Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Exploitation of lignite within the area of Muskau Arch, carried out from the mid-nineteenth century, contributed to the transformation of the natural environment and changes in water regime. In the post-mining subsidences pit lakes were formed. The chemical composition of waters is a consequence of the intensive weathering of pyrite (FeS2), which is present in Miocene lignite-bearing rock forming the embankments of the lakes. This process leads to the formation of Acid Mine Drainage (AMD) and finally acidification of lake waters.

This paper presents results of the identification of hydrogeochemical processes affecting the chemistry of waters from these reservoirs carried out using the speciation and statistical (cluster and factor) analyses. Cluster analysis allowed to separate from the analyzed group of anthropogenic reservoirs 7 subgroups characterized by a similar chemical composition of waters. The major processes affecting the chemistry of waters were identified and interpreted with help of factor and speciation analysis of two major parameters (iron and sulfur).

Go to article

Authors and Affiliations

Sylwia Lutyńska
Krzysztof Labus
Download PDF Download RIS Download Bibtex

Abstract

The adsorption of lead ions onto a zeolite bearing tuff (stilbite) from synthetic acid aqueous solution and

acid mine drainage taken from Sasa mine, Macedonia, is elaborated in this paper. The results present that adsorption

occurs effi ciently in both of cases.

The physical and chemical properties of the used natural material, zeolite bearing tuff, are characterized by X-ray

diffraction, scanning electron microscopy, energy dispersive spectroscopy. The concentration of metal ions in solution

before and after treatment is obtained by AES-ICP.

The effectivity of zeolite bearing tuff is determined through a series of experiments under batch conditions from

single ion solutions, whereby the main parameters are the effects of initial pH of solution, mass of adsorbent, initial

metal concentration in solution, contacting time and competing cations. The maximum capacity of zeolite bearing tuff

for removal of lead ions from solution is determined by equilibrium studies.

The experimental obtained data are fi tted with Freundlich and Langmuir adsorption models. The experimental

data are better fi tted with Langmuir adsorption isotherm.

Zeolite bearing tuff is effective adsorbent for treating acid mine drainage. The results showed that 99% of lead ions

are removed from acid mine drainage, i.e. the concentration of lead ions from 0.329 mg/dm3

decrease to 0.002 mg/dm3

.

The pH value of acid mine drainage from 3.90 after treatment with zeolite bearing tuff increases to 5.36.

Go to article

Authors and Affiliations

Afrodita Zendelska
Mirjana Golomeova
Blagoj Golomeov
Boris Krstev
Download PDF Download RIS Download Bibtex

Abstract

Acid mine drainage has always been of global concern, primarily due to its low pH, high concentration of heavy metals and toxic substances, and serious impact on the surrounding environment and ecology of mines. However, the research progress and hotspots in this field of acid mine drainage processing are still unclear. To better understand the research hotspots and trends of acid mine drainage processing from 2004 to 2023, we used CiteSpace bibliometric software to visually analyze 1142 English-language research articles and reviews from the Web of Science core database. Results indicated that this field has received increas-ing attention from researchers worldwide, especially since 2017. The USA and China stand out as major contributors, yet their international collaboration doesn't match South Africa robust partnerships. Strengthening cooperation with other nations should be a priority for both the USA and China. The University of Quebec and University of South Africa were the most production institution. Vhahangwele Masindi from South Africa was the most active author. The top two core journals in this field were Science of the Total Environment and Water Re-search. Additionally, through keyword co-occurrence, clustering, and burst analysis, it is evi-dent that research on heavy metal mechanisms and resource recovery will be the future re-search hotspots in this field of acid mine drainage. This study provides researchers with an opportunity to understand the hotspots and trends in acid mine drainage research from a bibliometric perspective, and serves as a reference for future studies.
Go to article

Bibliography


  1. Agboola, O. (2019). The role of membrane technology in acid mine water treatment: a review. Korean Journal of Chemical Engineering, 36(9), pp. 1389-1400. DOI:10.1007/s11814-019-0302-2
  2. Ali, I., Basheer, A. A., Mbianda, X.Y., Burakov, A., Galunin, E., Burakova, I., Mkrtchyan, E., Tkachev, A. & Grachev, V. (2019). Graphene based adsorbents for remediation of noxious pollutants from wastewater. Environment International, 127: pp. 160-180. DOI:10.1016/j.envint.2019.03.029
  3. Anawar, H. M. (2015). Sustainable rehabilitation of mining waste and acid mine drainage using geochemistry, mine type, mineralogy, texture, ore extraction and climate knowledge. Journal of Environmental Management, 158: pp. 111-121. DOI:10.1016/j.jenvman.2015.04.045
  4. Anekwe, I.M.S. & Isa, Y.M. (2023). Bioremediation of acid mine drainage-Review. Alexandria Engineering Journal, 65, pp. 1047-1075. DOI:10.1016/j.aej.2022.09.053
  5. Aydin, M.I., Yuzer, B., Hasancebi, B. & Selcuk, H. (2019). Application of electrodialysis membrane process to recovery sulfuric acid and wastewater in the chalcopyrite mining industry. Desalination and Water Treatment, 172, pp. 206-211. DOI:10.5004/dwt.2019.25051
  6. Azapagic, A. (2004). Developing a framework for sustainable development indicators for the mining and minerals industry. Journal of Cleaner Production, 12(6), pp. 639-662. DOI:10.1016/s0959-6526(03)00075-1
  7. Benassi, J.C., Laus, R., Geremias, R., Lima, P.L., Menezes, C.T.B., Laranjeira, M.C.M., Wilhelm-Filho, D., Fávere, V.T.R. & Pedrosa, C. (2006). Evaluation of remediation of coal mining wastewater by chitosan microspheres using biomarkers. Archives of Environmental Contamination and Toxicology, 51(4), pp. 633-640. DOI:10.1007/s00244-005-0187-4
  8. Bogush, A. A. & Voronin, V. G. (2011). Application of a Peat-humic Agent for Treatment of Acid Mine Drainage. Mine Water and the Environment, 30(3), pp. 185-190. DOI:10.1007/s10230-010-0132-2
  9. Chen, C. M. (2006). CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. Journal of the American Society for Information Science and Technology, 57(3), pp. 359-377. DOI:10.1002/asi.20317
  10. Chen,G., Ye, Y., Yao, N., Hu, N., Zhang, J. &Huang, Y. (2021). A critical review of prevention, treatment, reuse, and resource recovery from acid mine drainage. Journal of Cleaner Production 329(20), pp. 1-21. DOI:10.1016/j.jclepro.2021.129666
  11. Edgar, G.J., Stuart-Smith, R.D., Willis, T.J., Kininmonth, S., Baker, S.C., Banks, S., Barrett, N.S., Becerro, M.A., Bernard, A.T.F., Berkhout, J., Buxton, C.D., Campbell, S.J., Cooper, A.T., Davey, Edgar, S.C., Försterra, G., Galván, D.E., Irigoyen, A.J., Kushner, D.J., Moura, R., Parnell, P.E., Shears, N.T., Soler, G., Strain, E.M.A. & Thomson, RJ. (2014). Global conservation outcomes depend on marine protected areas with five key features. Nature 506(7487), pp. 216-220. DOI:10.1038/nature13022
  12. He, Y., Lan, Y., Zhang, H. & Ye, S. (2022). Research characteristics and hotspots of the relationship between soil microorganisms and vegetation: A bibliometric analysis. Ecological Indicators, 141, pp. 1-15. DOI:10.1016/j.ecolind.2022.109145
  13. Jiao, Y., Zhang, C., Su, P., Tang, Y., Huang, Z. & Ma, T. (2023). A review of acid mine drainage: Formation mechanism, treatment technology, typical engineering cases and resource utilization. Process Safety and Environmental Protection, 170, pp. 1240-1260. DOI:10.1016/j.psep.2022.12.083
  14. Johnson, D. B. & Hallberg, K.B. (2005). Acid mine drainage remediation options: a review. Science of The Total Environment, 338(1), pp. 3-14. DOI:10.1016/j.scitotenv.2004.09.002
  15. Joshiba, G.J., Kumar, P.S., Govarthanan, M., Ngueagni, P.T., Abilarasu, A. & Carolin, F. (2021). Investigation of magnetic silica nanocomposite immobilized Pseudomonas fluorescens as a biosorbent for the effective sequestration of Rhodamine B from aqueous systems. Environmental Pollution 269. DOI:10.1016/j.envpol.2020.116173
  16. Kiiskila, J.D., Li, K., Sarkar, D. & Datta, R. (2020). Metabolic response of vetiver grass (Chrysopogon zizanioides) to acid mine drainage. Chemosphere, 240, 124961. DOI:10.1016/j.chemosphere.2019.124961
  17. Lazareva, E.V., Myagkaya, I.N., Kirichenko, I.S., Gustaytis, M.A. & Zhmodik, S.M. (2019). Interaction of natural organic matter with acid mine drainage: In-situ accumulation of elements. Science of The Total Environment, 660, pp. 468-483. DOI:10.1016/j.scitotenv.2018.12.467
  18. Xiao, L. (2008). Experimental research using passive treatment technology SAPS to treat acidic mine waste water. Journal of Water Resources and Water Engineering, 19(2). https://api.semanticscholar.org/CorpusID:113361846
  19. Liu, Y., Xie, X., Wang, S., Hu, S., Wei, L., Wu, Q., Luo, D. & Xiao, T. (2023). Hydrogeochemical evolution of groundwater impacted by acid mine drainage (AMD) from polymetallic mining areas (South China). Journal of Contaminant Hydrology, 259. DOI:10.1016/j.jconhyd.2023.104254
  20. Lo, S-F., Wang, S-Y., Tsai, M-J. & Lin, L-D. (2012). Adsorption capacity and removal efficiency of heavy metal ions by Moso and Ma bamboo activated carbons. Chemical Engineering Research & Design, 90(9), pp. 1397-1406. DOI:10.1016/j.cherd.2011.11.020
  21. Masindi, V., Akinwekomi, V., Maree, J.P. & Muedi, K.L. (2017). Comparison of mine water neutralisation efficiencies of different alkaline generating agents. Journal of Environmental Chemical Engineering, 5(4), pp. 3903-3913. DOI:10.1016/j.jece.2017.07.062
  22. Masindi, V., Foteinis, S. & Chatzisymeon, E. (2022). Co-treatment of acid mine drainage and municipal wastewater effluents: Emphasis on the fate and partitioning of chemical contaminants. Journal of Hazardous Materials, 421. DOI:10.1016/j.jhazmat.2021.126677
  23. Masindi, V., Foteinis, S., Renforth, P., Ndiritu, J., Maree, J.P., Tekere, M. & Chatzisymeon, E. (2022). Challenges and avenues for acid mine drainage treatment, beneficiation, and valorisation in circular economy: A review. Ecological Engineering, 183, 106740. DOI:10.1016/j.ecoleng.2022.106740
  24. McCauley, C.A., O'Sullivan, A.D., Milke, M.W., Weber, P.A. & Trumm, D.A. (2009). Sulfate and metal removal in bioreactors treating acid mine drainage dominated with iron and aluminum. Water Research, 43(4), pp. 961-970. DOI:10.1016/j.watres.2008.11.029
  25. Ming, C. J. M. M. (2006). Research on Sulfidization-Precipitation-High Concentration Pulping Treatment of Copper-Containing Acid Mine Drainage. Metal Mine.
  26. Motsi, T., Rowson, N.A. & Simmons, M.J.H. (2009). Adsorption of heavy metals from acid mine drainage by natural zeolite. International Journal of Mineral Processing, 92(1-2), pp. 42-48. DOI:10.1016/j.minpro.2009.02.005
  27. Mzinyane, N. N. (2022). Adsorption of heavy metals from acid mine drainage using poly (hydroxamic acid) ligand. South African Journal of Chemical Engineering, 42, pp. 318-336. DOI:10.1016/j.sajce.2022.09.007
  28. Nageshwari, K. & Balasubramanian, P. (2022). Evolution of struvite research and the way forward in resource recovery of phosphates through scientometric analysis. Journal of Cleaner Production, 357. DOI:10.1016/j.jclepro.2022.131737
  29. Nishimoto, N., Yamamoto, Y., Yamagata, S., Igarashi, T. & Tomiyama, S. (2021). Acid Mine Drainage Sources and Impact on Groundwater at the Osarizawa Mine, Japan. Minerals 11(9). DOI:10.3390/min11090998
  30. Núñez-Gómez, D., Rodrigues, C., Lapolli, F.R. & Lobo-Recio, M.A. (2019). Adsorption of heavy metals from coal acid mine drainage by shrimp shell waste: Isotherm and continuous-flow studies. Journal of Environmental Chemical Engineering, 7(1). DOI:10.1016/j.jece.2018.11.032
  31. Ouyang, W., Wang, Y., Lin, C., He, M., Hao, F., Liu, H. & Zhu, W. (2018). Heavy metal loss from agricultural watershed to aquatic system: A scientometrics review. Science of the Total Environment, 637, pp. 208-220. DOI:10.1016/j.scitotenv.2018.04.434
  32. Pagnanelli, F., De Michelis, I., Di Muzio, S., Ferella, F. & Vegliò, F. (2008). Bioassessment of a combined chemical-biological treatment for synthetic acid mine drainage. Journal of Hazardous Materials, 159(2-3), pp. 567-573. DOI:10.1016/j.jhazmat.2008.02.067
  33. Papirio, S., Villa-Gomez, D.K., Esposito, G., Pirozzi, F. & Lens, P.N.L. (2013). Acid Mine Drainage Treatment in Fluidized-Bed Bioreactors by Sulfate-Reducing Bacteria: A Critical Review. Critical Reviews in Environmental Science and Technology, 43(23), pp. 2545-2580. DOI:10.1080/10643389.2012.694328
  34. Prasad, B. & Mortimer, R. J. G. (2011). Treatment of Acid Mine Drainage Using Fly Ash Zeolite. Water Air and Soil Pollution, 218(1-4), pp. 667-679. DOI:10.1007/s11270-010-0676-6
  35. Qin, F., Zhu, Y., Ao, T. & Chen, T. (2021). The Development Trend and Research Frontiers of Distributed Hydrological Models-Visual Bibliometric Analysis Based on Citespace. Water, 13(2), 174. DOI:10.3390/w13020174
  36. Qureshi, A., Jia, Y., Maurice, C. & Öhlander, B. (2016). Potential of fly ash for neutralisation of acid mine drainage. Environmental Science and Pollution Research, 23(17), pp. 17083-17094. DOI:10.1007/s11356-016-6862-3
  37. Rahman, M.L., Wong, Z.J., Sarjadi, M.S., Abdullah, M.H., Heffernan, M.A., Sarkar, M.S. & O'Reilly, E. (2021). Poly(hydroxamic acid) ligand from palm-based waste materials for removal of heavy metals from electroplating wastewater. Journal of Applied Polymer Science, 138(2). DOI: 10.1002/app.49671
  38. Ren, J., Zheng, L., Su, Y., Meng, P., Zhou, Q., Zeng, H., Zhang, T. & Yu, H. (2022). Competitive adsorption of Cd(II), Pb(II) and Cu(II) ions from acid mine drainage with zero-valent iron/phosphoric titanium dioxide: XPS qualitative analyses and DFT quantitative calculations. Chemical Engineering Journal, 445, 136778. DOI:10.1016/j.cej.2022.136778
  39. Sephton, M.G., Webb, J.A. & McKnight, S. (2019). Applications of Portland cement blended with fly ash and acid mine drainage treatment sludge to control acid mine drainage generation from waste rocks. Applied Geochemistry, 103, pp. 1-14. DOI:10.1016/j.apgeochem.2019.02.005
  40. Si, M., Chen, Y., Li, C., Lin, Y., Huang, J., Zhu, F., Tian, S. & Zhao, Q. (2023). Recent Advances and Future Prospects on the Tailing Covering Technology for Oxidation Prevention of Sulfide Tailings. Toxics, 11(1), 13. DOI:10.3390/toxics11010011
  41. Sierra-Alvarez, R., Karri, S., Freeman, S. & Field, J.A. (2006). Biological treatment of heavy metals in acid mine drainage using sulfate reducing bioreactors. Water Science and Technology, 54(2), pp. 179-185. DOI:10.2166/wst.2006.502
  42. Skousen, J.G., Ziemkiewicz, P.F. & McDonald, L.M. (2019). Acid mine drainage formation, control and treatment: Approaches and strategies. The Extractive Industries and Society, 6(1), pp. 241-249. DOI:10.1016/j.exis.2018.09.008
  43. Tabelin, C.B., Park, I., Phengsaart, T., Jeon, S., Villacorte-Tabelin, M., Alonzo, D., Yoo, K., Ito, M. & Hiroyoshi, N. (2021). Copper and critical metals production from porphyry ores and E-wastes: A review of resource availability, processing/recycling challenges, socio-environmental aspects, and sustainability issues. Resources, Conservation and Recycling, 170, 105610. DOI:10.1016/j.resconrec.2021.105610
  44. Tabelin, C.B., Veerawattananun, S., Ito, M., Hiroyoshi, N. & Igarashi, T. (2017). Pyrite oxidation in the presence of hematite and alumina: I. Batch leaching experiments and kinetic modeling calculations. Science of the Total Environment, 580, pp. 687-698. DOI:10.1016/j.scitotenv.2016.12.015
  45. Le, T., Fan,R., Yang, S. & Li, C. (2021). Development and Status of the Treatment Technology for Acid Mine Drainage. Mining Metallurgy & Exploration, 38(1), pp. 315-327. DOI:10.1007/s42461-020-00298-3
  46. Tyulenev, M.A., Gvozdkova, T.N., Zhironkin, S.A. & Garina, E.A. (2017). Justification of Open Pit Mining Technology for Flat Coal Strata Processing in Relation to the Stratigraphic Positioning Rate. Geotechnical and Geological Engineering, 35(1), pp. 203-212. DOI:10.1007/s10706-016-0098-3
  47. Varvara, S., Popa, M., Bostan, R. &Damian, G. (2013). Preliminary considerations on the adsorption of heavy metals from acidic mine drainage using natural zeolite. Journal of Environmental Protection and Ecology, 14(4), pp. 1506-1514.
  48. Xiang, W., Zhang, X., Chen, J., Zou, W., He, F., Hu, X., Tsang, D.C.W., Ok, Y.S. & Gao, B. (2020). Biochar technology in wastewater treatment: A critical review. Chemosphere, 252, 126539. DOI:10.1016/j.chemosphere.2020.126539
  49. Yan, T., Xue, J., Zhou, Z. & Wu, Y. (2020). The trends in research on the effects of biochar on soil. Sustainability, 12(18). DOI: 10.3390/su12187810
  50. Yang, M., Lu, C., Quan, X. & Cao, D. (2021). Mechanism of Acid Mine Drainage Remediation with Steel Slag: A Review. Acs Omega, 6(45), pp. 30205-30213. DOI:10.1021/acsomega.1c03504
  51. Zhang, W., Yang, J., Sheng, P., Li, X. & Wang, X. (2014). Potential cooperation in renewable energy between China and the United States of America. Energy Policy, 75, pp. 403-409. DOI: 10.1016/j.enpol.2014.09.016
  52. Zhang, Y., Han, C., Zhang, G., Dionysiou, D.D. & Nadagouda, M.N. (2015). PEG-assisted synthesis of crystal TiO2 nanowires with high specific surface area for enhanced photocatalytic degradation of atrazine. Chemical Engineering Journal, 268, pp. 170-179. DOI:10.1016/j.cej.2015.01.006
  53. Zhao,Y., Fu,Z., Chen, X. & Zhang, G. (2018). Bioremediation process and bioremoval mechanism of heavy metal ions in acidic mine drainage. Chemical Research in Chinese Universities, 34(1), pp. 33-38. DOI:10.1007/s40242-018-7255-6
  54. Zhou, X. & Zhao, G. (2015). Global liposome research in the period of 1995-2014: a bibliometric analysis. Scientometrics, 105(1), pp. 231-248. DOI:10.1007/s11192-015-1659-6
Go to article

Authors and Affiliations

Meiyan Si
1
Yuntao Zhang
1
Hai Jin
2
Yongliang Long
2
Tao Nie
2
Wei Feng
2
Qingsong Li
2
Yichao Lin
2
Xiaoqian Xu
2
Chunhua Wang
2

  1. Guizhou Research Institute of Coal Mine Design Co.,Ltd., No 48, Dazhi Road, Xibei Street, Huaxi District, Guiyang 550025, China
  2. Guizhou Research Institute of Coal Mine Design Co.,Ltd., No 48, Dazhi Road, Xibei Street, Huaxi District, Guiyang 550025, China

This page uses 'cookies'. Learn more