bodies and even in soil. Hence the need for systematic revitalisation or reclamation of water ecosystems. Such actions, in order to be rational, require a detailed understanding of the causes, and then the use of appropriate technology. The need for the above-mentioned actions result from the weather changes that have been noticeable in recent years, as well as environmental pollutants increasing water eutrophication in reservoirs and stimulating the development of some species of cyanobacteria. These cyanobacteria can cause serious water poisoning, especially in water supply systems. Therefore, a rational, comprehensive technology for the removal of bottom sediments and their processing into organic and mineral fertiliser has been developed with properties similar to manure. It also creates opportunities to improve the structure of soils thanks to the supply of organic carbon, the loss of which was found, among others, in also in soils of Poland and EU. These new possibilities of revitalisation hitherto unknown make it possible to a large extent, compliance with environmental requirements when revitalising water reservoirs and soil.
Go to article

Authors and Affiliations

Kamila Mazur
1
ORCID: ORCID
Andrzej Eymontt
1
ORCID: ORCID
Krzysztof Wierzbicki
1
ORCID: ORCID

  1. Institute of Technology and Life Sciences – National Research Institute, Falenty, Hrabska Av. 3, 05-090 Raszyn, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the concept and deployment of the agro-hydro-meteorological monitoring system (abbrev. AgHMM) created for the purposes of operational planning of regulated drainage and irrigation on the scale of a drainage/irrigation system (INOMEL project). Monitoring system involved regular daily (weekly readings) measurements of agrometeorological and hydrological parameters in water courses at melioration object during vegetation seasons. The measurement results enable an assessment of the meteorological conditions, moisture changes in the 0-60 cm soil profile, fluctuations of groundwater levels at quarters and testing points, also water levels in ditches and at dam structures, and water flow in water courses. These data were supplemended by 7-day meteorological forecast parameter predictions, served as input data for a model of operational planning of drainage and subirrigation at the six melioration systems in Poland. In addition, it was carried out irregular remote sensing observations of plant condition, water consumption by plants and soil moisture levels using imagery taken by unmanned aerial vehicles and Sentinel’s satellites. All the collected data was used for support operational activities aimed at maintaining optimal soil moisture for plant growth and should to provide farmers with high and stable yields. An example of the practical operations using the AgHMM system in 2019 is shown on the basis of the subirrigation object at permanent grasslands located in central Poland called “Czarny Rów B1”.
Go to article

Authors and Affiliations

Ewa Kanecka-Geszke
1
ORCID: ORCID
Bogdan Bąk
1
ORCID: ORCID
Tymoteusz Bolewski
1
ORCID: ORCID
Edmund Kaca
2
ORCID: ORCID

  1. Institute of Technology and Life Sciences – National Research Institute, Hrabska Av. 3, Falenty, 05-090 Raszyn, Poland
  2. Warsaw University of Life Sciences (SGGW), Institute of Environmental Engineering, 02-787 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

In the discussion of water quality control, the first and most effective parameter that affects other variables and water quality parameters is the temperature situation and water temperature parameters that control many ecological and chemical processes in reservoirs. Additionally, one of the most important quality parameters studied in the quality of water resources of dams and reservoirs is the study of water quality in terms of salinity. The salinity of the reservoirs is primarily due to the rivers leading into them. The control of error in the reservoirs is always considered because the outlet water of the reservoirs, depending on the type of consumption, should always be standard in terms of salinity. Therefore, in this study, using the available statistics, the Ce-Qual-W2 two-dimensional model was used to simulate the heat and salinity layering of the Latyan Dam reservoir. The results showed that with warming and shifting from spring to late summer, the slope of temperature changes at depth increases and thermal layering intensifies, and a severe temperature difference occurs at depth. The results of sensitivity analysis also showed that by decreasing the wind shear coefficient (WSC), the reservoir water temperature increases, so that by increasing or decreasing the value of this coefficient by 0.4, the average water temperature by 0.56°C changes inversely, and the results also show that by increasing or decreasing the value of the shade coefficient by 0.85, the average water temperature changes by about 7.62°C, directly.
Go to article

Bibliography

AFSHAR A., KHOSRAVI M., MOLAJOU A. 2021. Assessing adaptability of cyclic and non-cyclic approach to conjunctive use of ground-water and surface water for sustainable management plans under climate change. Water Resources Management. Vol. 35 p. 3463– 3479. DOI 10.1007/s11269-021-02887-3.

AZADI F., ASHOFTEH P.S., LOÁICIGA H.A. 2019. Reservoir water-quality projections under climate-change conditions. Water Resources Management. No. 33(1) p. 401–421. DOI 10.1007/s11269-018-2109-z.

CAISSIE D. 2006. The thermal regime of rivers: a review. Freshwater Biology. Vol. 51(8) p. 1389–1406. DOI 10.1111/j.1365-2427.2006.01597.x.

CHENG Y., VOISIN N., YEARSLEY J.R., NIJSSEN B. 2020. Reservoirs modify river thermal regime sensitivity to climate change: a case study in the southeastern United States. Water Resources Research. Vol. 56(6), e2019WR025784. DOI 10.1029/2019WR025784.

DEBELE B., SRINIVASAN R., PARLANGE J.Y. 2008. Coupling upland watershed and downstream waterbody hydrodynamic and water quality models (SWAT and CE-QUAL-W2) for better water resources management in complex river basins. Environmental Modeling & Assessment. Vol. 13(1) p. 135–153. DOI 10.1007/s10666-006-9075-1.

DELIMAN P.N., GERALD J.A. 2002. Application of the two-dimensional hydrothermal and water quality model, CE-QUAL-W2, to the Chesapeake Bay–Conowingo Reservoir. Lake and Reservoir Management. Vol. 18(1) p. 10–19. DOI 10.1080/07438140209353925.

DOÑA C., SÁNCHEZ J.M., CASELLES V., DOMÍNGUEZ J.A., CAMACHO A. 2014. Empirical relationships for monitoring water quality of lakes and reservoirs through multispectral images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. Vol. 7(5) p. 1632–1641. DOI 10.1109/JSTARS.2014.2301295.

HAMILTON D.P., SCHLADOW S.G. 1997. Prediction of water quality in lakes and reservoirs. Part I – Model description. Ecological Modelling. Vol. 96(1–3) p. 91–110. DOI 10.1016/S0304-3800(96)00062-2.

HENRY R. 1993. Thermal regime and stability of Jurumirim reservoir (Paranapanema River, Sao Paulo, Brazil). Internationale Revue der gesamten Hydrobiologie und Hydrographie. Vol. 78(4) p. 501–511. DOI 10.1002/IROH.19930780407.

HUA R., ZHANG Y. 2017. Assessment of water quality improvements using the hydrodynamic simulation approach in regulated cascade reservoirs: A case study of drinking water sources of Shenzhen, China. Water. Vol. 9(11) p. 825–839. DOI 10.3390/w9110825.

KHODABANDEH F., DARMIAN M.D., MOGHADDAM M.A., MONFARED S.A.H. 2021. Reservoir quality management with CE-QUAL-W2/ANN surrogate model and PSO algorithm (case study: Pishin Dam, Iran). Arabian Journal of Geosciences. Vol. 14(5) p. 1–18. DOI 10.1007/s12517-021-06735-x.

LITVINOV A.S., ZAKONNOVA A.V. 2012. Thermal regime in the Rybinsk Reservoir under global warming. Russian Meteorology and Hydrology. Vol. 37(9) p. 640–644. DOI 10.3103/S1068373912090087.

MELO D.S., GONTIJO E. S., FRASCARELI D., SIMONETTI V.C., MACHADO L.S., BARTH J.A., ... FRIESE K. 2019. Self-organizing maps for evaluation of biogeochemical processes and temporal variations in water quality of subtropical reservoirs. Water Resources Research. Vol. 55(12) p. 10268–10281. DOI 10.1029/2019WR025991.

MOHSENI-BANDPEI A., MOTESADDI S., ESLAMIZADEH M., RAFIEE M., NASSERI M., NAMIN M.M., ... RIAHI S.M. 2018. Water quality assessment of the most important dam (Latyan dam) in Tehran, Iran. Environmental Science and Pollution Research. Vol. 25(29) p. 29227–29239. DOI 10.1007/s11356-018-2865-6.

MOLAJOU A., AFSHAR A., KHOSRAVI M., SOLEIMANIAN E., VAHABZADEH M., VARIANI H.A. 2021. A new paradigm of water, food, and energy nexus. Environmental Science and Pollution Research. DOI 10.1007/s11356-021-13034-1.

NOURANI V., ROUZEGARI N., MOLAJOU A., BAGHANAM A.H. 2020. An integrated simulation-optimization framework to optimize the reservoir operation adapted to climate change scenarios. Journal of Hydrology. Vol. 587, 125018. DOI 10.1016/j.jhydrol.2020.125018.

OSTFELD A., SALOMONS S. 2005. A hybrid genetic – instance based learning algorithm for CE-QUAL-W2 calibration. Journal of Hydrology. Vol. 310(1–4) p. 122–142. DOI 10.1016/j.jhy-drol.2004.12.004.

SCHLADOW S.G., HAMILTON D.P. 1997. Prediction of water quality in lakes and reservoirs: Part II – Model calibration, sensitivity analysis and application. Ecological Modelling. Vol. 96(1–3) p. 111–123. DOI 10.1016/S0304-3800(96)00063-4.

SKOWRON R., PIASECKI A. 2016. Dynamics of the daily course of water temperature in Polish lakes. Journal of Water and Land Development. No. 31 p. 149–156. DOI 10.1515/jwld-2016-0046.

WANG S., QIAN X., HAN B.P., LUO L.C., HAMILTON D.P. 2012. Effects of local climate and hydrological conditions on the thermal regime of a reservoir at Tropic of Cancer, in southern China. Water Research. Vol. 46(8) p. 2591–2604. DOI 10.1016/j.watres.2012.02.014.

WANG X., ZHOU Y., ZHAO Z., WANG L., XU J., YU J. 2019. A novel water quality mechanism modeling and eutrophication risk assessment method of lakes and reservoirs. Nonlinear Dynamics. Vol. 96(2) p. 1037–1053. DOI 10.1007/s11071-019-04837-6.

WU Z., WANG X., CHEN Y., CAI Y., DENG J. 2018. Assessing river water quality using water quality index in Lake Taihu Basin, China. Science of the Total Environment. Vol. 612 p. 914–922. DOI 10.1016/j.scitotenv.2017.08.293.

YANG Y., DENG Y., TUO Y., LI J., HE T., CHEN M. 2020. Study of the thermal regime of a reservoir on the Qinghai-Tibetan Plateau, China. PloS ONE. Vol. 15(12), e0243198. DOI 10.1371/journal.pone.0243198.

ZEINIVAND H., DE SMEDT F. 2009. Hydrological modeling of snow accumulation and melting on river basin scale. Water Resources Management. Vol. 23(11) p. 2271–2287. DOI 10.1007/s11269-008-9381-2.

ZHI W., FENG D., TSAI W.P., STERLE G., HARPOLD A., SHEN C., LI L. 2021. From hydrometeorology to river water quality: Can a deep learning model predict dissolved oxygen at the continental scale? Environmental Science & Technology. Vol. 55(4) p. 2357–2368. DOI 10.1021/acs.est.0c06783.
Go to article

Authors and Affiliations

Tzu-Chia Chen
1
ORCID: ORCID
Shu-Yan Yu
1
Chang-Ming Wang
1
Sen Xie
1
Hanif Barazandeh
2

  1. International College, Krirk University, Bangkok, 3 Ram Inthra Rd, Khwaeng Anusawari, Khet Bang Khen, Krung Thep Maha Nakhon 10220, Thailand
  2. Ferdowsi University of Mashhad, Iran
Download PDF Download RIS Download Bibtex

Abstract

Multiple anthropogenic agents have turned Lake Maracaibo into a hypereutrophic environment. Heavy metals resulting from the steel and oil industry augment pollution in the lake. There is a lack of research on the ecotoxicological effect of heavy metals in protozoa. To evaluate the ecotoxicological effect of Cr3+, Cr6+, Cd2+, Pb2+ and Ni2+ on free-living ciliated protozoa and to identify suitable ciliated protozoa candidates for bioindicators of water quality; we estimated the lethal concentration for 50% of the protozoa population (LC50) in samples from two stations (S1: narrow of Maracaibo and S2: South of the lake) using ecotoxicological tests in the Sedgewick–Rafter chamber and Probit analysis. The general toxicity patterns obtained for S1 protozoa (Euplotes sp. and Oxytricha sp.) were Cr3+ > Cd2+ > Pb2+ > Cr6+ > Ni2+; and those corresponding to S2 (Coleps sp. and Chilodonella sp.) were Cr6+ > Cr3+ > Cd2+ > Pb2+ > Ni2+. We found statistically significant difference (p < 0.05) in the LC50 of protozoa exposed to Cr3+, Cr6+, Ni2+ and Pb2+ when comparing the two sampling stations. The differences observed in toxicity patterns are probably the result of various kinds of protozoa adaptation, possibly induced by various sources, levels and incidents of exposure to heavy metals contamination of the protozoa studied and to the physicochemical conditions prevailing in the two selected stations. The levels of tolerance observed in the present study, allow us to infer that S2 ciliates are the most susceptible to the contaminants studied and can be used as possible microbiological indicators that provide early warning in studies of contamination by heavy metals in Lake Maracaibo.
Go to article

Bibliography

ABRAHAM J.S., SRIPOORNA S., MAURYA S., MAKHIJA S., GUPTA R., TOTEJA R. 2019. Techniques and tools for species identification in ciliates: A review. International Journal of Systematic and Evolutionary Microbiology. Vol. 69(4) p. 877–894. DOI 10.1099/ij-sem.0.003176.

ALBERGONI V., PICCINNI E. 1983. Biological response to trace metals and their biochemical effects. In: Trace element speciation in surface waters and its ecological implications. NATO Conference Series (I Ecology). Eds. Gary, G. Leppard. Springer. Vol. 6. Boston, MA p. 159–175. DOI 10.1007/978-1-4684-8234-8_10.

AL-RASHEID K.A., SLEIGH M.A. 1994. The effects of heavy metals on the feeding rate of Euplotes mutabilis (Tuffrau, 1960). European Journal of Protistology. Vol. 30(3) p. 270–279. DOI 10.1016/S0932-4739(11)80073-8.

APHA, AWWA, WEF 2012. Standard methods for the examination of water and wastewater. 22nd ed. Washington, D.C. EUA. American Public Health Association. ISBN 978-0875530130 pp. 1496.

ÁVILA H., QUINTERO E., ANGULO N., CÁRDENAS C., ARAUJO M., MORALES N., PRIETO M. 2014. Determinación de metales pesados en sedimentos superficiales costeros del Sistema Lago de Maracaibo, Venezuela [Determination of heavy metals in coastal surface sediments of the Lake Maracaibo System, Venezuela]. Multiciencias. Vol. 14(1) p. 16–21.

ÁVILA H., GUTIÉRREZ E., LEDO H., ARAUJO M., SÁNQUIZ M. 2010. Heavy metals distribution in superficial sediments of Maracaibo Lake (Venezuela). Revista Técnica de la Facultad de Ingeniería Universidad del Zulia. Vol. 33(2) p. 122–129.

BENEDETTI M., CIAPRINI F., PIVA F., ONORATI F., FATTORINI D., NOTTI A., AUSILI A., REGOLI F. 2011. A multidisciplinary weight of evidence approach for classifying polluted sediments: Integrating sediment chemistry, bioavailability, biomarkers responses and bioassays. Environment International. Vol. 38(1) p. 17–28. DOI 10.1016/j.envint.2011.08.003.

BENLAIFA M., REDA M., BERREDJEM H., BENAMARA M., OUALI K., DJEBAR H. 2016. Stress induced by cadmium: Its effects on growth respiratory metabolism, antioxidant enzymes and reactive oxygen species (ROS) of Paramecium sp. International Journal of Pharmaceutical Sciences Review and Research. Vol. 38(1) p. 276–281.

BRACHO G.J., CUADOR-GIL J.Q., RODRÍGUEZ-FERNÁNDEZ R.M. 2016. Calidad del agua y sedimento en el Lago de Maracaibo, estado Zulia [Maracaibo lake water and sediment quality, Zulia State]. Minería & Geología. Vol. 32(1) p. 1–14.

CCME 2001. Canadian sediment quality guidelines for the protection of aquatic life, summary tables. Canadian Council of Ministers of The Environment pp. 5.

CHATTERJEE S., KUMARI S., RATH S., PRIYADARSHANEE M., DAS S. 2020. Diversity, structure and regulation of microbial metallothionein: Metal resistance and possible applications in sequestration of toxic metals. Metallomics. No. 12 p. 1637–1655. DOI 10.1039/D0MT00140F.

CLEMENS S. 2001. Molecular mechanisms of plant metal tolerance and homeostasis. Planta. Vol. 212(4) p. 475–486. DOI 10.1007/s004250000458.

CORLISS J. 2002. Biodiversity and biocomplexity of the protists and an overview of their significant roles in maintenance of our biosphere. Acta Protozoologica. Vol. 41 p. 199–219.

DE BAUTISTA S., BERNARD M., ROMERO M., TROCONIS M., SEGOVIA S., PAREDES J. 1999. Environmental impact of mercury discharges in the navigation channel, Lake of Maracaibo. Revista Técnica de la Facultad de Ingeniería. Universidad del Zulia. Vol. 22(1) p. 42–50.

Decreto N° 883. 1995. Normas para la clasificación y el control de la calidad de los cuerpos de agua y vertidos o efluentes líquidos [Decree no. 883. Standards for the classification and quality control of bodies of water and liquid discharges or effluents]. Ministerio del Ambiente y de los Recursos Naturales. Gaceta Oficial de la República de Venezuela, 5021 (Extraordinario) pp. 32.

DÍAZ S., MARTÍN-GONZÁLEZ A., GUTIÉRREZ J.C. 2006. Evaluation of heavy metal acute toxicity and bioaccumulation in soil ciliated protozoa. Environment International. Vol. 32 (6) p. 711–717. DOI 10.1016/j.envint.2006.03.004.

DOPHEIDE A., LEAR G., STOTT R., LEWIS G. 2009. Relative diversity and community structure of ciliates in stream biofilms according to molecular and microscopy methods. Applied and Environmental Microbiology. Vol. 75(16) p. 5261–5272. DOI 10.1128/AEM.00412-09.

EISEN J.A., COYNE R.S., WU M., WU D., THIAGARAJAN M., WORTMAN J.R., …, ORIAS E. 2006. Macronuclear genome sequence of the ciliate Tetrahymena thermophila, a model eukaryote. PloS Biology. Vol. 4(9), c286. DOI 10.1371/journal.pbio.0040286.

ESTEBAN G., TÉLLEZ C. 1990. Método de aislamiento, cultivo y bioensayo de toxicidad con protozoos ciliados [Method of isolation, culture and toxicity bioassay using ciliated protozoa]. Microbiología SEM. Vol. 6 p. 100–103.

FOISSNER W. 2004. Protozoa as bioindicators in running waters. In: Fachtagung. Biologische Gewässeruntersuchung und Bewertung; Taxonomie und Qualitätssicherung. Symposium zur Feier des 70. Geburtstages von Dr. Erik Mauch am 6. Oktober 2004 in Augsburg [Conference. Biological investigation and assessment of water bodies; Taxonomy and quality assurance. Symposium to celebrate the 70th birthday of Dr. Erik Mauch on October 6, 2004 in Augsburg]. Regierung von Schwaben & Deutsche Gesellschaft für Limnologie pp. 5.

FRIED J., LUDWIG W., PSENNER R., HEINZ K. 2002. Improvement of ciliate identification: a new protocol for fluorescence in situ hybridiza-tion (FISH) in combination with silver stain techniques. Systematic and Applied Microbiology. Vol. 25 p. 555–571. DOI 10.1078/07232020260517706.

GUTIÉRREZ-PEÑA L.V., PICÓN D., GUTIÉRREZ I.A., PRADA M., CARRERO P.E., DELGADO-CAYAMA Y.J., …, VIELMA-GUEVARA J.R. 2018. Heavy metals in soft tissue of blue crab (Callinectes sapidus) of Puerto Concha, Colon Municipality, Zulia State. Avances en Biomedicina. Vol. 7(1) p. 17–22.

GUTIÉRREZ J.C., MARTIN-GONZALEZ A., DIAZ S., AMARO F., ORTEGA R., GALLEGO A., DE LUCAS M.P. 2008. Ciliates as cellular tools to study the eukaryotic cell-heavy metal interactions. In: Heavy metal pollution. Ed. S.E. Brown, W.C. Welton. New York, NY. Nova Science Publishers p. 1–44.

IFTODE F., CURGY J.J., FLEURY A., FRYD-VERSAVEL G. 1985. Action of a heavy ion, Cd2+, and the antagonistic effect of Ca2+, on two ciliates Tetrahymena pyriformis and Euplotes vannus. Acta Protozoologica. Vol. 24(3–4) p. 273–279.

JAHN T.L., BOVEE E.C., JAHN F.F. 1980. How to know the Protozoa. 2. ed. Dubuque, Iowa. The Picture Key Nature Series. Wm. C. Brown Company Publishers. ISBN 0-697-04759-8 pp. 279.

KAPAHI M., SACHDEVA S. 2019. Bioremediation options for heavy metal pollution. Journal of Health and Pollution. Vol. 9(24), 191203. DOI 10.5696/2156-9614-9.24.191203.

KIM Y.O., SHIN K., JANG P.G., CHOI H.W., NOH J.H., YANG E.J., KIM E., JEON D. 2012. Tintinnid species as biological indicators for monitoring intrusion of the warm oceanic waters into Korean coastal waters. Ocean Science Journal. Vol. 47 p. 161–172. DOI 10.1007/s12601-012-0016-4

KUMAR M., GOGOI A., KUMARI D., BORAH R., DAS P., MAZUMDER P., TYAGI V.K. 2017. Review of perspective, problems, challenges, and future scenario of metal contamination in the urban environment. Journal of Hazardous, Toxic, and Radioactive Waste. Vol. 21(4) p. 1–16. DOI 10.1061/(asce)hz.2153-5515.0000351.

LARSEN J., NILSSON J.R. 1983. Effects of nickel on the rates of endocytosis, motility, and proliferation in Tetrahymena and determinations on the cell content of the metal. Protoplasma. Vol. 118(2) p. 140–147. DOI 10.1007/BF01293071.

LIAO V.H., DONG J., FREEDMAN J.H. 2002. Molecular characterization of a novel, cadmium-inducible gene from the nematode Caenor-habditis elegans. A new gene that contributes to the resistance to cadmium toxicity. Journal of Biological Chemistry. Vol. 277 p. 42049–42059. DOI 10.1074/jbc.M206740200.

LIBRI S. 2010. Biologie et physiologie des Protozoaires dans un milieu stressé par un métal lourd, le nickel [Biology and physiology of Protozoa in an environment stressed by a heavy metal, nickel]. Mémoire d’Ingéniorat d’état en Biologie Animale. Option biologie et physiologie animale générale et comparée. Université de Tébessa, Algérie pp. 70.

LINDHOLM T. 1982. EDTA and oxalic acid–two useful agents for narcotizing fragile and rapid microzooplankton. Hydrobiologia. Vol. 86(3) p. 297–298. DOI 10.1007/BF00006143.

LYNN D. 2008. The ciliated Protozoa. Characterization, classification and guide and literature. 3rd ed. New York. Springer. ISBN 978-1402082382 pp. 628.

MADONI P. 2000. The acute toxicity of nickel to freshwater ciliates. Environmental Pollution. Vol. 109(1) p. 53–59. DOI 10.1016/s0269-7491(99)00226-2.

MADONI P., ROMEO M.G. 2006. Acute toxicity of heavy metals towards freshwater ciliated protists. Environmental Pollution. Vol. 141 p. 1–7. DOI 10.1016/j.envpol.2005.08.025.

MARÍN J.C., RINCÓN N., DÍAZ-BORREGO L., MORALES E. 2017. Cultivo de protozoarios ciliados de vida libre a partir de muestras de agua del Lago de Maracaibo [Cultivation of free-living ciliated protozoa from water samples of lake Maracaibo]. Impacto Científico. Vol. 12(1) p. 157–170.

MARÍN-LEAL J.C., POLO C., BEHLING E., COLINA G., RINCÓN N., CARRASQUERO S. 2014. Distribución espacial de Cd y Pb en Polymesoda solida y sedimentos costeros del Lago de Maracaibo [Spatial distribution of Cd and Pb in Polymesoda solida and coastal sediments from Lake Maracaibo]. Multiciencias. Vol. 14 (1) p. 7–15.

MARTÍN-GONZÁLEZ A., DÍAZ S., BORNIQUEL S., GALLEGO A., GUTIÉRREZ J. 2006. Cytotoxicity and bioaccumulation of heavy metals by ciliated protozoa isolated from urban wastewater treatment plants. Research in Microbiology. Vol. 157 p. 108–118. DOI 10.1016/j.resmic.2005.06.005.

MARTINS P., ALMEIDA N., LEITE S. 2008. Application of a bacterial extracellular polymeric substance in heavy metal adsorption in a co-contaminated aqueous system. Brazilian Journal of Microbiology. Vol. 394 p. 780–786. DOI 10.1590/S1517-8382200 8000400034.

MEINELT T., MATZKE S., STÜBER A., PIETROCK M., WIENKE A., MITCHELL A. J., STRAUS D.L. 2009. Toxicity of peracetic acid (PAA) to tomonts of Ichthyophthirius multifiliis. Diseases of Aquatic Organisms. Vol. 86(1) p. 51–56. DOI 10.3354/dao02105.

MERA R., TORRES E., ABALDE J. 2016. Influence of sulphate on the reduction of cadmium toxicity in the microalga Chlamydomonas moewusii. Ecotoxicology and Environmental Safety. Vol. 128 p. 236–245. DOI 10.1016/j.ecoenv.2016.02.030.

METCALF X., EDDY X. 2003. Wastewater engineering: Treatment and reuse. 4th ed. China. McGraw-Hill Publishing Companies, Inc. ISBN 978-0070418783 pp. 1878.

MEYER P. 2015. Epigenetic variation and environmental change. Journal of Experimental Botany. Vol. 6(12) p. 3541–3548. DOI 10.1093/jxb/eru502.

MORTUZA M.G., TAKAHASHI T., UEKI T., KOSAKA T., MICHIBATA H., HOSOYA H. 2009. Comparison of hexavalent chromium bioaccu-mulation in five strains of paramecium, Paramecium bursaria. Journal of Cell and Animal Biology. Vol. 3(4) p. 062–066.

OGOYI D.O., MWITA C.J., NGUU E.K., SHIUNDU P.M. 2011. Determination of heavy metal content in water, sediment and microalgae from Lake Victoria, East Africa. The Open Environmental Engineering Journal. Vol. 4 p. 156–161. DOI 10.2174/1874829501104010156.

PATTERSON D.J. 1996. Free-living freshwater Protozoa: A colour guide. New York. John Wiley & Sons Inc. ISBN 978-1874545408 pp. 223.

PINOT F., KREPS S.E., BACHELET M., HAINAUT P., BAKONYI M., POLLA B.S. 2000. Cadmium in the environment: Sources, mechanisms of biotoxicity, and biomarkers. Reviews on Environmental Health. Vol. 15(3) p. 299–324. DOI 10.1515/reveh.2000.15.3.299.

POLO C. 2012. Distribución espacial de Cd y Pb en Polymesoda solida y sedimentos costeros del Lago de Maracaibo [Spatial distribution of Cd and Pb in Polymesoda solida and coastal sediments from Lake Maracaibo]. MSc Thesis. Maracaibo, Venezuela. Facultad de Ingeniería. Universidad del Zulia pp. 81.

PULIDO M.D., PARRISH A.R. 2003. Metal-induced apoptosis: mechan-isms. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis. Vol. 533(1–2) p. 227–241. DOI 10.1016/j.mrfmmm.2003.07.015.

RAVVA S.V., SARREAL C.Z., MANDRELL R.E. 2010. Identification of protozoa in dairy lagoon wastewater that consume Escherichia coli O157: H7 preferentially. PLoS One. Vol. 5(12), e15671 pp. 9. DOI 10.1371/journal.pone.0015671.

RODRÍGUEZ G. (ed.) 2000. El sistema del Lago de Maracaibo [The Lake Maracaibo system]. 2nd ed. Caracas, Venezuela. Instituto Venezolano de Investigaciones Científicas (IVIC) pp. 264.

ROJAS J. 2012. Polymesoda solida como bioindicador de metales pesados en el sistema estuarino del lago de Maracaibo [Polymesoda solida as a bioindicator of heavy metals in the estuarine system of Lake Maracaibo]. PhD Thesis. Maracaibo, Venezuela. Facultad de Ingeniería, Universidad del Zulia pp. 250.

RUBINSON J.F., RUBINSON K.A. 2000. Química analítica contemporánea [Contemporary analytical chemistry]. 1st ed. México DF. Prentice Hall. ISBN 978-9701703427 pp. 644.

SALL M.L., DIAW A.K.D., GNINGUE-SALL D., EFREMOVA AARON S., AARON J.-J. 2020. Toxic heavy metals: Impact on the environment and human health, and treatment with conducting organic polymers, a review. Environmental Science and Pollution Research. Vol. 27 p. 29927–29942. DOI 10.1007/s11356-020- 09354-3.

SKIBBE O. 1994. An improved quantitative protargol stain for ciliates and other planktonic protists. Archiv für Hydrobiologie. Vol. 130 (3) p. 339–347. DOI 10.1127/archiv-hydrobiol/130/1994/339.

SLAVEYKOVA V., SONNTAG B., GUTIÉRREZ J.C. 2016. Stress and Protists: No life without stress. European Journal of Protistology. Vol. 55 p. 39–49. DOI 10.1016/j.ejop.2016.06.001.

SOMASUNDARAM S., ABRAHAM J. S., MAURYA S., TOTEJA R., GUPTA R., MAKHIJA S. 2019. Expression and molecular characterization of stress-responsive genes (hsp70 and Mn-sod) and evaluation of antioxidant enzymes (CAT and GPx) in heavy metal exposed freshwater ciliate, Tetmemena sp. Molecular Biology Reports. Vol. 46(5) p. 4921–4931. DOI 10.1007/s11033-019-04942-0.

USEPA 2016. National recommended water quality criteria [online]. United States Environmental Protection Agency, Office of Water, Office of Science and Technology pp. 23. [Access 15.05.2020]. Available at: https://www.epa.gov/wqc/national-recommended-water-quality-criteria-aquatic-life-criteria-table

VIGNATI D.A., DOMINIK J., BEYE M.L., PETTINE M., FERRARI B.J. 2010. Chromium (VI) is more toxic than chromium (III) to freshwater algae: A paradigm to revise? Ecotoxicology and Environmental Safety. Vol. 73(5) p. 743–749. DOI 10.1016/j.ecoenv.2010.01.011.

VILAS-BOAS J.A., CARDOSO S.J., SENRA M.V.X., RICO A., DIAS R.J.P. 2020a. Ciliates as model organisms for the ecotoxicological risk assessment of heavy metals: A meta–analysis. Ecotoxicology and Environmental Safety. Vol. 199, 110669 pp. 11. DOI 10.1016/j.ecoenv.2020.110669.

VILAS-BOAS J.A., SENRA M.V.X., DIAS R.J.P. 2020b. Ciliates in ecotoxicological studies: A minireview. Acta Limnologica Brasi-liensia. Vol. 32, e202. DOI 10.1590/s2179-975x6719.

WEISSE T. 2017. Functional diversity of aquatic ciliates. European Journal of Protistology. Vol. 61 p. 331–358. DOI 10.1016/j.ejop.2017.04.001.
Go to article

Authors and Affiliations

Fernando Luis Castro Echavez
1
Julio César Marín Leal
2

  1. University of La Guajira, Faculty of Engineering, Environmental Engineering Program, PICHIHÜEL Research group, km 5 vía a Maicao, 440002, Riohacha, Colombia
  2. University of Zulia, Faculty of Engineering, School of Civil Engineering, Department of Sanitary and Environmental Engineering (DISA), Maracaibo, Venezuela
Download PDF Download RIS Download Bibtex

Abstract

Agricultural biogas plants are not only a place for processing waste resulting from animal husbandry, but also for generating electricity and heat as well as organic fertiliser. In a four-year experiment, pellets were used as organic fertiliser in the establishment of an experiment with fast-growing oxytrees. The study aimed to investigate the growth and stem thickness increment, overwintering in the first and subsequent years of cultivation under the conditions of north-eastern Poland.
The dried digestate and the pellets made from it were characterised by a high content of macroelements (N – 1,95%, P2O5 – 1,1%, K2O – 1,3%). The applied pellet from an agricultural biogas plant under oxytree seedlings due to its slow decomposition had a good effect on the growth of oxytrees in the second and third years. The average growth of oxytrees in the second year was 209.7 cm, and in the third year, 246.8 cm. The growth of oxytrees fertilised with pellets made from the digestate of an agricultural biogas plant was 13% higher than that of trees growing on the control strip.
Go to article

Bibliography

ABURAKER J., CEDERLUND H., ARTHURSON V., PELL M. 2013. Bacterial community structure and microbial activity in different soils amended with biogas residues and cattle slurry. Applied Soil Ecology. Vol. 72 p. 171–180. DOI 10.1016/j.apsoil.2013.07.002.

BAUZA-KASZEWSKA J., SZALA B., BREZA-BORUTA B., LIGOCKA A., KROPLEWSKA M. 2017. Wpływ nawożenia pofermentem z biogazowni na kształtowanie liczebności wybranych grup drobnoustrojów w gle-bie płowej [Influence of fertilization with biogas plant digestate on shaping the abundance of selected microbial groups in lessive soil]. Woda-Środowisko-Obszary Wiejskie. T. 17. Z. 2(58) p. 15– 26.

BIAŁOWIEC A., WIŚNIEWSKI D., PULKA J., SIUDAK M., JAKUBOWSKI B., MYŚLAK B. 2015. Biosuszenie pofermentu z biogazowni rolniczych [Biosynthesis of digestate from agricultural biogas plants]. Środkowo-Pomorskie Towarzystwo Naukowe Ochrony Środowiska. Rocznik Ochrona Środowiska. Vol. 17 p. 1554–1568.

Gramwzielone 2015. Nowa biogazownia w woj. podlaskim [The new biogas plant in Podlaskie Voivodeship] [online]. [Access 28.02.2021]. Available at: https://www.gramwzielone.pl/bioenergia/16643/nowa-biogazownia-w-woj-podlaskim

JADCZYSZYN T., WINIARSKI R. 2017. Wykorzystanie odpadów pofermen-tacyjnych z biogazowni rolniczych do nawożenia [Use of digestate from agricultural biogas plants for fertilization]. Studia i Raporty IUNG PIB. Z. 53(7) p. 105–118. DOI 10.26114/sir.iung.2017.53.08.

KNAUF M., FRÜHWALD A. 2015. Die Zukunft der deutschen Holzwerk-stoffindustrie [The future development of the German wood- based panel industry]. Holztechnologie. Nr. 56 p. 5–12.

KOWALCZYK-JUŚKO A., SZYMAŃSKA M. 2015. Poferment nawozem dla rolnictwa [Poferment fertilizer for agriculture]. Warszawa. Fundacja Programów Pomocy dla Rolnictwa FAPA. ISBN 978- 83-937363-6-2 pp. 60.

KOWR 2021. Rejestr wytwórców biogazu rolniczego [Angielski] [online]. Warszawa. Krajowy Ośrodek Wsparcia Rolnictwa. [Access 13.09.2021]. Available at: https://www.kowr.gov.pl/odnawialne-zrodla-energii/biogaz-rolniczy/wytworcy-biogazu-rolnic-zego/rejestr-wytworcow-biogazu-rolniczego

LISOWSKI J., BORUSIEWICZ A. 2019. Comparison of yield and energy values of Pennsylvania mallow with giant miscanthus in three consecutive years of cultivation. Fragmenta Agronomica. Vol. 36(4) p. 1–7.

LISOWSKI J., PORWISIAK H. 2018. Cechy biometryczne drzewa oxytree oraz wykorzystanie szybkości wzrostu jako produkcja biomasy dla potrzeb energetyki [Biometric characteristics of oxytree tree and the use of growth rate as biomass production for energy purposes]. Zeszyty Naukowe Wyższej Szkoły Agrobiznesu w Łomży. Nr 69 p. 53–61.

LÓPEZ SERRANO F.R. 2015. Informe provisional de simulación de la productividad De una plantación hipotética de Paulownia elongata x fortunei cv in Vitro 112® [Interim productivity simulation report of a hypothetical plantation of Paulownia elongata x fortunei cv in Vitro 112®. Renewable Energy Research Institute. Department of Agroforestry Technology and Science and Genetics – Castilla La Mancha University pp. 6.

LOŠÁK T., HLUŠEK J., VÁLKA T., ELBL J. , VÍTĚZ T., BĚLÍKOVÁ B., VON BENNEWITZ E. 2016. The effect of fertilisation with digestate on kohlrabi yields and quality. Plant, Soil and Environment. Vol. 62. No. 6 p. 274–278. DOI 10.17221/16/2016-PSE.

ŁAGOCKA A., KAMIŃSKI M., CHOLEWIŃSKI M., POSPOLITA W. 2016. Korzyści ekologiczne ze stosowania pofermentu z biogazowni rolniczych jako nawozu organicznego [Health and environmental benefits of utilization of post-fermentation pulp from agricultural biogas plants as a natural fertilizer]. Kosmos. Nr 65. Nr 4 p. 601–607.

MATA-ALVAREZ J., DOSTA J., ROMERO-GÜIZA M.S., FONOLL X., PECES M., ASTALS S. 2014. A critical review on anaerobic co-digestion achievements between 2010 and 2013. Renewable and Sustainable Energy Reviews. Vol. 36(C) p. 412–427.

MRiRW 2020. Odpowiedź na zapytanie nr 355 z dnia 28 lutego 2020 Pani Poseł Urszuli Pasławskiej w sprawie biogazowni rolniczych [Reply to Question No 355 of 28 February 2020 by Urszula Pasławska on agricultural biogas plants] [online]. Znak sprawy: KS.eb.058.1.2020. [Access 15.08.2020]. Available at: http://orka2.sejm.gov.pl/INT9.nsf/klucz/ATTBNAJ43/%24FILE/z00335-o1.pdf

OSChR 2016. Sprawozdanie z badań Okręgowej Stacji Chemiczno- Rolniczej w Warszawie z dnia 04.01.2016 r. [Research report form District Chemical and Agricultural Station in Warsaw dated 04.01.2016]. [Unpublished].

Rozporządzenie Rady Ministrów z dnia 12 lutego 2020 r. w sprawie przyjęcia „Programu działań mających na celu zmniejszenie zanieczyszczenia wód azotanami pochodzącymi ze źródeł rolnic-zych oraz zapobieganie dalszemu zanieczyszczeniu” [Regulation of the Council of Ministers of 12 February 2020 on the adoption of the ”Programme of measures to reduce pollution of waters by nitrates from agricultural sources and to prevent further pollution”]. Dz.U. 2020 poz. 243.

SAPP M., HARRISON M., HANY U., CHARLTON A., THWAITES R. 2015. Comparing the effect of digestate and chemical fertiliser on soil bacteria. Applied Soil Ecology. Vol. 86 p. 1–9. DOI 10.1016/j.apsoil.2014.10.004.
Go to article

Authors and Affiliations

Zbigniew Skibko
1
ORCID: ORCID
Waclaw Romaniuk
2
ORCID: ORCID
Andrzej Borusiewicz
3
ORCID: ORCID
Henryk Porwisiak
3
ORCID: ORCID
Janusz Lisowski
3
ORCID: ORCID

  1. Bialystok University of Technology, Faculty of Electrical Engineering, Wiejska 45 D, 15-351 Bialystok, Poland
  2. Institute of Technology and Life Sciences – National Research Insitute, Falenty, Poland
  3. The Higher School of Agribusiness in Lomza, Poland
Download PDF Download RIS Download Bibtex

Abstract

This study aims to investigate how grazing is perceived across the Curvature Subcarpathians (Romania) by farmers. We investigate farmers’ attitudes toward and understanding of grazing practice and associated processes involving small ruminants (sheep and goats). Additionally, we review the scientific literature and new discussions about grazing vs overgrazing terms and changes in the Romanian small ruminant livestock. Results of the survey on the total of 101 case studies from villages in 3 counties (Damboviţa, Buzau, and Vrancea) show that: (i) grazing is differently perceived; (ii) most of the areas designated for grazing are located near riverbanks (over 55%); most of the respondents reported that the areas intended for grazing are quite close to the inhabited areas; distances are less than 2.5 km; and over 60% of respondents believe that the areas are continuously subject to soil degradation processes; (iii) answers given in connection with the issues addressed provide both relevance to the Curvature Subcarpathians (6792 km2) and the potential impact of higher pressure of grazing on local areas due to the discouragement of specific transhumance policies (more than 60% required subsidies). The average stocking density is about 4.7 head per ha. In general, beyond different farmers’ perceptions, a scientific question remains open regarding the quantitative impact of grazing on hydrological processes. Hence, a field survey (e.g., rainfall-runoff experiments) to assess grazing pressure on water and soil resources will be performed.
Go to article

Authors and Affiliations

Gianina Neculau
1 2
ORCID: ORCID
Gabriel Minea
1 2
ORCID: ORCID
Nicu Ciobotaru
1 2
ORCID: ORCID
Gabriela Ioana-Toroimac
3
ORCID: ORCID
Sevastel Mircea
1
ORCID: ORCID
Oana Mititelu-Ionuș
4
ORCID: ORCID
Jesús Rodrigo-Comino
5
ORCID: ORCID

  1. University of Bucharest, Research Institute of the University of Bucharest, 90 Panduri Street, Sector 5, 050107, Bucharest, Romania
  2. National Institute of Hydrology and Water Management, 97 E Bucureşti – Ploieşti Road, Sector 1, 013686, Bucharest, Romania
  3. University of Bucharest, Faculty of Geography, Bucharest, Romania
  4. University of Craiova, Faculty of Sciences, Department of Geography, Craiova, Romania
  5. University of Granada, Faculty of Philosophy and Letters, Department of Regional Geographic Analysis and Physical Geography, Granada, Spain
Download PDF Download RIS Download Bibtex

Abstract

The 2150 km2 transboundary Gurara Reservoir Catchment in Nigeria was modelled using the Water Evaluation and Planning tool to assess the hydro-climatic variability resulting from climate change and human-induced activities from 1989 to 2019 and projected to the future till 2050. Specifically, the model simulated the historic dataset and predicted the future runoff. The initial results revealed that monthly calibration/validation of the model yielded acceptable results with Nash–Sutcliff efficiency ( NSE), percent bias ( PBIAS), and coefficient of determination (R2) values of 0.72/0.69, 0.72/0.67 and 4.0%/1.0% respectively. Uncertainty was moderately adequate as the model enveloped about 70% of the observed runoff. Future predicted runoffs were modelled for climate ensembles under three different representative concentration pathways (RCP4.5, RCP6.5 and RCP8.5). The RCP projections for all the climate change scenarios showed increasing runoff trends. The model proved efficient in determining the hydrological response of the catchment to potential impacts from climate change and human-induced activities. The model has the potential to be used for further analysis to aid effective water resources planning and management at catchment scale.
Go to article

Authors and Affiliations

Francis Ifie-emi Oseke
1
ORCID: ORCID
Geophery Kwame Anornu
1
Kwaku Amaning Adjei
1
ORCID: ORCID
Martin Obada Eduvie
1

  1. National Water Resources Institute, Mando, P.MB 2309, Kaduna, Nigeria
Download PDF Download RIS Download Bibtex

Abstract

The present study was to reflect the use of some bacteria in the treatment and removal of pollutants in three selected wastewater sites, including a vegetable oil plant (viz. Al-Etihad Food Industries), the main wastewater treatment station in the city of Hila, and Al-Hila River water from October 2019 to January 2020. The bacterial isolates identified in these three sites were Klebsiella pneumoniae, Escherichia coli, Enterobacteria cloacae, Pseudomonas aeruginosa, Thalasobacillus devorans, Acinetobacter baumannii, and Bacillus subtilis. The molecular study of the bacterial isolates involved the detection of bacterial genera using the polymerase chain reaction (PCR). The results showed that water had a variable nature, depending on the substances in it. It recorded varying chemical and physical property values, ranging between 6.36 and 7.82 for pH and from 2500 to 7100 mg∙dm–3 for total alkalinity. Additional values were 713–2051 μS∙cm–1 for electrical conductivity (EC), 5.90–9.80 mg∙dm–3 for chemical oxygen demand (COD), and 480–960 mg∙dm–3 for total hardness. The given values were also 0.20–0.65 μg∙dm–3, 0.03-0.23 μg∙dm–3, and 0–107 mg∙dm–3 for nitrite (NO2), phosphate (PO4) oils, respectively.
Go to article

Authors and Affiliations

Hanan Kareem Salim
1
ORCID: ORCID
Suad Ghali Kadhim Al-Ahmed
1

  1. Babylon University, College of Sciences, Department of Biology, PO Box: 4 Iraq - Babylon - Hilla, Iraq
Download PDF Download RIS Download Bibtex

Abstract

Ethiopia has lost sizable forest resources due to rapid population growth and subsequent increase in the demand for agricultural land and fuel woods. In this study, GIS and remote sensing techniques were used to detect forest cover changes in relation to climate variability in the Kafa zone, southwest Ethiopia. Landsat Thematic Mapper (TM) images of 1986 and 1990, Enhanced Thematic Mapper plus (ETM+) image of 2010 and Landsat-8 Operational Land Imager (OLI-8) image of 2018 were acquired at a resolution of 30 m to investigate spatial-temporal forest cover and land use changes. A supervised image classification was made using a maximum likelihood method in ERDAS imagine V9.2 to identify the various land use and land cover classes. Both spectral (normalised difference vegetation index – NDVI) and post classification change detection methods were used to determine the forest cover changes. To examine the extent and rate of forest cover changes, post classification comparisons were made using ArcGIS V 10.4.1. A net forest cover change of 1168.65 ha (12%) was detected during the study period from 1986 to 2018. The drop in the NDVI from 0.06–0.64 in 1986 to (–0.08)–0.12 in 2018 indicated a marked forest cover change in the study area. The correlation of NDVI values with climate data indicated the forest was not in a stable condition. The declining of the forest cover was most likely caused by climate variability in the study area.
Go to article

Authors and Affiliations

Dejene Beyene Lemma
1
Kinde Teshome Gebretsadik
1
Seifu Kebede Debela
1

  1. Jimma Institute of Technology, Faculty of Civil and Environmental Engineering, Jimma University, Jimma, P.O.Box: 378, Ethiopia
Download PDF Download RIS Download Bibtex

Abstract

The drought ranked first in terms the natural hazard characteristics and impacts followed by tropical cyclones, regional floods, earthquakes, and volcanoes. Drought monitoring is an important aspect of drought risk management and the assessment of drought is usually done through using various drought indices. The western region in Algeria is the most affected by the drought since the middle of the 70s.The current research focuses on the analysis and comparison of four meteorological drought indices (standardized precipitation index – SPI, percent of normal index – PN, decile index – DI, and rainfall anomaly index – RAI) in the Tafna basin for different time scales (annual, seasonal, and monthly) during 1979–2011. The results showed that the SPI and DI have similar frequencies for dry and wet categories. The RAI and PN were able to detect more drought categories. Meanwhile, all indices have strong positive correlations between each other, especially with Spearman correlation tests (0.99; 1.0), the meteorological drought indices almost showed consistent and similar results in the study area. It was determined in 1982 as the driest year and 2008 as the wettest year in the period of the study. The analysis of the trend was based on the test of Mann– Kendall (MK), a positive trend of the indices were detected on a monthly scale, this increasing of indices trend represent the increasing of the wet categories which explains the increasing trend of the rainfall in the last 2000s. These results overview of the understanding of drought trends in the region is crucial for making strategies and assist in decision making for water resources management and reducing vulnerability to drought.
Go to article

Authors and Affiliations

Hanane Bougara
1 2
ORCID: ORCID
Kamila Baba Hamed
1
Christian Borgemeister
3
ORCID: ORCID
Bernhard Tischbein
3
ORCID: ORCID
Navneet Kumar
3
ORCID: ORCID

  1. University of Abou Bekr Belkaid, Faculty of Technology, Tlemcen BP 230 - 13000, Chetouane Tlemcen, Algeria
  2. Pan African University Institute of Water and Energy Sciences (PAUWES), Tlemcen, Algeria
  3. University of Bonn, Center for Development Research (ZEF), Bonn, Germany

This page uses 'cookies'. Learn more