Search results

Filters

  • Journals
  • Autorzy
  • Keywords
  • Date
  • Type

Search results

Number of results: 1
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The increasing demand for indium, gallium, and germanium driven by high-tech industries has spurred extensive research into their environmental interaction, despite their rarity in the Earth's crust. Understanding the chemical forms and mechanisms of occurrence of these elements – from production through – and their interactions with the environment is crucial for future environmental impact assessments. The aim of this paper is to highlight: (i) the compounds and applications of indium, gallium, and germanium in high-tech manufacturing, (ii) the complexes of these elements, their reactivity, and stability under specific conditions, (iii) possibilities for recovering and recycling these elements from end-of-life (EOL) products through leaching and extraction, (iv) their toxicity and health impacts, and (v) pollution indices affected by background concentrations of these elements in soils or sediments. Despite their low natural abundance and low recycling input rates (IRI), the lack of comprehensive toxicity data poses a significant challenge in assessing the potential ecological risk index (RI). Moreover, insufficient background data on the concentration of these elements in various environmental samples underscores the need for further research and investigation in the future.
Go to article

Bibliography

  1. Adamiec, E., Jarosz-Krzemińska, E., Brzoza-Woch, R., Rzeszutek, M., Bartyzel, J., Pełech-Pilichowski, T. & Zyśk, J. (2023). The geochemical and fractionation study on toxic elements in road dust collected from the arterial roads in Kraków. Archives of Environmental Protection, 49, 2, pp. 104–110. DOI 10.24425/aep.2023.145902
  2. Amiel, N., Dror, I., Zurieli, A., Livshitz, Y., Reshef, G. & Berkowitz, B. (2021). Selected technology-critical elements as indicators of anthropogenic groundwater contamination. Environmental Pollution, 284, 117156. DOI:10.1016/j.envpol.2021.117156
  3. Andrzejewska-Górecka, D.A., Poniatowska, A., Macherzyński, B., Wojewódka, D. & Sierakowski, M. (2019), Release of critical metals from furnace wastes using the process of bioleaching in various variants. Archives of Environmental Protection, 45, 3, pp. 72–78. DOI: 10.24425/aep.2019.128643
  4. Annoni, R., Lange, L.C., Santos Amaral, M.C., Silva, A.M., Assunção, M.C., Franco, M. B. & De Souza, W. (2020). Light emitting diode waste: Potential of metals concentration and acid reuse via the integration of leaching and membrane processes. Journal of Cleaner Production, 246, 119057. DOI:10.1016/j.jclepro.2019.119057
  5. Batley, G.E. & Campbell, P.G.C. (2022). Metal contaminants of emerging concern in aquatic systems. Environmental Chemistry, 19(1), pp. 23–40. DOI:10.1071/EN22030
  6. Bačić, N., Mikac, N., Lučić, M., & Sondi, I. (2021). Occurrence and distribution of technology-critical elements in recent freshwater and marine pristine lake sediments in Croatia: A case study. Archives of Environmental Contamination and Toxicology, 81(4), pp. 574-588. DOI:10.1007/s00244-021-00863-x
  7. Benézéth, P., Diakonov, I.I., Pokrovski, G.S., Dandurand, J., Schott, J. & Khodakovsky, I.L. (1997). Gallium speciation in aqueous solution. Experimental study and modelling: Part 2. Solubility of α-GaOOH in acidic solutions from 150 to 250°C and hydrolysis constants of gallium (III) to 300°C. Geochimica et Cosmochimica Acta, 61(7), pp. 1345-1357. DOI:10.1016/S0016-7037(97)00012-4
  8. Benoit, R.L. & Place, J. (1963). Fluoride complexes of germanium (IV) in aqueous solution. Canadian Journal of Chemistry, 41(5), pp. 1170-1180. DOI:10.1139/v63-165
  9. Bernstein, L.R. (1985). Germanium geochemistry and mineralogy. Geochimica et Cosmochimica Acta, 49(11), pp. 2409-2422. DOI:10.1016/0016-7037(85)90241-8
  10. Bernstein, L.R. & Waychunas, G.A. (1987). Germanium crystal chemistry in hematite and goethite from the Apex Mine, Utah, and some new data on germanium in aqueous solution and in stottite. Geochimica et Cosmochimica Acta, 51(3), pp. 623-630. DOI:10.1016/0016-7037(87)90074-3
  11. Bobba, S., Claudiu, P., Huygens, D., Alves Dias, P., Gawlik, B., Tzimas, E. & Garbarino, E. (2018). Report on critical raw materials and the circular economy. Luxembourg: EU. DOI:10.2873/331561.
  12. Boluda-Botella, N., Saquete, M.D. & Sanz-Lázaro, C. (2023). Holothuria tubulosa as a bioindicator to analyse metal pollution on the coast of Alicante (Spain). Journal of Sea Research, 192, 102364. DOI:10.1016/j.seares.2023.102364
  13. Bomhard, E.M. (2018). The toxicology of indium oxide. Environmental Toxicology and Pharmacology, 58, pp. 250-258. DOI:10.1016/j.etap.2018.02.003
  14. Bomhard, E.M. (2020). The toxicology of gallium oxide in comparison with gallium arsenide and indium oxide. Environmental Toxicology and Pharmacology, 80, 103437. DOI:10.1016/j.etap.2020.103437
  15. Brun, N., Wehrli, B. & Fent, K. (2016). Ecotoxicological assessment of solar cell leachates: Copper indium gallium selenide (CIGS) cells show higher activity than organic photovoltaic (OPV) cells. Science of The Total Environment, 543, pp. 703–714. DOI: 10.1016/j.scitotenv.2015.11.074
  16. Bu-Olayan, A.H. & Thomas, B.V. (2020). Bourgeoning impact of the technology critical elements in the marine environment. Environmental Pollution, 265, 115064 DOI:10.1016/j.envpol.2020.115064
  17. Butcher, T. & Brown, T. (2014). Gallium, [In:] Critical Minerals Handbook. G Gunn. (ed.), John Wiley &Sons. Chapter 7, pp 257-305. DOI:10.1002/9781118755341.ch7
  18. Cenci, M.P., Dal Berto, F.C., Schneider, E.L. & Veit, H.M. (2020). Assessment of LED lamps components and materials for a recycling perspective. Waste Management, 107, pp. 285-293. DOI:10.1016/j.wasman.2020.04.028
  19. Chang, H., Yang, P., Hashimoto, Y., Yeh, K. & Wang, S. (2023). Temporal transformation of indium speciation in rice paddy soils and spatial distribution of indium in rice rhizosphere. Environmental Pollution, 326, 121473. DOI:10.1016/j.envpol.2023.121473
  20. Chang, H.F., Yang, P.T., Lin, H.W., Yeh, K.C., Chen, M.N. & Wang, S.L. (2020a). Indium uptake and accumulation by rice and wheat and health risk associated with their consumption. Environmental Science & Technology, 54(23), pp. 14946-14954. DOI:10.1021/acs.est.0c02676
  21. Chang, H.F., Wang, S.L., Lee, D.C., Hsiao, S.S.Y., Hashimoto, Y. & Yeh, K.C. (2020b). Assessment of indium toxicity to the model plant Arabidopsis. Journal of Hazardous Materials, 387, 121983. DOI:10.1016/j.jhazmat.2019.121983
  22. Charles, R.G., Douglas, P., Dowling, M., Liversage, G. & Davies, M.L. (2020). Towards Increased Recovery of Critical Raw Materials from WEEE– evaluation of CRMs at a component level and pre-processing methods for interface optimisation with recovery processes. Resources, Conservation and Recycling, 161, 104923. DOI:10.1016/j.resconrec.2020.104923
  23. Cheah, B.H., Liao, P., Lo, J., Wang, Y., Tang, I., Yeh, K., Lee, D. & Lin, Y. (2022). Insight into the mechanism of indium toxicity in rice. Journal of Hazardous Materials, 429, 128265. DOI:10.1016/j.jhazmat.2022.128265
  24. Chen, K., Yang, P., Chang, H., Yeh, K. & Wang, S. (2022). Soil gallium speciation and resulting gallium uptake by rice plants. Journal of Hazardous Materials, 424, 127582. DOI:10.1016/j.jhazmat.2021.127582
  25. Chen, T.B., Zheng, Y.M., Lei, M., Huang, Z.C., Wu, H.T., Chen, H., ... & Tian, Q.Z. (2005). Assessment of heavy metal pollution in surface soils of urban parks in Beijing, China. Chemosphere, 60(4), pp. 542-551. DOI:10.1016/j.chemosphere.2004.12.072
  26. Chen, W., Chang, B. & Chiu, K. (2017). Recovery of germanium from waste Optical Fibers by hydrometallurgical method. Journal of Environmental Chemical Engineering, 5(5), pp. 5215-5221. DOI:10.1016/j.jece.2017.09.048
  27. Chen, W.S., Chang, B.C. & Shuai, C.K. (2020a). Improve subsequent leaching efficiency and extraction rate of germanium in optical fibre cables with pre-treatment. IOP Conference Series: Materials Science and Engineering 720(1), 012005). DOI:10.1088/1757-899X/720/1/012005
  28. Chen, W.S., Chung, Y.F. & Tien, K.W. (2020b). Recovery of gallium and indium from waste light emitting diodes. Resources Recycling, 29(1), pp. 81-88. DOI:10.7844/kirr.2020.29.1.81
  29. Cheng, W., Lei, S., Bian, Z., Zhao, Y., Li, Y. & Gan, Y. (2020). Geographic distribution of heavy metals and identification of their sources in soils near large, open-pit coal mines using positive matrix factorization. Journal of Hazardous Materials, 387, 121666. DOI:10.1016/j.jhazmat.2019.121666
  30. Chinnam, R., Ujaczki, É. & O'Donoghue, L. (2020). Leaching indium from discarded LCD glass: A rapid and environmentally friendly process. Journal of Cleaner Production, 277, 122868. DOI:10.1016/j.jclepro.2020.122868
  31. Ciavatta, L., Iuliano, M., Porto, R. & Vasca, E. (1990). Fluorogermanate(IV) equilibria in acid media. Polyhedron, 9(10), pp. 1263-1270. DOI:10.1016/S0277-5387(00)86762-5
  32. Cobelo-García, A., Filella, M., Croot, P., Frazzoli, C., Du Laing, G., Ospina-Alvarez, N. & Zimmermann, S. (2015). COST action TD1407: network on technology-critical elements (NOTICE) from environmental processes to human health threats. Environmental Science and Pollution Research, 22(19), pp. 15188–15194. DOI:10.1007/s11356-015-5221-0
  33. Cummings K.J., Virji M. A. & Park J. Y. et al. (2016). Respirable indium exposures, plasma indium, and respiratory health among indium-tin oxide (ITO) workers. American Journal of Industrial Medicine, 59(7), pp. 522-531
  34. Dang D.H., Filella M. & Omanović D. (2021). Technology‑Critical Elements: An Emerging and Vital Resource that Requires more In‑depth Investigation. Archives of Environmental Contamination and Toxicology, 81, pp. 517–520, DOI:10.1007/s00244-021-00892-6
  35. Deferm, C., Onghena, B., Vander Hoogerstraete, T., Banerjee, D., Luyten, J., Oosterhof, H. & Binnemans, K. (2017). Speciation of indium (III) chloro complexes in the solvent extraction process from chloride aqueous solutions to ionic liquids. Dalton Transactions, 46(13), pp. 4412-4421. DOI:10.1039/C7DT00618G
  36. Deichman, E.N., Tananaev, I.V., Ezhova, Zh.A. & Kuz’mina, T.N. (1968). Indium phosphate. Russian Journal of Inorganic Chemistry 13, pp. 23 – 25.
  37. Diakonov, I.I., Pokrovski, G.S., Bénézeth, P., Schott, J., Dandurand, J. & Escalier, J. (1997). Gallium speciation in aqueous solution. Experimental study and modelling: Part 1. Thermodynamic properties of Ga(OH)4− to 300°C. Geochimica et Cosmochimica Acta, 61(7), pp. 1333-1343. DOI:10.1016/S0016-7037(97)00011-2
  38. EC JRC, 2016. Raw materials scoreboard. European Commission, Brussels, Belgium. DOI:10.2873/686373
  39. Ettler, V., Mihaljevič, M., Strnad, L., Kříbek, B., Hrstka, T., Kamona, F. & Mapani, B. (2022). Gallium and germanium extraction and potential recovery from metallurgical slags. Journal of Cleaner Production, 379, 134677. DOI:10.1016/j.jclepro.2022.134677
  40. European Commission. (2020). Study on the EU’s list of Critical Raw Materials. Factsheets on Non-Critical Raw Materials. DOI:10.2873/867993
  41. European Commission. (2023). Study on the Critical Raw Materials for the EU 2023-Final Report. DOI:10.2873/725585
  42. Eurostat, Contribution of recycled materials to raw materials demand - end-of-life recycling input rates (EOL-RIR) (2023). Eurostat. Retrieved October 8, 2023, from https://ec.europa.eu/eurostat/databrowser/view/CEI_SRM010/default/table
  43. Everest, D.A. & Harrison, J.C. (1957). Studies in the chemistry of quadrivalent germanium. Part IV. The chemical nature of solutions of quadrivalent germanium in hydrochloric or hydrobromic acid. Journal of the Chemical Society (Resumed), pp. 1820-1823. DOI:10.1039/JR9570001820
  44. Filella, M. & Matoušek, T. (2022). Germanium in Lake Geneva (Switzerland/France) along the spring productivity period. Applied Geochemistry, 143, 105352. DOI:10.1016/j.apgeochem.2022.105352
  45. Filella, M. & May, P.M. (2023). The aqueous solution chemistry of germanium under conditions of environmental and biological interest: Inorganic ligands. Applied Geochemistry, 105631. DOI:10.1016/j.apgeochem.2023.105631
  46. Frenzel, M., Mikolajczak, C., Reuter, M. A. & Gutzmer, J. (2017). Quantifying the relative availability of high-tech by-product metals – The cases of gallium, germanium and indium. Resources Policy, 52, pp. 327-335. DOI:10.1016/j.resourpol.2017.04.008
  47. Frei MS, Mondelli C, García-Muelas R. & Pérez-Ramírez J. (2019), Atomic-scale engineering of indium oxide promotion by palladium for methanol production via CO2 hydrogenation. Nature Communications, 10(1), 3377. DOI:10.1038/s41467-019-11349-9
  48. García-Figueroa, A., Filella, M. & Matoušek, T. (2021). Speciation of germanium in environmental water reference materials by hydride generation and cryotrapping in combination with ICP-MS/MS. Talanta, 225, 121972. DOI:10.1016/j.talanta.2020.121972
  49. Glei, M. (2004). Germanium. [In:]  Elements and their compounds in the environment—Occurrence, analysis and biological relevance, Merian, E., Anke, M., Ihnat, M. & Stoeppler, M.S (eds.), Weinheim, Germany, Wiley-VCH Verlag GmbH, pp. 787–793. http://dx.doi.org/10.1002/9783527619634.ch31.
  50. Grohol, M. & Veeh, C. (2023). Study on the Critical Raw Materials for the EU 2023. Final Report DG GROW. DOI:10.2873/725585
  51. Gunn, G. (Ed.). (2014). Critical metals handbook. John Wiley & Sons. DOI:10.1002/9781118755341
  52. Hagvall, K., Persson, P. & Karlsson, T. (2014). Spectroscopic characterization of the coordination chemistry and hydrolysis of gallium(III) in the presence of aquatic organic matter. Geochimica et Cosmochimica Acta, 146, pp. 76-89. DOI:10.1016/j.gca.2014.10.006
  53. Hardacre, C., Murphy, R.W., Seddon, K.R., Srinivasan, G. & Swadźba-Kwaśny, M. (2010). Speciation of chlorometallate ionic liquids based on gallium (III) and indium (III). Australian Journal of Chemistry, 63(5), pp. 845-848. DOI:10.1071/CH10014
  54. Höll, R., Kling, M. & Schroll, E. (2007). Metallogenesis of germanium - A review. Ore Geology Reviews, 30(3-4), pp. 145-180. DOI:10.1016/j.oregeorev.2005.07.034
  55. Iqbal, A., Jan, M. R., Shah, J. & Rashid, B. (2022). Recovery of critical metals from leach solution of electronic waste using magnetite electrospun carbon nanofibres composite. Environmental Science and Pollution Research, 29(59), pp. 88763-88778. DOI:10.1007/s11356-022-21843-1
  56. Jabłońska-Czapla, M. & Grygoyć, K. (2021). Speciation and Fractionation of Less-Studied Technology-Critical Elements (Nb, Ta, Ga, In, Ge, Tl, Te): A Review. Polish Journal of Environmental Studies, 30(2), pp. 1477-1486. DOI:10.15244/pjoes/127281
  57. Jabłońska-Czapla, M., Grygoyć, K. & Rachwał, M. (2022) Antimony speciation in soils in areas subjected to industrial anthropopressure. Archives of Environmental Protection, 48, 2 pp. 42–52. DOI 10.24425/aep.2022.140765
  58. Jabłońska-Czapla, M., Grygoyć, K., Rachwał, M., Fornalczyk, A. & Willner, J. (2023). Germanium speciation study in soil from an electronic waste processing plant area. Journal of Soils and Sediments, pp. 1-14. DOI:10.1007/s11368-023-03566-z
  59. Jensen, H., Gaw, S., Lehto, N.J., Hassall, L. & Robinson, B.H. (2018). The mobility and plant uptake of gallium and indium, two emerging contaminants associated with electronic waste and other sources. Chemosphere, 209, pp. 675-684. DOI:10.1016/j.chemosphere.2018.06.111
  60. Jin, Y., Kim, J. & Guillaume, B. (2016). Review of critical material studies. Resources, Conservation and Recycling, 113, pp. 77-87. DOI:10.1016/j.resconrec.2016.06.003
  61. Karbowska, B., Zembrzuski, W. & Zembrzuska, J. (2022). Mobile forms vs the total content of thallium in activated sludge. Archives of Environmental Protection, 48, 3 pp. 21–27. DOI 10.24425/aep.2022.142686
  62. Klein, O., Zimmermann, T., Hildebrandt, L. & Pröfrock, D. (2022a). Technology-critical elements in Rhine sediments - A case study on occurrence and spatial distribution. Science of The Total Environment, 852, 158464. DOI:10.1016/j.scitotenv.2022.158464
  63. Klein, O., Zimmermann, T., Ebeling, A., Kruse, M., Kirchgeorg, T. & Pröfrock, D. (2022b). Occurrence and temporal variation of technology-critical elements in North Sea sediments—a determination of preliminary reference values. Archives of Environmental Contamination and Toxicology, 82(4), pp. 481-492. DOI:10.1007/s00244-022-00929-4
  64. Kicińska, A. (2019). Environmental risk related to presence and mobility of As, Cd and Tl in soils in the vicinity of a metallurgical plant – Long-term observations. Chemosphere, 236, 124308. DOI:10.1016/j.chemosphere.2019.07.039
  65. Kicińska, A. & Wikar, J. (2020). Ecological risk associated with agricultural production in soils contaminated by the activities of the metal ore mining and processing industry - example from southern Poland. Soil and Tillage Research, 205, 104817. DOI:10.1016/j.still.2020.104817
  66. Kouhail Y., Abdou M. & Gil-Díaz T. (2022). Technology Critical Elements in groundwater resources -knowledge and gaps in the early 2020’s. Current Opinion in Environmental Science & Health, 26, 100329. DOI:10.1016/j.coesh.2022.100329
  67. Kouhail Y., Dror I. & Berkowitz B. (2020). Current knowledge on transport and reactivity of technology-critical elements (TCEs) in soil and aquifer environments. Environmental Chemistry, 17, pp. 118–132. DOI:10.1071/EN19102
  68. Krystek P. & Ritsema R. (2004). Analytical product study of germanium-containing medicine by different ICP-MS applications. Journal of Trace Elements in Medicine and Biology, 18, pp. 9-16. DOI:10.1016/j.jtemb.2004.04.003
  69. Kurtz, A.C., Derry, L.A. & Chadwick, O.A. (2002). Germanium-silicon fractionation in the weathering environment. Geochimica et Cosmochimica Acta, 66(9), pp. 1525-1537. DOI:10.1016/S0016-7037(01)00869-9
  70. Ladenberger, A., Demetriades, A., Reimann, C., Birke, M., Sadeghi, M., Uhlbäck, J., Andersson, M. & Jonsson, E. (2015). GEMAS: Indium in agricultural and grazing land soil of Europe - Its source and geochemical distribution patterns. Journal of Geochemical Exploration, 154, pp. 61-80. DOI:10.1016/j.gexplo.2014.11.020
  71. Lehmann, F., Daus, B. & Reemtsma, T. (2019). Germanium speciation using liquid chromatography-inductively coupled plasma-triple quadrupole mass spectrometry: Germanium in biological and chemical leaching solutions of fine-grained residues from copper smelting. Journal of Chromatography A, 1593, pp. 47-53. DOI:10.1016/j.chroma.2019.01.061
  72. Levason, W., Reid, G. & Zhang, W. (2011). Coordination complexes of silicon and germanium halides with neutral ligands. Coordination Chemistry Reviews, 255(11-12), pp. 1319-1341. DOI:10.1016/j.ccr.2010.11.019
  73. Licht C., Talens Peiro L. & Villalba G. (2015). Global Substance Flow Analysis of Gallium, Germanium, and Indium. Journal of Industrial Ecology, 19(5), pp. 890-903. DOI:10.1111/jiec.12287
  74. Liu, Y., Shaheen, S.M., Rinklebe, J. & Hseu, Z. (2021). Pedogeochemical distribution of gallium, indium and thallium, their potential availability and associated risk in highly-weathered soil profiles of Taiwan. Environmental Research, 197, 110994. DOI:10.1016/j.envres.2021.110994
  75. Lo, I.M., & Yang, X.Y. (1999). EDTA extraction of heavy metals from different soil fractions and synthetic soils. Water, Air, and Soil Pollution, 109, pp. 219-236. DOI:10.1023/A:1005000520321
  76. Lugolobi, F., Kurtz, A.C. & Derry, L.A. (2010). Germanium–silicon fractionation in a tropical, granitic weathering environment. Geochimica et Cosmochimica Acta, 74(4), pp. 1294-1308. DOI:10.1016/j.gca.2009.11.027
  77. Lv, Y., Xing, P., Ma, B., Liu, B., Wang, C., Zhang, Y., & Zhang, W. (2019). Separation and recovery of valuable elements from spent CIGS materials. ACS Sustainable Chemistry & Engineering, 7, 24, pp. 19816–19823. DOI:10.1021/acssuschemeng.9b05121
  78. Łyszczarz, S., Błońska, E. & Lasota, J. (2020). The application of the geo-accumulation index and geostatistical methods to the assessment of forest soil contamination with heavy metals in the Babia Góra National Park (Poland). Archives of Environmental Protection, 46, 3 pp. 69–79. DOI 10.24425/aep.2020.134537
  79. Maeno, Z., Yasumura, S., Wu, X., Huang, M., Liu, C., Toyao, T. & Shimizu, K.I. (2020). Isolated indium hydrides in CHA zeolites: speciation and catalysis for nonoxidative dehydrogenation of ethane. Journal of the American Chemical Society, 142(10), pp. 4820-4832. DOI:10.1021/jacs.9b13865
  80. Min K, Johnson D. & Trumble K. (2018). Thermodynamic Study of Ga Extraction for Trace Element Analysis by ICP-MS. [In:] Rare Metal Technology Kim H., Wesstrom B., Alam S., Ouchi T., Azimi G,. Neelameggham N.R., Wang S., Guan X. (Eds.), Springer, pp. 157-164.
  81. Muller, G. (1979). Heavy metals in the sediments of the Rhine: Changes since 1971. Umschav, 79, pp. 778-783. (in German)
  82. Mohammed, K. S., Usman, M., Ahmad, P. & Bulgamaa, U. (2023). Do all renewable energy stocks react to the war in Ukraine? Russo-Ukrainian conflict perspective. Environmental Science and Pollution Research International, 30(13), pp. 36782-36793. DOI:10.1007/s11356-022-24833-5
  83. Nawrot, N., Wojciechowska, E., Mohsin, M., Kuittinen, S., Pappinen, A. & Rezania, S. (2021). Trace Metal Contamination of Bottom Sediments: A Review of Assessment Measures and Geochemical Background Determination Methods. Minerals, 11(8), 872. DOI:10.3390/min11080872
  84. Négrel, P., Ladenberger, A., Reimann, C., Birke, M. & Sadeghi, M. (2016). GEMAS: Source, distribution patterns and geochemical behaviour of Ge in agricultural and grazing land soils at European continental scale. Applied Geochemistry, 72, pp. 113-124. DOI:10.1016/j.apgeochem.2016.07.004
  85. Ohashi, H., Uehara, N. & Shijo, Y. (1991). Simultaneous determination of molybdenum, vanadium, gallium, copper, iron and indium as 8-quinolinolate complexes by high-performance liquid chromatography. Journal of Chromatography A, 539(1), pp. 225-231. DOI:10.1016/S0021-9673(01)95379-8
  86. Occupational Safety and Health Administration, 2013a, Chemical sampling information—Germanium tetrahydride, CAS no. 7782–65–2: U.S. Department of Labor, Occupational Safety and Health Administration Web page, accessed November 30, 2015, at http://www.osha.gov/dts/chemicalsampling/data/CH_243200.html
  87. Petrucci, R.H., Herring, F.G., Madura, J.D. & Bissonnette, C. (2017). Chemistry of the Main-Group Elements I: Groups 1, 2, 13, and 14, [In:] General chemistry: Principles and modern applications (11th ed., pp. 978–1027), Pearson Canada.
  88. Pokrovsky, O., Pokrovski, G., Schott, J. & Galy, A. (2006). Experimental study of germanium adsorption on goethite and germanium coprecipitation with iron hydroxide: X-ray absorption fine structure and macroscopic characterization. Geochimica et Cosmochimica Acta, 70(13), pp. 3325-3341. DOI:10.1016/j.gca.2006.04.012
  89. Połedniok, J. (2008). Speciation of scandium and gallium in soil. Chemosphere, 73(4), pp. 572-579. DOI:10.1016/j.chemosphere.2008.06.012
  90. Pokrovski, G.S. & Schott, J. (1998a). Thermodynamic properties of aqueous Ge(IV) hydroxide complexes from 25 to 350°C: Implications for the behavior of germanium and the Ge/Si ratio in hydrothermal fluids. Geochimica et Cosmochimica Acta, 62(9), pp. 1631-1642. DOI:10.1016/S0016-7037(98)00081-7
  91. Pokrovski, G.S. & Schott, J. (1998b). Experimental study of the complexation of silicon and germanium with aqueous organic species: Implications for germanium and silicon transport and Ge/Si ratio in natural waters. Geochimica et Cosmochimica Acta, 62(21-22), pp. 3413-3428. DOI:10.1016/S0016-7037(98)00249-X
  92. Pommerrenig B, Diehn T.A. & Bienert G.P. (2015). Metalloido-porins: Essentiality of Nodulin 26-like intrinsic proteins in metalloid transport. Plant Science, 238, pp. 212–227. doi:10.1016/j.plantsci.2015.
  93. Reimann, C., Fabian, K., Birke, M., Filzmoser, P., Demetriades, A., Négrel, P., Oorts, K., Matschullat, J. & de Caritat, P. (2018). GEMAS: Establishing geochemical background and threshold for 53 chemical elements in European agricultural soil. Applied Geochemistry, 88, pp. 302-318. DOI:10.1016/j.apgeochem.2017.01.021
  94. Ringering, K., Kouhail, Y., Yecheskel, Y., Dror, I. & Berkowitz, B. (2019). Mobility and retention of indium and gallium in saturated porous media. Journal of Hazardous Materials, 363, pp. 394-400. DOI:10.1016/j.jhazmat.2018.09.079
  95. Romero-Freire A., Santos-Echeandía J., Neira P. & Cobelo-García A. (2019). Less-Studied Technology-Critical Elements (Nb, Ta, Ga, In, Ge, Te) in the Marine Environment: Review on Their Concentrations in Water and Organisms. Frontiers in Marine Science, 6, 532. DOI:10.3389/fmars.2019.00532
  96. Rongguo, C., Juan, G., Liwen, Y., Huy, D. & Liedtke, M. (2016). Supply and demand of lithium and gallium. BGR. https://www.bgr.bund.de/EN/Themen/Min_rohstoffe/Downloads/studie_Li_Ga.html
  97. Rotureau, E., Pla-Vilanova, P., Galceran, J., Companys, E. & Pinheiro, J.P. (2019). Towards improving the electroanalytical speciation analysis of indium. Analytica Chimica Acta, 1052, pp. 57-64. DOI:10.1016/j.aca.2018.11.061
  98. Rudnick, R. & Gao, S. (2013). Composition of the Continental Crust. Treatise on Geochemistry (Second Edition), pp. 1-51. DOI:10.1016/B978-0-08-095975-7.00301-6
  99. Ryss, I.G. & Kulish, N.F. (1964). Hydrolysis of potassium hexafluorogermanate in aqueous solution. Russian Journal of Inorganic Chemistry, 9, pp. 752-754.
  100. Savvilotidou, V. & Gidarakos, E. (2020). Pre-concentration and recovery of silver and indium from crystalline silicon and copper indium selenide photovoltaic panels. Journal of Cleaner Production, 250, 119440. DOI:10.1016/j.jclepro.2019.119440
  101. Scribner, A.M., Kurtz, A.C & Chadwick, O.A. (2006). Germanium sequestration by soil: Targeting the roles of secondary clays and Fe-oxyhydroxides. Earth and Planetary Science Letters, 243(3-4), pp. 760-770. DOI:10.1016/j.epsl.2006.01.051
  102. Shiller, A.M. (1998). Dissolved gallium in the Atlantic Ocean. Marine Chemistry, 61(1-2), 87-99. DOI:10.1016/S0304-4203(98)00009-7
  103. Shotyk, W., Bicalho, B., Cuss, C. W., Donner, M. W., Grant-Weaver, I., Haas-Neill, S., Javed, M. B., Krachler, M., Noernberg, T., Pelletier, R. & Zaccone, C. (2017). Trace metals in the dissolved fraction (< 0.45 μm) of the lower Athabasca River: Analytical challenges and environmental implications. Science of The Total Environment, 580, pp. 660-669. DOI:10.1016/j.scitotenv.2016.12.012
  104. Su J.Y., Syu C.H. & Lee D.Y., (2018). Growth inhibition of rice (Oryza sativa L.) seedlings in Ga- and In- contaminated acidic soils is respectively caused by Al and Al+ In toxicity. Journal of Hazardous Materials, 344, pp. 274-282. DOI:10.1016/j.jhazmat.2017.10.023
  105. Syu, C.H., Chen, L. & Lee, D. (2021). The growth and uptake of gallium (Ga) and indium (In) of wheat seedlings in Ga- and In-contaminated soils. Science of The Total Environment, 759, 143943. DOI:10.1016/j.scitotenv.2020.143943
  106. Syu, C.H., Chen, P.W., Huang, C.C. & Lee, D.Y. (2020). Accumulation of gallium (Ga) and indium (In) in rice grains in Ga-and In-contaminated paddy soils. Environmental Pollution, 261, 114189. DOI:10.1016/j.envpol.2020.114189
  107. Tanaka, A., Hirata, M., Kiyohara, Y., Nakano, M., Omae, K., Shiratani, M. & Koga, K. 2010. Review of pulmonary toxicity of indium compounds to animals and humans. Thin Solid Films, 518, 11, pp. 2934–2936. http://dx.doi.org/10.1016/j.tsf.2009.10.123.
  108. Tehrani, M.H., Companys, E., Dago, A., Puy, J. & Galceran, J. (2019). New methodology to measure low free indium (III) concentrations based on the determination of the lability degree of indium complexes. Assessment of In(OH)3 solubility product. Journal of Electroanalytical Chemistry, 847,113185. DOI:10.1016/j.jelechem.2019.05.067
  109. Theocharis, M., Tsakiridis, P.E., Kousi, P., Hatzikioseyian, A., Zarkadas, I., Remoundaki, E. & Lyberatos, G. (2021). Hydrometallurgical Treatment for the Extraction and Separation of Indium and Gallium from End-of-Life CIGS Photovoltaic Panels. Materials Proceedings, 5(1), 51. DOI:10.3390/materproc2021005051
  110. Tessier, A.P.G.C., Campbell, P.G. & Bisson, M.J.A.C. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical chemistry, 51(7), pp. 844-851. DOI:10.1021/ac50043a017
  111. U.S. Geological Survey, (2014a). Indium statistics.[In:]Kelly, T.D. and Matos, G.R., comps., Historical statistics for mineral and material commodities in the United States: U.S. Geological Survey Data Series 140, accessed 13/04/2024, at https://www.usgs.gov/centers/national-minerals-information-center/historical-statistics-mineral-and-material-commodities
  112. U.S. Geological Survey, 2014b, Gallium statistics. [In:] Kelly, T.D. and Matos, G.R., comps., Historical statistics for mineral and material commodities in the United States: U.S. Geological Survey Data Series 140, accessed 13/04/2024, at https://www.usgs.gov/centers/national-minerals-information-center/historical-statistics-mineral-and-material-commodities
  113. U.S. Geological Survey, 2014c, Germanium statistics, in Kelly, T.D., and Matos, G.R., comps., Historical statistics for mineral and material commodities in the United States: U.S. Geological Survey Data Series 140, accessed 13/04/2024, at https://www.usgs.gov/centers/national-minerals-information-center/historical-statistics-mineral-and-material-commodities
  114. U.S. Geological Survey, 2022, Mineral commodity summaries 2022: U.S. Geological Survey, 202 p., DOI:10.3133/mcs2022.
  115. Veronesi G, Moros M, Castillo-Michel H, Mattera, L., Onorato, G., Wegner, K.D., Ling, W.L., Reiss, P. & Tortiglione, C. (2019). In Vivo Biotransformations of Indium Phosphide Quantum Dots Revealed by X-Ray Microspectroscopy. ACS Applied Materials & Interfaces, 11(39), pp. 35630-35640. DOI: 10.1021/acsami.9b15433
  116. Virolainen, S., Huhtanen, T., Laitinen, A. & Sainio, T. (2020). Two alternative process routes for recovering pure indium from waste liquid crystal display panels. Journal of Cleaner Production, 243, 118599. DOI:10.1016/j.jclepro.2019.118599
  117. Wenzel, W.W., Kirchbaumer, N., Prohaska, T., Stingeder, G., Lombi, E., & Adriano, D.C. (2001). Arsenic fractionation in soils using an improved sequential extraction procedure. Analytica Chimica Acta, 436(2), pp. 309-323. DOI:10.1016/S0003-2670(01)00924-2
  118. Wernera, A., Riegera, A., Moscha, M. Haseneger, R. & Repke, J.U. (2018). Nanofiltration of indium and germanium ions in aqueous solutions: Influence of pH and charge on retention and membrane flux. Separation and Purification Technology, 194, pp. 319–328. DOI: 10.1016/j.seppur.2017.11.006
  119. White, S.J.O., & Hemond, H.F. (2012). The anthrobiogeochemical cycle of indium: a review of the natural and anthropogenic cycling of indium in the environment. Critical Reviews in Environmental Science and Technology, 42(2), pp. 155-186. DOI:10.1080/10643389.2010.498755
  120. Wiche, O., Székely, B., Moschner, C. & Heilmeier, H. (2018). Germanium in the soil-plant system—a review. Environmental Science and Pollution Research, 25, pp. 31938-31956. DOI:10.1007/s11356-018-3172-y
  121. Wiche, O., Zertani, V., Hentschel, W., Achtziger, R. & Midula, P. (2017). Germanium and rare earth elements in topsoil and soil-grown plants on different land use types in the mining area of Freiberg (Germany). Journal of Geochemical Exploration, 175, pp. 120-129. DOI:10.1016/j.gexplo.2017.01.008
  122. Willner, J., Fornalczyk, A., Jablonska-Czapla, M., Grygoyc, K. & Rachwal, M. (2021). Studies on the content of selected technology critical elements (germanium, tellurium and thallium) in electronic waste. Materials, 14(13), 3722. DOI:10.3390/ma14133722
  123. Wojcieszek, J., Szpunar, J. & Lobinski, R. (2018). Speciation of technologically critical elements in the environment using chromatography with element and molecule specific detection. TrAC Trends in Analytical Chemistry, 104, pp. 42-53. DOI:10.1016/j.trac.2017.09.018
  124. Wójcik, M., Gonnelli, C., Selvi, F., Dresler, S., Rostański, A. & Vangronsveld, J. (2016). Metallophytes of Serpentine and Calamine Soils – Their Unique Ecophysiology and Potential for Phytoremediation. Advances in Botanical Research, 83, pp. 1-42. DOI:10.1016/bs.abr.2016.12.002
  125. Wood, S. A., & Samson, I. M. (2005). The aqueous geochemistry of gallium, germanium, indium and scandium. Ore Geology Reviews, 28(1), pp. 57-102. DOI:10.1016/j.oregeorev.2003.06.002
  126. Yang J.L. & Chen L.H. (2018). Toxicity of antimony, gallium, and indium toward a teleost model and a native fifth species of semiconductor manufacturing districts of Taiwan. Journal of Elementology, 23(1), pp. 191-199. DOI: 10.5601/jelem.2017.22.3.1470
  127. Yang, G., Hadioui, M., Wang, Q. & Wilkinson K.J. (2019). Role of pH on indium bioaccumulation by Chlamydomonas reinhardtii. Environmental Pollution, 250, pp. 40-46. DOI: 10.1016/j.envpol.2019.03.116
  128. Yuan, W., Chen, J., Teng, H., Chetelat, B., Cai, H., Liu, J., Wang, Z., Bouchez, J., Moynier, F., Gaillardet, J., Schott, J. & Liu C. (2021). A review on the elemental and isotopic geochemistry of gallium. Global Biogeochemical Cycles, 35, e2021GB007033. DOI:10.1029/2021GB007033
  129. Yu, H.S. & Liao, W.T. (2011). Gallium: Environmental Pollution and Health Effects. [In:] Encyclopedia of Environmental Health, Nriagu J.O. (Ed.). Elsevier, pp. 829-833. DOI:10.1016/B978-0-444-52272-6.00474-8
  130. Yu, Y., Zhan, C., Li, Y., Zhou, D., Yu, J. & Yang, J. (2023). A comparison of metal distribution in surface soil between wetland and farmland in the Sanjiang plain. HydroResearch, 6, pp. 65-72. DOI:10.1016/j.hydres.2023.02.001
  131. Zhan, L., Wang, Z., Zhang, Y., & Xu, Z. (2020). Recycling of metals (Ga, In, As and Ag) from waste light-emitting diodes in sub/supercritical ethanol. Resources, Conservation and Recycling, 155, 104695. DOI:10.1016/j.resconrec.2020.104695
  132. Zheng, K., Benedetti, M.F., Jain, R., Pollmann, K. & Van Hullebusch, E.D. (2024). Recovery of gallium (and indium) from spent LEDs: Strong acids leaching versus selective leaching by siderophore desferrioxamine E. Separation and Purification Technology, 338, 126566. DOI:10.1016/j.seppur.2024.126566
  133. Zhou, J., Zhu, N., Liu, H., Wu, P., Zhang, X. & Zhong, Z. (2019). Recovery of gallium from waste light emitting diodes by oxalic acidic leaching. Resources, Conservation and Recycling, 146, pp. 366-372. DOI:10.1016/j.resconrec.2019.04.002
  134. Zoller, W.H., Gladney, E.S. & Duce, R.A. (1974). Atmospheric concentrations and sources of trace metals at the South Pole. Science, 183(4121), pp. 198-200. DOI:10.1126/science.183.4121.198
Go to article

Authors and Affiliations

George Yandem
1
ORCID: ORCID
Magdalena Jabłońska-Czapla
1
ORCID: ORCID

  1. Institute of Environmental Engineering Polish Academy of Science, Zabrze, Poland

This page uses 'cookies'. Learn more