Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Data
  • Type

Search results

Number of results: 1
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The Ramsar wetlands are crucial for global ecology. They are essential for preserving the balances of ecosystems. The aim of this work is to prevent the current situation of Sebkha of Soliman (880 ha; 36°43'N, 010°29'E; Nabeul, Tunisia) from deteriorating further. It is one of the few wetlands that receives water from both the sea, Wadi, and a wastewater treatment plant. According to a study of the organic pollution in the Sebkha's waters and sediments conducted in March 2022, there are high concentrations of suspended matter, that exceed 80 mg/L. The total organic matter exceeds 110 g/kg DW, and the biological oxygen demand exceeds 56 mg O2/L. Additionally, there are more than 24*103 bacteria per liter., We also identified mineral pollution primarily caused by nitrate (2.4 g/kg DW), phosphorus (2.42 g/kg DW), and iron (40 mg/L). Pollution is dispersed over three areas: the least polluted area is near the sea, the most polluted area is in the center of Sebkha, and the area farthest from the sea has medium pollution levels. The distribution of pollutants in the Sebkha is influenced by the contribution of pollutants and the self-purification by seawater.
Go to article

Bibliography

  1. Amari, M. & Azafzaf, H. )2001). Important Bird Areas in Africa and associated islands – Tunisia. http://datazone.birdlife.org/userfiles/file/IBAs/AfricaCntryPDFs/Tunisia.pdf
  2. Annotated List of Wetlands of International Importance. 1998. https://rsis.ramsar.org/sites/default/files/rsiswp_search/exports/Ramsar-Sites-annotated-summary-Tunisia.pdf?1576916235
  3. Brik,B., Shaiek,M., Trabelsi,L., Regaya,K., Mbarek,N.B., Béjaoui,B., Martins, M.V.A. & Zaaboub, N. (2022). Quality Status of Surface Sediments of Lake Ichkeul (NE Tunisia): an Environmental Protected Area and World Heritage Site. Water Air Soil Pollut. 233, 260. DOI:10.1007/s11270-022-05648-z
  4. Bunce, J.T., Ndam, E., Ofiteru, I.D., Moore, A. & Graham, D.W. (2018). A Review of Phosphorus Removal Technologies and Their Applicability to Small-Scale Domestic Wastewater Treatment Systems. Frontiers in Environmental Science, 6, pp. 1–15, DOI:10.3389/fenvs.2018.00008
  5. Chekirbane, A., Tsujimura, M., Lachaal, F., Khadhar, S., Mlayah, A., Kawachi, A. & Benalaya, A. (2016). Quantification of Groundwater - Saline Surface Water Interaction in a Small Coastal Plain in North-East Tunisia using Multivariate Statistical Analysis and Geophysical Method. Water Environment Research, 88, 12, pp. 2292–2308. DOI:10.2175/106143016x14609975746
  6. Coastal Protection and Development Agency (2002). Study of sanitation, valorization and development of the Sebkha of Soliman, Final Phase 1 Report: Diagnostic assessment and remediation scenarios Geoidd / Ceta / Betbel, pp. 84. https://rsis.ramsar.org/RISapp/files/29374310/documents/TN1713_lit1501.pdf
  7. El Hidri, D., Guesmi, A., Najjari, A., Cherif, H., Ettoumi, B., Hamdi, C. & Cherif, A. (2013). Cultivation-Dependant Assessment, Diversity, and Ecology of Haloalkaliphilic Bacteria in Arid Saline Systems of Southern Tunisia, BioMed Research International, pp. 1–15. DOI:10.1155/2013/648141
  8. Evans, M.I. & Fishpool, L.D.C. (2001). Important Bird Areas in Africa and associated Islands: Priority Sites for Conservation, Birdlife International, Pisces Publications, Cambridge, ISBN: 9781874357209.
  9. Directorate-General for Environment (2003). Horizontal guidance on the role of wetlands in the water framework directive, EU publications, Guidance document No 12.
  10. Fijałkowski K., Rosikoń K., Grobelak A. & Kacprzak M. (2011). Migration of various chemical compounds in soil solution during inducted phytoremediation, Archives of Environmental Protection, 37, 4 pp. 49 – 59.
  11. Gdara, I., Zrafi, I., Balducci, C., Cecinato, A. & Ghrabi, A. (2017). Seasonal Distribution, Source Identification, and Toxicological Risk Assessment of Polycyclic Aromatic Hydrocarbons (PAHs) in Sediments from Wadi El Bey Watershed in Tunisia, Archives of Environmental Contamination and Toxicology, 73, 3, pp. 488–510. DOI:10.1007/s00244-017-0440-7
  12. Gell, P.A., Finlayson, C.M. & Davidson, N.C. (2016). Understanding change in the ecological character of Ramsar wetlands: perspectives from a deeper time – synthesis, Marine and Freshwater Research, 67, 6, pp. 869. DOI:10.1071/mf16075
  13. Hails, A.J. (1997). Wetlands, Biodiversity and the Ramsar Convention. Ramsar Convention Bureau, Rue Mauverney 28, CH-1196 Gland, Switzerland. https://www.ramsar.org/sites/default/files/documents/library/wetlands_biodiversity_and_the_ramsar_convention.pdf
  14. Hammami, H., Baptista, P., Martins, F., Gomes, T., Abdelly, C. & Mahmoud, O.M.-B. (2016). Impact of a natural soil salinity gradient on fungal endophytes in wild barley (Hordeum maritimum With.), World Journal of Microbiology and Biotechnology, 32, 11, pp. 184. DOI:10.1007/s11274-016-2142-0
  15. Hidri, R, Mahmoud, OM, Zorrig, W, Mahmoudi, H, Smaoui, A, Abdelly, C, Azcon, R. & Debez, A. (2022). Plant Growth-Promoting Rhizobacteria Alleviate High Salinity Impact on the Halophyte Suaeda fruticosa by Modulating Antioxidant Defense and Soil Biological Activity, Frontiers in Plant Science, 13, pp. 821475. DOI:10.3389/fpls.2022.821475
  16. Hnativ, R, Cherniuk, V, Khirivskyi, P, Kachmar, N, Lopotych, N. & Hnativ, I. (2023). Processes of Natural Self-Cleaning of Small Watercourses with Increasing Anthropogenic Load in the Dniester River Basin, Journal of Ecological Engineering, 24, 2, pp. 12-18. DOI:10.12911/22998993/156914.
  17. Kaushalya G.N. (2020). Wetlands becoming wastelands; factors contributing to the degradation of wetlands in Srilanka, International Journal of Research and Analytical Reviews, 7(3), pp. 713-718. https://www.researchgate.net/publication/344165659
  18. Khadhar, S., Mlayah, A., Chekirben, A., Charef, A., Methammam, M., Nouha, S. & Khemais, Z. (2013). Vecteur de la pollution metallique du bassin versant de l’Wadi El Bey vers le Golfe de Tunis (Tunisie), Hydrological Sciences Journal, 58, 8, pp. 1803–1812. DOI:10.1080/02626667.2013.835487
  19. Khan, M.N., Mobin, M., Abbas, Z.K. & Alamri, S.A. (2018). Fertilizers and Their Contaminants in Soils, Surface and Groundwater. [In:] Dominick A. DellaSala, and Michael I. Goldstein (eds.) The Encyclopedia of the Anthropocene, 5, pp. 225-240. DOI:10.1016/B978-0-12-809665-9.09888-8
  20. Khouni, I., Louhichi, G. & Ghrabi, A. (2021). Use of GIS based Inverse Distance Weighted interpolation to assess surface water quality: Case of Wadi El Bey, Tunisia, Environmental Technology & Innovation, 24, pp. 101892. DOI:10.1016/j.eti.2021.101892
  21. Mažeikienė, A. & Šarko, J. (2023). Additional Treatment of Nitrogen and Phosphorus Using Natural Materials in Small-Scale Domestic Wastewater Treatment Unit, Water, 15, pp. 2607. DOI:10.3390/w15142607
  22. Mhamdi, F., Khouni, I. & Ghrabi, A. (2016). Diagnosis and characteristics of water quality along the Wadi El Bey river (Tunisia). Coagulation/flocculation essays of textile effluents discharged into the Wadi, Desalination and Water Treatment, 57(46), pp. 22166–22188. DOI:10.1080/19443994.2016.1147378
  23. Mili, S. (2016). Instant Cities on the Wet Coastal Zones-Tunisia, Procedia Environmental Sciences, 34, pp. 525–538. DOI:10.1016/j.proenv.2016.04.046
  24. Moloantoa, K.M., Khetsha, Z.P., van Heerden, E., Castillo, J.C. & Cason, E.D. (2022). Nitrate Water Contamination from Industrial Activities and Complete Denitrification as a Remediation Option, Water, 14, pp. 799, DOI:10.3390/w14050799
  25. National Census Reports East Atlantic Africa (2017). (https://www.waddensea-worldheritage.org/sites/default/files/2017_Flyway%20census%20report_0.pdf)
  26. Perumanath, S., Pillai, R. & Borg, M.K. (2023). Contaminant Removal from Nature's Self-Cleaning Surfaces, Nano Letter, 23, 10, pp. 4234-4241. DOI:10.1021/acs.nanolett.3c00257.
  27. Prudêncio, M.I., Gonzalez, M.I., Dias, M.I., Galan, E. & Ruiz, F. (2007). Geochemistry of sediments from El Melah lagoon (NE Tunisia): A contribution for the evaluation of anthropogenic inputs, Journal of Arid Environments, 69(2), pp. 285–298. DOI:10.1016/j.jaridenv.2006.10.006
  28. Prudêncio, M.I., Dias, M.I., Ruiz, F., Waerenborgh, J. C., Duplay, J., Marques, R. & Abad, M. (2010). Soils in the semi-arid area of the El Melah Lagoon (NE Tunisia) — Variability associated with a closing evolution. CATENA, 80(1), pp. 9–22. DOI:10.1016/j.catena.2009.08.006
  29. Ramsar Sites Information Service (2016). (https://rsis.ramsar.org/ris/1713).
  30. Ruiz, F., Abad, M., Galán, E., González, I., Aguilá, I., Olías, M. & Cantano, M. (2006). The present environmental scenario of El Melah Lagoon (NE Tunisia) and its evolution to a future sabkha, Journal of African Earth Sciences, 44(3), pp. 289–302. DOI:10.1016/j.jafrearsci.2005.11.023
  31. Singh, B. & Craswell, E. (2021). Fertilizers and nitrate pollution of surface and ground water: an increasingly pervasive global problem, SN Applied Sciences, 3, pp. 518. DOI:10.1007/s42452-021-04521-8
  32. Somerfield, P.J. & Warwick, R.M. (2013). Meiofauna Techniques. Methods for the Study of Marine Benthos, John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd. pp. 253–284. DOI:10.1002/9781118542392.ch6
  33. Steinhoff-Wrześniewska A., Strzelczyk M., Helis M., Paszkiewicz-Jasińska A., Gruss Ł., Pulikowski K. & Skorulski W. (2022). Identification of catchment areas with nitrogen pollution risk for lowland river water quality, Archives of Environmental Protection, 48 , 2 pp. 53–64. DOI:10.24425/aep.2022.140766
  34. Sustain-COAST WP2. (2020). Sustainable coastal groundwater management and pollution reduction through innovative governance in a changing climate. https://www.sustain-coast.tuc.gr/fileadmin/users_data/project_sustain_coast/Sustain-COAST_D2.1__1_.pdf
  35. Tinarelli, R. (1987). Wintering biology of the Black-winged Stilt in the Maghreb region. Wader Study Group Bulletin, 50, pp. 30-34. https://sora.unm.edu/sites/default/files/journals/iwsgb/n050/p00030-p00034.pdf
  36. Tunisia’s Second National Communication Under The United Nations Framework Convention on Climate Change (UNFCCC). 2013. https://unfccc.int/sites/default/files/resource/tunnc2.pdf
  37. Xi, H. & Zhang, Y. (2011). Total suspended matter observation in the Pearl River estuary from in situ and MERIS data, Environmental Monitoring and Assessment, 177, pp. 563–574. DOI:10.1007/s10661-010-1657-3
  38. Zabłocki, S., Murat-Błażejewska, S., Trzeciak, J.A. & Błażejewski, R. (2022). High-resolution mapping to assess risk of groundwater pollution by nitrates from agricultural activities in Wielkopolska Province, Poland, Environmental Monitoring and Assessment, 48, 1, pp. 41–57. DOI:10.24425/aep.2022.140544
  39. Zarrouk, M., El Almi, H., Youssef, N. B., Sleimi, N., Smaoui, A., Miled, D. B. & Abdelly, C. (2003). Lipid composition of seeds of local halophytes: Cakile maritima, Zygophyllum album and Crithmum maritimum, Tasks for Vegetation Science, pp. 121–124. DOI:10.1007/978-94-017-0211-9_13
Go to article

Authors and Affiliations

Soumaya Elarbaoui
1
ORCID: ORCID
Moez Smiri
1
ORCID: ORCID

  1. Department of Biology, College of Science and Humanities - Dawadmi, Shaqra University, Saudi ArabiaUniversity of Carthage, Tunisia

This page uses 'cookies'. Learn more