Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 84
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Introduction of polymers into the cement composites improves same of the properties of concretes and mortars. Therefore, the polymer-cement composites are successfully used in construction. The model of microstructure formation in cement composites modified with thermoplastic polymer (pre-mix modifiers) has already been developed and successfully implemented. However, the formation of microstructure in the case of epoxy-cement composites (containing post-mix modifier) demonstrates same peculiarities which should be taken into account when modelling the process. The microstructure of epoxy-cement composites and its formation is discussed in the paper. The model is offered, formulated on the basis of the microscopic observations and results of testing.

Go to article

Authors and Affiliations

P. Łukowski
Download PDF Download RIS Download Bibtex

Abstract

In order to achieve extended life of asphalt pavement, one of key points is to achieve a good bonding between it’s components. This research paper presents findings on the topic of influence of polyethylene bitumen modification on the adhesion between bitumen and aggregate. A novel method of quantifying the bitumen coated area, based on computer image analysis, has been developed for this study. Two different methods of adhesion testing were employed, namely boiling water method and the rolling bottle method. Aggregates used in this study were granite and limestone. Based on 108 measurements, it was concluded that polyethylene modification has a negative impact on binder aggregate adhesion.

Go to article

Authors and Affiliations

D. Brożyna
K. J. Kowalski
Download PDF Download RIS Download Bibtex

Abstract

This article presents shortly reasons for improving designs of turboprop and turboshaft engines, and describes aero-thermodynamic aspects of methods or modification of these devices. The theoretical analysis of methods or modification concerns general changes or efficiency, flow, and rating. The influence of the following factors on engine performance is presented: change of efficiency or engine units, increase of compression and flow rate by using a compressor zerostage, change of compressor pressure ratio, changes of gas temperature keeping the gasgenerator rotational speed constant by adjusting the minimal throat area of turbine nozzle guide vanes, turbornachinery modelling, and changes of rotational speed of ratings.
Go to article

Authors and Affiliations

Stanisław Antas
Download PDF Download RIS Download Bibtex

Abstract

Liquid AI -Si alloys are usually given special treatments before they are cast to obtain finer or modified matrix and eutectic structures, leading to improved proper ties. For many years, sodium additions to hypoeutectic and eutectic AI -Si melts have been recognized as the most effective method of modifying the eutectic morphology, although most of the group IA or IIA elements have significant effects on the eutectic s tructure. Unfortunately, many of these approaches also have associated several founding difficulties, such as fading, forming dross in presence of certain alloying elements, reduced fluidity, etc. ln recent years, antimony additions to AI -Si castings have attracted considerable attention as an alternative method of refining the eutectic structure. Such additions eliminate many of the difficulties listed above and provide permanent (i.e. non -fading) refining ability. In this paper, the authors summarize work on antimony treatment of Al -Si based alloys.

Go to article

Authors and Affiliations

D. Bolibruchová
M. Brůna
Download PDF Download RIS Download Bibtex

Abstract

The purpose of the work was initial modification of the construction of a commercially produced heat exchanger – recuperator with CFD (computational fluid dynamics) methods, based on designs and process parameters which were provided. Uniformity of gas distribution in the space between the tubes of the apparatus as well as the pressure drop in it were taken as modification criteria. Uniformity of the gas velocity field between the tubes of the heat exchanger should cause equalization of the local individual heat transfer coefficient values and temperature value. Changes of the apparatus construction which do not worsen work conditions of the equipment, but cause savings of constructional materials (elimination or shortening some parts of the apparatus) were taken into consideration.

Go to article

Authors and Affiliations

Wojciech Ludwig
Daniel Zając
Download PDF Download RIS Download Bibtex

Abstract

Surface wastewater pollution due to accidental runoff or release of oil or its products is a longstanding and common environmental problem. The aim of the study was to investigate the impact of concentrations of oil products (diesel) and suspended solids, the sorbent type, the water flow rate and the interfering factors (chlorides) on the dynamic sorption of diesel and to test regeneration of polypropylene after its use for sorption. The sorbents used for study included common wheat straw (Triticum aestivum), polypropylene and sorbents modified with hydrogen peroxide solution. Standard methods were used for the determination of the investigated parameters and an in-house procedure employing a gas chromatograph was used for the determination of diesel concentration. The following factors that impact the sorption of diesel were investigated during the study: diesel concentration, concentration of suspended solids; type of sorbent (common wheat straw (Triticum aestivum), wheat straw modified with hydrogen peroxide, and polypropylene), water flow rate; and influence of the interfering factors (chlorides). Filtration speed in the range of investigated speeds does not affect the efficiency of diesel removal. Removal efficiency does not depend on the concentration of diesel before the sorbent reaches its maximum sorption capacity. Filling containing 50% of polypropylene and 50% of wheat straw was used for the study. It was found that polypropylene and wheat straw do not remove chlorides and suspended solids from solution. The study found that the solution of hydrogen peroxide boosts the hydrophobic properties of common wheat straw, but does not affect the sorption of diesel. The recommended number of regenerations of polypropylene should be limited to two.
Go to article

Bibliography

  1. Adebajo, M.O., Frost, R.I., Kloprogge, J.T., Carmody, O. & Kokot, S. (2003). Porous materials for oil spill cleanup: A review of synthesis and absorbing properties, Journal of Porous Material, 3, pp. 159-170. DOI:10.1023/A:1027484117065
  2. Akpomie, K.G. & Conradie, J. (2021). Ultrasonic aided sorption of oil from oil-in-water emulsion onto oleophilic natural organic-silver nanocomposite, Chemical Engineering Research and Design, 165, pp. 12-24. DOI:10.1016/j.cherd.2020.10.019
  3. American Chemistry Council. (2018). (https://plastics.americanchemistry.com/Reports-and-Publications/National-Post-Consumer-Plastics-Bottle-Recycling-Report.pdf).
  4. Baig, N. & Saleh, T.A. (2019). Novel hydrophobic macroporous polypropylene monoliths for efficient separation of hydrocarbons, Composites Part B: Engineering, 173, pp. 106805. DOI:10.1016/j.compositesb.2019.05.016
  5. Baiseitov, D.A., Tulepov, M.I., Sassykova, L.R., Gabdrashova, S.E., Essen, G.A., Kudaibergenov, K.K. & Mansurov, Z.A. (2016). Sorption capacity of oil sorbent for the removal of thin films of oil, Bulgarian Chemical Communications, 3, pp. 446-450.
  6. Bayat, A., Aghamiri, S. F., Moheb, A. & Vakili-Nezhaad, G. (2005). Oil spill cleanup from sea water by sorbent materials, Journal of Chemical Engineering Technology, 12, pp. 1525-1528. DOI:10.1002/ceat.200407083
  7. Chandra, S., Sharma, R., Singh, K. & Sharma, A. (2013). Application of bioremediation technology in the environment contaminated with oil hydrocarbon, Annals of Microbiology, 63, pp. 417-431. DOI: 10.1007/s13213-012-0543-3
  8. Chaouki, Z., Zaitan, H., Nawdali M., Vasarevičius S. & Mažeikienė, A. (2020). Oil removal from refinery wastewater through adsorption on low cost natural biosorbents, Environmental engineering and management journal, 1, pp. 105-112. DOI:10.30638/eemj.2020.011
  9. Deschamps, G., Caruel, H., Borredon, M. E., Albasi, C., Riba, J. P., Bonnin, C. & Vignoles, C. (2003). Oil removal from water by sorption on hydrophobic cotton fibers. 2. Study of sorption properties in dynamic mode, Environmental science & technology, 21, pp. 5034-5039. DOI:10.1021/es020249b
  10. Gushchin, A.A., Grinevich, V.I., Gusev, G.I., Kvitkova, E.Y. & Rybkin, V.V. (2018). Removal of oil products from water using a combined process of sorption and plasma exposure to DBD, Plasma Chemistry and Plasma Processing, 5, pp. 1021-1033. DOI:10.1007/s11090-018-9912-4
  11. Hybská, H., Mitterpach, J., Samešová, D., Schwarz, M., Fialová, J. & Veverková, D. (2018). Assessment of ecotoxicological properties of oils in water, Archives of Environmental Protection, 4, pp. 31-37. DOI:10.24425/aep.2018.122300
  12. Kamble, S.P., Mangrulkar, P.A., Bansiwal, A.K. & Rayalu, S.S. (2007). Adsorption of phenol and o-chlorophenol on surface altered fly ash based molecular sieves, Chemical Engineering Journal, 138, pp. 73–83. DOI:10.1016/j.cej.2007.05.030
  13. Karyab, H., Mirhosseini, M. Moradi, S. & Karimi, F.F. (2016). Removal of light petroleum hydrocarbons from water sources using polypropylene and titanium dioxide nano-composite, Journal of Inflammatory Disease, 3, pp. 32-26.
  14. Król, M. & Rożek, P. (2020). Sorption of oil products on the synthetic zeolite granules, Mineralogia, 51, pp. 1-7. DOI:10.2478/mipo-2020-0001
  15. Kwaśny, J. A., Kryłów, M. & Balcerzak, W. (2018). Oily wastewater treatment using a zirconia ceramic membrane–a literature review, Archives of Environmental Protection, 3, pp. 3-10. DOI: 10.24425/aep.2018.122293
  16. Li, G., Guo, S. & Hu, J. (2016). The influence of clay minerals and surfactants on hydrocarbon removal during the washing of petroleum-contaminated soil, Chemical Engineering Journal, 286, pp. 191-197. DOI:10.1016/j.cej.2015.10.006
  17. Li, S., Wu, X., Cui, L., Zhang, Y., Luo, X., Zhang, Y. & Dai, Z. (2015). Utilization of modification polyester non-woven as an affordable sorbent for oil removal, Desalination and Water Treatment, 11, pp. 3054-3061. DOI:10.1080/19443994.2014.913264
  18. Lurchenko, V., Melnikova, O., Mikhalevich, N. & Borzenko, O. (2019). Surface wastewater treatment from various fractions of petroleum products from the territory of highway infrastructure facilities, Environmental problems, 2, pp. 74-81. DOI:10.23939/ep2019.02.074
  19. Maceiras, R., Alfonsin, V., Martinez, J. & de Rey, C.M.V. (2018). Remediation of diesel-contaminated soil by ultrasonic solvent extraction, International Journal of Environmental Research, 5, pp. 651-659. DOI:10.1007/s41742-018-0121-z
  20. Mandal, S. & Mayadevi, S. (2009). Defluoridation of water using as-synthesized Zn/Al/Cl anionic clay adsorbent: euilibrium and regeneration studies, Journal of Hazardous Materials, 167, pp. 873-978. DOI:10.1016/j.jhazmat.2009.01.069
  21. Mauricio-Gutiérrez, A., Machorro-Velázquez, R., Jiménez-Salgado, T., Vázquez-Crúz, C., Sánchez-Alonso, M. P. & Tapia-Hernández, A. (2020). Bacillus pumilus and Paenibacillus lautus effectivity in the process of biodegradation of diesel isolated from hydrocarbons contaminated agricultural soils, Archives of Environmental Protection, 4, pp. 56-69. DOI:10.24425/aep.2020.135765
  22. Mažeikiene, A. & Švediene, S. (2015). The suitability of natural and synthetic filter material for the removal of oil products from the aqueous media, Desalination and Water Treatment, 27, pp. 12487-12495. DOI:10.1080/19443994.2015.1053993
  23. Mažeikienė, A., Rimeika, M. & Švedienė, S. (2014). Oil removal from water by filtration, Journal of Environmental Engineering and Landscape Management, 1, pp. 64-70. DOI:10.3846/16486897.2014.885906
  24. Mohammadi, L., Rahdar, A., Bazrafshan, E., Dahmardeh, H., Susan, M., Hasan, A.B. & Kyzas, G.Z. (2020). Petroleum Hydrocarbon Removal from Wastewaters: A Review, Processes, 4, pp. 447. DOI:10.3390/pr8040447
  25. Moshe, S.B. & Rytwo, G. (2018). Thiamine-based organoclay for phenol removal from water, Applied Clay Science, 155, pp. 50-56. DOI:10.1016/j.clay.2018.01.003
  26. Paulauskiene, T. (2018). Ecologically friendly ways to clean up oil spills in harbor water areas: crude oil and diesel sorption behavior of natural sorbents, Environmental Science and Pollution Research, 10, pp. 9981-9991. DOI:10.1007/s11356-018-1316-8
  27. Quím, R.C. (2020). Highly porous polymeric composite with γ-Fe2O3 nanoparticles for oil products sorption, Revista Cubana de Química, 1, pp. 104-116.
  28. Rudkovsky, A.V., Fetisova, O.Y. & Chesnokov, N.V. (2016). Sorption of oil products by carbon sorbents from Siberian larch bark, Chemistry, 1, pp. 109. DOI:10.17516/1998-2836-2016-9-1-109-118
  29. Sari, G. L., Trihadiningrum, Y. & Ni'matuzahroh, N. (2018). Petroleum hydrocarbon pollution in soil and surface water by public oil fields in Wonocolo sub-district, Indonesia, Journal of Ecological Engineering, 2, pp.184-193. DOI:10.12911/22998993/82800
  30. The surface waste water management regulation (2019). (https://e-seimas.lrs.lt/portal/legalAct/lt/TAD/TAIS.295779/asr) (in Lithuanian)
  31. Thilagavathi, G. & Das, D. (2018). Oil sorption and retention capacities of thermally-bonded hybrid nonwovens prepared from cotton, kapok, milkweed and polypropylene fibers, Journal of environmental management, 219, pp. 340-349. DOI:10.1016/j.jenvman.2018.04.107
  32. Varjani, S.J. Rana, D.P. Jain, A.K. Bateja, S. & Upasani, V.N. (2015). Synergistic ex-situ biodegradation of crude oil by halotolerant bacterial consortium of indigenous strains isolated from on shore sites of Gujarat, India, International Biodeterioration & Biodegradation, 103, pp. 116-124. DOI:10.12911/22998993/82800
  33. Vilūnas, A., Švedienė, S. & Mažeikienė, A. (2014). The research of sorbent usage for oil products removal from storm water runoff. (https://iicbe.org/upload/1891C0214017.pdf).
  34. Voronov, A.A, Malyshkina, E.S., Vialkova, E.I. & Maksimova, S.V. (2018). Development of the rational urban engineering systems for the surface wastewater treatment, Urban сonstruction and architecture, 3, pp. 43-50. DOI: 0.17673/Vestnik.2018.03.10
  35. Vuruna, M., Veličković, Z., Perić, S., Bogdanov, J., Ivanković, N. & Bučko, M. (2017). The influence of atmospheric conditions on the migration of diesel fuel spilled in soil, Archives of Environmental Protection, 1, pp. 73-79. DOI:10.1515/aep-2017-0004
  36. Xiao Jun, Z., Zhengang, L. & Min Dong, C. (2016). Effect of H2O2 concentrations on copper removal using the modified hydrothermal biochar, Journal of Bioresourse Technology, 1, pp. 262-267. DOI:10.1016/j.biortech.2016.02.032
  37. Yalcinkaya, F., Boyraz, E., Maryska, J. & Kucerova, K. (2020). A review on membrane technology and chemical surface modification for the oily wastewater treatment, Materials, 13, pp. 1-14. DOI:10.3390/ma13020493
Go to article

Authors and Affiliations

Dainius Paliulis
1

  1. Vilnius Gediminas Technical University, Lithuania
Download PDF Download RIS Download Bibtex

Abstract

The paper presents results of a study concerning an AlSi7Mg alloy and the effect of subjecting the liquid metal to four different processes: conventional refining with hexachloroethane; the same refining followed by modification with titanium, boron, and sodium; refining by purging with argon carried out in parallel with modification with titanium and boron salts and strontium; and parallel refining with argon and modification with titanium, boron, and sodium salts. The effect of these four processes on compactness of the material, parameters of microstructure, and fatigue strength of AlSi7Mg alloy after heat treatment. It has been found that the highest compactness (the lowest porosity ratio value) and the most favorable values of the examined parameters of microstructure were demonstrated by the alloy obtained with the use of the process including parallel purging with argon and modification with salts of titanium, boron, and sodium. It has been found that in the fatigue cracking process observed in all the four variants of the liquid metal treatment, the crucial role in initiation of fatigue cracks was played by porosity. Application of the process consisting in refining by purging with argon parallel to modification with Ti, B, and Na salts allowed to refine the microstructure and reduce significantly porosity of the alloy extending thus the time of initiation and propagation of fatigue cracks. The ultimate effect consisted in a distinct increase of the fatigue limit value.

Go to article

Authors and Affiliations

M. Tupaj
ORCID: ORCID
A.W. Orłowicz
ORCID: ORCID
A. Trytek
ORCID: ORCID
Marek Mróz
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The influence of cinnamic acid, 1-tryptophane, 3,4-dihydroxyphenylalanine, 2,4-dichlorophenol modifying IAA-oxidase activity and indoleacetic acid on the development and reproduction of cereal aphids in laboratory conditions was tested. We observed that IAA and Try stimulated the reproduction of cereal aphids whereas CA, DOPA and DCP decreased it.
Go to article

Authors and Affiliations

Małgorzata Woda-Leśniewska
Jerzy Giebel
Download PDF Download RIS Download Bibtex

Abstract

A fading mechanism during casting of treated Al-B-Sr master alloys in an aluminium-silicon cast alloy was investigated. Two different master alloys, the Al-3%B-3%Sr and Al-4%B-1%Sr were demonstrated for the efficiency test both grain refinement and modification microstructure. From experimental result, the addition of Al-3%B-3%Sr master alloy led to a refined grain size and fully modified eutectic Si. However, smaller grain sizes were found with Al-4%B-1%Sr master alloy addition while eutectic Si had coarser acicular morphology. The formation of high amounts of SrB6 compound in the Al-3%B-3%Sr master alloy resulted to increase of grain size and eutectic Si. In fading mechanism test when holding the melt for prolong time, the agglomeration of the SrB6 and AlSiSr compounds at the bottom of the casting specimen was important factors that decreased both grain refinement and modification efficiency. The stirring of the melt before pouring was found that the grain size and Si morphology were improved.
Go to article

Authors and Affiliations

P. Muangnoy
1
ORCID: ORCID
K. Eidhed
1
ORCID: ORCID

  1. University of Technology North Bangkok, Faculty of Engineering, Department of Materials and Production Technology Engineering, King Mongkut’s Bangkok, Thailand
Download PDF Download RIS Download Bibtex

Abstract

The objective of this study is to enhance the photocatalytic capabilities of kaolin clay to improve its efficiency in environmental remediation. Various techniques were employed to modify kaolin clay, including heat treatment, acid modification, and material integration. These methods aimed to reduce its bandgap and improve its selective adsorption properties, thereby enabling better visible light activation and pollutant removal. The study discovered that modified kaolin-derived nanomaterials exhibit remarkable potential in breaking down pollutants, disinfecting, capturing heavy metals, and eliminating airborne contaminants. These advanced materials have been successfully used in water filtration, air purification, and the development of self-cleaning surfaces.The modifications increased surface area, adsorption capacity, and overall catalytic performance. Unmodified kaolin, with its broad bandgap, has limitations that hinder its ability to be driven by visible light for photocatalytic purposes and to selectively absorb specific pollutants, including heavy metals. The novelty of this research lies in the systematic exploration and optimization of diverse modification strategies for kaolin clay, showcasing its versatility in photocatalytic applications. The tailored modifications of kaolin to address specific environmental needs have the potential to be a cost-effective and eco-friendly solution for sustainable environmental restoration.
Go to article

Bibliography

  1. Abdo, S. M., El-Hout, S. I., Shawky, A., Rashed, M. N. & El-Sheikh, S. M. (2022). Visible-light-driven photodegradation of organic pollutants by simply exfoliated kaolinite nanolayers with enhanced activity and recyclability. Environmental Research, 214, 113960. DOI:10.1016/j.envres.2022.113960
  2. Abou Alsoaud, M. M., Taher, M. A., Hamed, A. M., Elnouby, M. S. & Omer, A. M. (2022). Reusable kaolin impregnated aminated chitosan composite beads for efficient removal of Congo red dye: Isotherms, kinetics and thermodynamics studies. Scientific Reports, 12(1), 12972. DOI:10.1038/s41598-022-17305-w
  3. Akpotu, S. O., Lawal, I. A., Diagboya, P. N., Mtunzi, F. M. & Ofomaja, A. E. (2022). Engineered geomedia kaolin clay-reduced graphene oxide–polymer composite for the remediation of olaquindox from water. ACS omega, 7(38), pp. 34054-34065. DOI:10.1021/acsomega.2c03253
  4. Al-Qadri, F. A. & Alsaiari, R. (2023). Silica ash from waste palm fronds used as an eco-friendly, sustainable adsorbent for the Removal of cupper (II). Archives of Environmental Protection, 49(2). https://DOI 10.24425/aep.2023.145894
  5. Al-Rudainy, A. J., Mustafa, S., Ashor, A. & Bader, M. (2023). Role of Kaolin on Hemtological, Biochemical and Survival Rate of Cyprinus Carpio Challenged with Pesuydomonas Aeruginosa. Iraqi Journal of Agricultural Sciences, 54(2), pp. 472-477. DOI:10.36103/ijas.v54i2.1723
  6. Alkhabbas, M., Odeh, F., Alzughoul, K., Afaneh, R. & Alahmad, W. (2023). Jordanian Kaolinite with TiO2 for Improving Solar Light Harvesting Used in Dye Removal. Molecules, 28(3), 989. DOI:10.3390/molecules28030989
  7. Aritonang, A. B., Selpiana, H., Wibowo, M. A. & Adhitiawarman, A. (2022). Photocatalytic Degradation of Methylene Blue using Fe2O3-TiO2/Kaolinite under Visible Light Illumination. JKPK (Jurnal Kimia dan Pendidikan Kimia), 7(3), pp. 277-286. DOI:10.20961/jkpk.v7i3.66567
  8. Asmare, Z. G., Aragaw, B. A., Atlabachew, M. & Wubieneh, T. A. (2022). Kaolin-Supported Silver Nanoparticles as an Effective Catalyst for the Removal of Methylene Blue Dye from Aqueous Solutions. ACS omega, 8(1), pp. 480-491. DOI:10.1021/acsomega.2c05265
  9. Ayalew, A. A. (2020). Development of kaolin clay as a cost-effective technology for defluoridation of groundwater. International Journal of Chemical Engineering, 1-10. DOI:10.1155/2020/8820727
  10. Ayalew, A. A. (2023). Physiochemical Characterization of Ethiopian Mined Kaolin Clay through Beneficiation Process. Advances in Materials Science and Engineering, DOI:10.1155/2023/9104807
  11. Bahniuk, M. S., Alidina, F., Tan, X. & Unsworth, L. D. (2022). The last 25 years of research on bioflocculants for kaolin flocculation with recent trends and technical challenges for the future. Frontiers in Bioengineering and Biotechnology, 10, 1048755. DOI:10.3389/fbioe.2022.1048755
  12. Belachew, N. & Hinsene, H. (2020). Preparation of cationic surfactant-modified kaolin for enhanced adsorption of hexavalent chromium from aqueous solution. Applied Water Science, 10(1), pp. 1-8. DOI:10.1007/s13201-019-1121-7
  13. Belmokhtar, N., Ammari, M. & Brigui, J. (2017). Comparison of the microstructure and the compressive strength of two geopolymers derived from Metakaolin and an industrial sludge. Construction and Building Materials, 146, pp. 621-629. DOI:10.1016/j.conbuildmat.2017.04.127
  14. Bhatti, Q. A., Baloch, M. K., Schwarz, S. & Ishaq, M. (2023). Impact of mechanochemical treatment on surface chemistry and flocculation of kaolinite dispersion. Asia‐Pacific Journal of Chemical Engineering, 18(3), e2886. DOI:10.1002/apj.2886
  15. Bondarieva, A., Yaichenia, I., Zahorodniuk, N., Tobilko, V. & Pavlenko, V. (2022). Water purification from cationic organic dyes using kaolin-based ceramic materials. Technology audit and production reserves, 2(3/64), pp. 10-16. https://doi:10.15587/2706-5448.2022.254584.
  16. Bousbih, S., Errais, E., Darragi, F., Duplay, J., Trabelsi-Ayadi, M., Daramola, M. O. & Ben Amar, R. (2021). Treatment of textile wastewater using monolayered ultrafiltation ceramic membrane fabricated from natural kaolin clay. Environmental Technology, 42(21), pp. 3348-3359. DOI:10.1080/09593330.2020.1729242
  17. Burns, G. (1985). Solid State Physics Academic Press Inc. New York.
  18. Chen, M., Yang, T., Han, J., Zhang, Y., Zhao, L., Zhao, J., Li, R., Huang, Y., Gu, Z. & Wu, J. (2023). The application of mineral kaolinite for environment decontamination: A review. Catalysts, 13(1), 123. DOI:10.3390/catal13010123
  19. Chuaicham, C., Trakulmututa, J., Shu, K., Shenoy, S., Srikhaow, A., Zhang, L., Mohan, S., Sekar, K. & Sasaki, K. (2023). Recent clay-based photocatalysts for wastewater treatment. Separations, 10(2), 77. DOI:10.3390/separations10020077
  20. Ding, S. L., Zhang, L. L., Xu, B. H. & Liu, Q. F. (2012). Review and prospect of surface modification of kaolin. Advanced Materials Research, 430, pp. 1382-1385. DOI:10.4028/www.scientific.net/AMR.430-432.1382
  21. El-Sheikh, S., Shawky, A., Abdo, S. M., Rashed, M. N. & El-Dosoqy, T. I. (2020). Preparation and characterisation of nanokaolinite photocatalyst for removal of P-nitrophenol under UV irradiation. International Journal of Nanomanufacturing, 16(3), pp. 232-242. DOI:10.1504/IJNM.2020.108042
  22. El-Sherbiny, S., Morsy, F. A., Hassan, M. S. & Mohamed, H. F. (2015). Enhancing Egyptian kaolinite via calcination and dealumination for application in paper coating. Journal of Coatings Technology and Research, 12, pp. 739-749. DOI:10.1007/s11998-015-9672-5
  23. Erasto, L., Hellar-Kihampa, H., Mgani, Q. A. & Lugwisha, E. H. J. (2023). Comparative analysis of cationic dye adsorption efficiency of thermally and chemically treated Tanzanian kaolin. Environmental Earth Sciences, 82(4), 101. DOI:10.1007/s12665-023-10782-w
  24. Eze, K., Nwadiogbu, J., Nwankwere, E., Appl, A. & Res, S. (2012). Effect of acid treatments on the physicochemical properties of kaolin clay. Archives of Applied Science Research, 4(2), pp. 792-794.
  25. Fourdrin, C., Balan, E., Allard, T., Boukari, C. & Calas, G. (2009). Induced modifications of kaolinite under ionizing radiation: an infrared spectroscopic study. Physics and Chemistry of Minerals, 36, pp. 291-299. DOI:10.1007/s00269-008-0277-8
  26. Gad, A., Al-Mur, B. A., Alsiary, W. A. & Abd El Bakey, S. M. (2022). Optimization of carboniferous Egyptian kaolin treatment for pharmaceutical applications. Sustainability, 14(4), 2388. DOI:10.3390/su14042388
  27. Goodarzi, N., Ashrafi-Peyman, Z., Khani, E. & Moshfegh, A. Z. (2023). Recent progress on semiconductor heterogeneous photocatalysts in clean energy production and environmental remediation. Catalysts, 13(7), 1102. DOI:10.3390/catal13071102
  28. Hoai, P. T. T., Huong, N. T. M., Huong, P. T. & Viet, N. M. (2022). Improved the light adsorption and separation of charge carriers to boost photocatalytic conversion of CO2 by using silver doped ZnO photocatalyst. Catalysts, 12(10), 1194. DOI:10.3390/catal12101194
  29. Hu, P., Zhang, Y. & Cheng, G. (2023). Molecular Catalysis, 547, 113312. DOI:10.1016/j.mcat.2023.113312
  30. Huang, Z., Li, L., Li, Z., Li, H. & Wu, J. (2020). Synthesis of novel kaolin-supported g-C3N4/CeO2 composites with enhanced photocatalytic removal of ciprofloxacin. Materials, 13(17), 3811. DOI:10.3390/ma13173811
  31. Jiang, D., Liu, Z., Fu, L., Jing, H. & Yang, H. (2018). Efficient nanoclay-based composite photocatalyst: the role of nanoclay in photogenerated charge separation. The Journal of Physical Chemistry C, 122(45), pp. 25900-25908. DOI:10.1021/acs.jpcc.8b08663
  32. Kamaluddin, M. R., Zamri, N. I. I., Kusrini, E., Prihandini, W. W., Mahadi, A. H. & Usman, A. (2021). Photocatalytic activity of kaolin–titania composites to degrade methylene blue under UV light irradiation; kinetics, mechanism and thermodynamics. Reaction Kinetics, Mechanisms and Catalysis, 133(1), pp. 517-529. DOI:10.1007/s11144-021-01986-x
  33. Kareem, R. A., Alqadoori, M. A. I. & Ismail, M. M. (2022). Enhancement mechanical, thermal and dielectrical characteristics of polystyrene reinforcement by glass fiber and additive kaolin. Materials Science Forum, 1077, pp. 79-86. DOI:10.4028/p-qiok7y
  34. Kuranga, I., Alafara, A., Halimah, F., Fausat, A., Mercy, O. & Tripathy, B. (2018). Production and characterization of water treatment coagulant from locally sourced kaolin clays. Journal of Applied Sciences and Environmental Management, 22(1), pp. 103-109. DOI:10.4314/jasem.v22i1.19
  35. Kutláková, K. M., Tokarský, J. & Peikertová, P. (2015). Functional and eco-friendly nanocomposite kaolinite/ZnO with high photocatalytic activity. Applied Catalysis B: Environmental, 162, pp. 392-400. DOI:10.1016/j.apcatb.2014.07.018
  36. Li, C., Sun, Z., Song, A., Dong, X., Zheng, S. & Dionysiou, D. D. (2018). Flowing nitrogen atmosphere induced rich oxygen vacancies overspread the surface of TiO2/kaolinite composite for enhanced photocatalytic activity within broad radiation spectrum. Applied Catalysis B: Environmental, 236, pp. 76-87. DOI:10.1016/j.apcatb.2018.04.083
  37. Li, C., Zhu, N., Dong, X., Zhang, X., Chen, T., Zheng, S. & Sun, Z. (2020). Tuning and controlling photocatalytic performance of TiO2/kaolinite composite towards ciprofloxacin: Role of 0D/2D structural assembly. Advanced Powder Technology, 31(3), pp. 1241-1252. DOI:10.1016/j.apt.2020.01.007
  38. Liang, X., Li, Q. & Fang, Y. (2023). Preparation and characterization of modified kaolin by a mechanochemical method. Materials, 16(8), 3099. DOI:10.3390/ma16083099
  39. Lin, M., Chen, H., Zhang, Z. & Wang, X. (2023). Engineering interface structures for heterojunction photocatalysts. Physical Chemistry Chemical Physics, 25(6), pp. 4388-4407. DOI:10.1039/D2CP05281D
  40. Lindberg, J. D. & Snyder, D. G. (1972). Diffuse reflectance spectra of several clay minerals. American Mineralogist: Journal of Earth and Planetary Materials, 57(3-4_Part_1), pp. 485-493.
  41. Liu, J., Dong, G., Jing, J., Zhang, S., Huang, Y. & Ho, W. (2021). Photocatalytic reactive oxygen species generation activity of TiO2 improved by the modification of persistent free radicals. Environmental Science: Nano, 8(12), pp. 3846-3854. DOI:10.1039/D1EN00832C
  42. Liu, Q., Wang, S., Han, F., Lv, S., Yan, Z., Xi, Y. & Ouyang, J. (2022). Biomimetic tremelliform ultrathin MnO2/CuO nanosheets on kaolinite driving superior catalytic oxidation: an example of CO. ACS Applied Materials & Interfaces, 14(39), pp. 44345-44357. DOI:10.1021/acsami.2c11640
  43. Ma, R., Zhao, S., Jiang, X., Qi, Y., Zhao, T., Liu, Z., Han, C. & Shen, Y. (2023). Modification and regulation of acid-activated kaolinite with TiO2 nanoparticles and their enhanced photocatalytic activity to sodium ethyl xanthate. Environmental Technology Reviews, 12(1), pp. 272-285. DOI:10.1080/21622515.2023.2202827
  44. Mamulová Kutláková, K., Tokarský, J. & Peikertová, P. (2015). Functional and eco-friendly nanocomposite kaolinite/ZnO with high photocatalytic activity. Applied Catalysis B: Environmental, 162, pp. 392-400. DOI:DOI:10.1016/j.apcatb.2014.07.018
  45. Mei, X., Li, S., Chen, Y., Huang, X., Cao, Y., Guro, V. P. & Li, Y. (2023). Silica–chitosan composite aerogels for thermal insulation and adsorption. Crystals, 13(5), 755. DOI:10.3390/cryst13050755
  46. Mohd Yunus, N. Z., Ayub, A., Wahid, M. A., Mohd Satar, M. K. I., Abudllah, R. A., Yaacob, H., Hassan, S. A. & Hezmi, M. A. (2019). Strength behaviour of kaolin treated by demolished concrete materials. IOP Conference Series: Earth and Environmental Science, 220, 012001. DOI 10.1088/1755-1315/220/1/012001
  47. Omary, P. M., Ricky, E. X., Kasimu, N. A., Madirisha, M. M., Kilulya, K. F. & Lugwisha, E. H. (2023). Potential of Kaolin Clay on Formulation of Water Based Drilling Mud Reinforced with Biopolymer, Surfactant, and Limestone. Tanzania Journal of Science, 49(1), pp. 218-229. https://DOI:10.4314/tjs.v49i1.19
  48. Panda, T., Roy, N., Dutta, S. & Maity, T. (2023). Implementations of Photocatalysis: A Futuristic Approach. International Journal of Chemical and Environmental Sciences, 4(3), pp. 48-61. DOI:10.15864/ijcaes.4305
  49. Rajan, M. S., Yoon, M. & Thomas, J. (2022). Kaolin-graphene carboxyl incorporated TiO2 as efficient visible light active photocatalyst for the degradation of cefuroxime sodium. Photochemical & Photobiological Sciences, 21(4), pp. 509-528. DOI:10.1007/s43630-022-00179-2
  50. Rekik, S. B., Gassara, S., Bouaziz, J., Baklouti, S. & Deratani, A. (2023). Performance Enhancement of Kaolin/Chitosan Composite-Based Membranes by Cross-Linking with Sodium Tripolyphosphate: Preparation and Characterization. Membranes, 13(2), 229. DOI:10.3390/membranes13020229
  51. Román, C., Jeon, H., Zhu, H. & Ozkan, E. (2023). Evaluating Kaolin Clay as a Potential Substance for ISO Sprayer Cleaning System Tests. Applied Engineering in Agriculture, 39(3), pp. 347-358. https://doi: 10.13031/aea.15466
  52. Romolini, G., Gambucci, M., Ricciarelli, D., Tarpani, L., Zampini, G. & Latterini, L. (2021). Photocatalytic activity of silica and silica-silver nanocolloids based on photo-induced formation of reactive oxygen species. Photochemical & Photobiological Sciences, 20(9), pp. 1161-1172. DOI:10.1007/s43630-021-00089-9
  53. Roques-Carmes, T., Alem, H., Hamieh, T., Toufaily, J., Frochot, C. & Villiéras, F. (2020). 3 - Different strategies of surface modification to improve the photocatalysis properties: pollutant adsorption, visible activation, and catalyst recovery. [In] C. Mustansar Hussain & A. K. Mishra (Eds.), Handbook of Smart Photocatalytic Materials (pp. 39-57). Elsevier. DOI:10.1016/B978-0-12-819049-4.00007-6
  54. San Nicolas, R., Cyr, M. & Escadeillas, G. (2013). Characteristics and applications of flash metakaolins. Applied Clay Science, 83, pp. 253-262. DOI:10.1016/j.clay.2013.08.036
  55. Sbeih, S. A. & Zihlif, A. M. (2009). Optical and electrical properties of kaolinite/polystyrene composite. Journal of Physics D: Applied Physics, 42(14), 145405. https://DOI 10.1088/0022-3727/42/14/145405
  56. Serna-Galvis, E. A., Martínez-Mena, Y. L., Arboleda-Echavarría, J., Hoyos-Ayala, D. A., Echavarría-Isaza, A. & Torres-Palma, R. A. (2023). Zeolite 4A activates peroxymonosulfate toward the production of singlet oxygen for the selective degradation of organic pollutants. Chemical Engineering Research and Design, 193, pp. 121-131. DOI:10.1016/j.cherd.2023.03.015
  57. Shirzad-Siboni, M., Farrokhi, M., Darvishi Cheshmeh Soltani, R., Khataee, A. & Tajassosi, S. (2014). Photocatalytic Reduction of Hexavalent Chromium over ZnO Nanorods Immobilized on Kaolin. Industrial & Engineering Chemistry Research, 53(3), pp. 1079-1087. DOI:10.1021/ie4032583
  58. Sitarz-Palczak, E., Kalembkiewicz, J. & Galas, D. (2019). Comparative study on the characteristics of coal fly ash and biomass ash geopolymers. Archives of Environmental Protection, 45(1), pp. 126-135. DOI 10.24425/aep.2019.126427
  59. Sofi’i, Y. K., Sudarman, S. & Suprianto, H. (2022). Application of molecular dynamic energy of kaolin clay as photocatalysts. AIP Conference Proceedings, 2453(1), 020014. DOI:10.1063/5.0094250
  60. Sun, Z., Li, C., Du, X., Zheng, S. & Wang, G. (2018). Facile synthesis of two clay minerals supported graphitic carbon nitride composites as highly efficient visible-light-driven photocatalysts. Journal of colloid and interface science, 511, pp. 268-276. DOI:10.1016/j.jcis.2017.10.005
  61. Sun, Z., Yuan, F., Li, X., Li, C., Xu, J. & Wang, B. (2018). Fabrication of novel cyanuric acid modified g-C3N4/kaolinite composite with enhanced visible light-driven photocatalytic activity. Minerals, 8(10), 437. DOI:10.3390/min8100437
  62. Taheri, B. (2023). Iron removal from kaolin by oxalic acid using a novel pre-agitating and high-pressure washing technique. Clay Minerals, 58(2), pp. 224-233. DOI:10.1180/clm.2023.11
  63. Tanwongwan, W., Wongkitikun, T., Onpecht, K., Srilai, S., Assabumrungrat, S., Chollacoop, N. & Eiad-ua, A. (2020). Structure development of Thailand’s kaolin by mechanochemical technique. AIP Conference Proceedings, 2279(1), 060001. DOI:10.1063/5.0025045
  64. Tharakeswari, S., Saravanan, D., Agrawal, A. K. & Jassal, M. (2022). Kaolin-Calcium Carbonate-Titanium Dioxide (KCT) Composites for Decolourisation of Reactive Dye Effluent. Journal of the Chemical Society of Pakistan, 44(6). DOI:10.52568/001188/jcsp/44.06.2022
  65. Ugwuja, C. G., Adelowo, O. O., Ogunlaja, A., Omorogie, M. O., Olukanni, O. D., Ikhimiukor, O. O., Iermak, I., Kolawole, G. A., Guenter, C. & Taubert, A. (2019). Visible-light- mediated photodynamic water disinfection@ bimetallic-doped hybrid clay nanocomposites. ACS Applied Materials & Interfaces, 11(28), pp. 25483-25494. DOI:10.1021/acsami.9b01212
  66. Usman, J., Hafiz, M., Othman, D., Ismail, A., Rahman, M., Jaafar, J. & Abdullahi, T. (2020). Comparative study of Malaysian and Nigerian kaolin-based ceramic hollow fiber membranes for filtration application. Malaysian J Anal Sci, 16(2), pp. 78-82. DOI:10.11113/mjfas.v16n2.1484
  67. Vagvolgyi, V., Zsirka, B., Győrfi, K., Horváth, E. & Kristóf, J. (2021). Different Methods for Preparation of Active Sites in Kaolinite Surface and their Usability in Photocatalytic Processes, [in] Proceedings of the 2nd International Electronic Conference on Mineral Science, 1–15 March 2021, MDPI: Basel, Switzerland, DOI:10.3390/iecms2021-09357
  68. Varajāo, A. F. D. C., Gilkes, R. J. & Hart, R. D. (2001). The relationships between kaolinite crystal properties and the origin of materials for a Brazilian kaolin deposit. Clays and Clay Minerals, 49(1), pp. 44-59. DOI:10.1346/CCMN.2001.0490104
  69. Wang, L. & Yu, J. (2023). Principles of photocatalysis. In Interface science and technology (Vol. 35, pp. 1-52). Elsevier. DOI:10.1016/B978-0-443-18786-5.00002-0
  70. Wang, T., Xu, L., Cui, J., Wu, J., Li, Z., Wu, Y., Tian, B. & Tian, Y. (2022). Enhanced Charge Separation for Efficient Photocatalytic H2 Production by Long-Lived Trap-State-Induced Interfacial Charge Transfer. Nano Letters, 22(16), 6664-6670. DOI:10.1021/acs.nanolett.2c02005 Burns, G. (1985). Solid State Physics Academic Press Inc. New York.
  71. Xiao, Y., Tian, X., Chen, Y., Xiao, X., Chen, T. & Wang, Y. (2023). Recent Advances in Carbon Nitride-Based S-scheme Photocatalysts for Solar Energy Conversion. Materials, 16(10), 3745. DOI:10.3390/ma16103745
  72. Xu, H., Sun, S., Jiang, S., Wang, H., Zhang, R. & Liu, Q. (2018). Effect of pretreatment on microstructure and photocatalytic activity of kaolinite/TiO 2 composite. Journal of sol-gel science and technology, 87, pp. 676-684. DOI:10.1007/s10971-018-4760-5
  73. Yahaya, S., Jikan, S. S., Badarulzaman, N. A. & Adamu, A. D. (2017). Chemical composition and particle size analysis of kaolin. Traektoriâ Nauki, Volume 3, Number 10, 2017, pp. 1001-1004(4) DOI:10.22178/pos.27-1
  74. Yu, J. M. & Jang, J.-W. (2023). Organic Semiconductor-Based Photoelectrochemical Cells for Efficient Solar-to-Chemical Conversion. Catalysts, 13(5), 814. DOI:10.3390/catal13050814
  75. Zakaria Djibrine, B., Zheng, H., Wang, M., Liu, S., Tang, X., Khan, S., Jimenéz, A. N. & Feng, L. (2018). An effective flocculation method to the kaolin wastewater treatment by a cationic polyacrylamide (CPAM): Preparation, characterization, and flocculation performance. International Journal of Polymer Science, pp. 1-12. DOI:10.1155/2018/5294251
  76. Zhang, B., Wang, D., Cao, J., Zhao, C., Pan, J., Liu, D., Liu, S., Zeng, Z., Chen, T. & Liu, G. (2023). Efficient doping induced by charge transfer at the hetero-interface to enhance photocatalytic performance. ACS Applied Materials & Interfaces, 15(10), pp. 12924-12935. DOI:10.1021/acsami.2c19209
  77. Zhang, C., Xie, C., Gao, Y., Tao, X., Ding, C., Fan, F. & Jiang, H. L. (2022). Charge separation by creating band bending in metal–organic frameworks for improved photocatalytic hydrogen evolution. Angewandte Chemie, 134(28), e202204108. DOI:10.1002/ange.202204108
  78. Zhang, Q., Shan, A., Wang, D., Jian, L., Cheng, L., Ma, H. & Li, J. (2013). A new acidic Ti sol impregnated kaolin photocatalyst: synthesis, characterization and visible light photocatalytic performance. Journal of sol-gel science and technology, 65, pp. 204-211. DOI:10.1007/s10971-012-2925-1
  79. Zhang, Y., Gan, H. & Zhang, G. (2011). A novel mixed-phase TiO2/kaolinite composites and their photocatalytic activity for degradation of organic contaminants. Chemical Engineering Journal, 172(2-3), pp. 936-943. DOI:10.1016/j.cej.2011.07.005
  80. Zvyagin, B. & Drits, V. (1996). Interrelated features of structure and stacking of kaolin mineral layers. Clays and Clay Minerals, 44, pp. 297-303. DOI: 10.1346/CCMN.1996.0440301
Go to article

Authors and Affiliations

Samor Boonphan
1
Suriyong Prachakiew
1
Khuruwan Klinbumrung
2
Chananbhorn Thongrote
2
Arrak Klinbumrung
3 4

  1. Faculty of Science and Agricultural Technology, Rajamangala University of Technology Lanna, Chiang Rai, Thailand
  2. Scientific Instrument and Product Standard Quality Inspection Center, University of Phayao, Phayao, Thailand
  3. Unit of Excellence on Advanced Nanomaterials, University of Phayao, Phayao, Thailand
  4. School of Science, University of Phayao, Phayao, Thailand
Download PDF Download RIS Download Bibtex

Abstract

A method of manufacturing hydrogel coatings designed to increase the hydrophilicity of polyurethanes (PU) is presented. Coatings were obtained from polyvinylpyrrolidone (PVP) by free radical polymerisation. The authors proposed a mechanism of a two-step grafting - crosslinking process and investigated the influence of reagent concentration on the coating’s physical properties - hydrogel ratio (HG) and equilibrium swelling ratio (ESR). A surface analysis of freeze-dried coatings using scanning electron microscopy (SEM) showed a highly porous structure. The presented technology can be used to produce biocompatible surfaces with limited protein and cell adhesive properties and can be applied in fabrication of number of biomedical devices, e.g. catheters, vascular grafts and heart prosthesis.

Go to article

Authors and Affiliations

Tomasz Ciach
Beata Butruk
Maciej Trzaskowski
Download PDF Download RIS Download Bibtex

Abstract

The presented work discusses the influence of material of foundry mould on the effect of modification of AlSi11 alloy. For this purpose castings were produced in moulds made of four various materials. Castings of the first type were cast in a metal die, the second ones in the conventional mould of bentonite-bound sand, those of the third type in the sand mould with oil binder, the last ones in a shell mould where phenol-formaldehyde resin was applied as a binder. All the castings were made of AlSi11 alloy modified with strontium. For a purpose of comparison also castings made of the non-modified alloy were produced. The castings were examined with regard to their microstructures. The performed investigations point out that the addition of strontium master alloy results in refining of the alloy structure, particularly of the α-phase, causes some morphological changes in the alloy and the refinement of eutectics. The advantageous influence of modifier on the structure of the examined silumin was observed particularly in the case of alloy cast either in the conventional oil-bound sand mould or in the shell mould. The non-modified alloy cast into a metal die exhibits a structure similar to those of modified alloy solidifying in the other moulds. The improvement in both tensile strength and unit elongation suggests that the modification was carried out correctly. The best mechanical properties were found for the alloy cast in a metal die, both with and without modification treatment.

Go to article

Authors and Affiliations

Z. Konopka
M. Łągiewka
Download PDF Download RIS Download Bibtex

Abstract

Grain refining and modification are common foundry practice for improving properties of cast Al-Si alloys. In general, these types of treatments provide better fluidity, decreased porosity, higher yield strength and ductility. However, in practice, there are still some discrepancies on the reproducibility of the results from grain refining and effect of the refiner’s additions. Several factors include the fading effect of grain refinement and modifiers, inhomogeneous dendritic structure and non-uniform eutectic modification. In this study, standard ALCAN test was used by considering Taguchi’s experimental design techniques to evaluate grain refinement and modification efficiency. The effects of five casting parameters on the grain size have been investigated for A357 casting alloy. The results showed that the addition of the grain refiner was the most effective factor on the grain size. It was found that holding time, casting temperature, alloy type and modification with Sr were less effective over grain refinement.

Go to article

Authors and Affiliations

M. Çolak
D. Dışpınar
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a study of the effect of the modification and cooling rate on the grain count α(Al) in the Al-5Cu alloy. Research was

performed on castings with walls thickness between 3 mm and 25 mm. Cooling curves were recorded to determine the cooling rate and the

degree of undercooling at the beginning of solidification. It has been shown that cooling rate increases exponentially as the wall thickness

of casting decreases. Moreover it has been demonstrated that the cooling rate of castings changes within a wide range (21ºC/s - 1ºC/s)

when the wall thickness changes from 3 up to 25 mm. Metallographic examinations revealed primary grains (primary α(Al) grains). The

paper show that the relationship between the grain count and the degree of undercooling (for non-modified and modified alloys) can be

represented by the equation N = Nv = np·exp(-b/ΔTα), based on the Weibull's distribution of the size of nucleation sites.

Go to article

Authors and Affiliations

M. Górny
G. Sikora
Download PDF Download RIS Download Bibtex

Abstract

Compacted graphite iron, also known as vermicular cast iron or semiductile cast iron is a modern material, the production of which is increasing globaly. Recently this material has been very often used in automotive industry. This paper reviews some findigs gained during the development of the manufacturing technology of compacted graphite iron under the conditions in Slévárna Heunisch Brno, Ltd. The new technology assumes usage of cupola furnace for melting and is beeing developed for production of castings weighing up to 300 kilograms poured into bentonite sand moulds.

Go to article

Authors and Affiliations

J. Heunisch
O. Bouska
A. Zadera
K. Nedelova
F. Kobersky
Download PDF Download RIS Download Bibtex

Abstract

Abstract An attempt has been made to determine the effect of an addition of colloidal suspensions of the nanoparticles of magnesium oxide on the structure of water glass, which is a binder for moulding and core sands. Nanoparticles of magnesium oxide MgO in propanol and ethanol were introduced in the same mass content (5wt.%) and structural changes were determined by measurement of the FT-IR absorption spectra.
Go to article

Authors and Affiliations

A. Bobrowski
A. Kmita
M. Starowicz
B. Hutera
B. Stypuła
Download PDF Download RIS Download Bibtex

Abstract

Impact of surface and volume modification and double filtration during pouring the moulds on basic mechanical properties and creep resistance of nickel superalloys IN-713C and MAR-247 in conditions of accelerated creep of castings made of post-production scrap of these alloys is evaluated in this paper. The conditions of initiation and propagation of cracks in the specimens were analysed with consideration of stereological properties of material macro- and microstructure. It has been proven that in the conditions of hightemperature creep at 980°C and at stress σ = 150 MPa, creep resistance of superalloy MAR-247 is more than 10 times higher than the creep resistance of IN-713C alloy. In case of IN-713C alloy, the creep resistance negligibly depends on macrograin sizes. But, the macrograin size considerably affects the time to failure of specimens made of alloy MAR-247. Creep resistance of specimens made of coarse grain material was 20% higher than the resistance of fine grain materials.
Go to article

Authors and Affiliations

M. Cieśla
F. Binczyk
M. Mańka
Download PDF Download RIS Download Bibtex

Abstract

Titania nanotube (TNT) arrays fabricated by anodizing of titanium foil in organic (ethylene glycol) and inorganic (phosphoric acid) electrolytes and thermally modified in argon revealed much improved properties to detect hydrogen peroxide. Horseradish peroxidase and acetate thionine co-absorbed by a dip coating on the TNT electrode were used to detect hydrogen peroxide in phosphate buffered saline. The morphology and electrochemical properties of TNT arrays were studied by scanning electron microscopy, electrochemical impedance spectroscopy and cyclic voltammetry. Well defined oxidation and reduction peaks for potassium ferricyanide have been observed for TNT formed in ethylene glycol and annealed in argon. TNT arrays formed in organic electrolyte and annealed in argon indicated more favorable adsorption and electrochemical properties what was confirmed by detection of hydrogen peroxide towards analyte in phosphorate buffered saline solution.
Go to article

Authors and Affiliations

K. Arkusz
E. Krasicka-Cydzik
Download PDF Download RIS Download Bibtex

Abstract

The effect of combination grain refinement with AlTi5B1 master (55 ppm) and Sr-modification with AlSr5 master (20, 30, 40, 50 and 60 ppm) on the microstructure, tensile and hardness properties of AlSi7MgTi cast alloy were systematically investigated. Eutectic silicon was studied by optical and scanning electron microscopy after standard (0.5% HF) and deep etching (HCl). Morphology of eutectic Si changes from compact plate-like (as-cast state) to fibbers (after modification). Si-fibbers in samples with 50 and 60 ppm Sr coarsen probably as a result of over-modification. The optimum mechanical properties has the experimental material which was grain refined and modified with 40 ppm of Sr (UTS = 220.6 MPa; ductility = 6.1%, and 82.3 HBW 5/250/15).

Go to article

Authors and Affiliations

L. Kuchariková
E. Tillová
M.S. Bonek
M. Chalupová
Download PDF Download RIS Download Bibtex

Abstract

This paper deals with the effects of modifications to clay-siliceous raw material from Dylągówka (Dynów foothills, SE Poland), which alter the rheological properties of its water suspensions. The investigations were carried out on three samples collected from various depths of the deposit as they considerably differ in their contents of smectite and other minerals. The samples were either modified with soda or activated with sulphuric (VI) acid and used to prepare their water suspensions with various contents of solids. The suspensions were subject to determinations of viscosity and flow curves. Dependencies of three variables of the suspensions (rheological properties, mineral composition of the solid phase, and the modifications introduced) were assessed on the basis of: the contents of the solid phase in the suspensions required to obtain a viscosity of 1000 mPas; hypothetical, calculated thixotropic energy. These show that the amount of solids in the water suspension required to obtain the required viscosity is considerably lower in samples with higher contents of smectite and in those activated with sodium. In turn, the acid activation that partially alters smectite towards a protonated silica gel decreases the viscosity and thixotropy of the suspensions, which was confirmed in the studies of mid-infrared spectroscopy. The conducted studies provide important information needed in designing the mineral composition of drilling fluids and others applications.
Go to article

Authors and Affiliations

Wojciech Panna
1
ORCID: ORCID
Joanna Mastalska
2
ORCID: ORCID
Sebastian Prewendowski
1
ORCID: ORCID
Łukasz Wójcik
2
ORCID: ORCID

  1. University of Applied Sciences in Tarnów, Poland
  2. AGH University of Science and Technology, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

The morphology of G20Mn5 specimens made of non-modified and rare earth metals (REM) modified cast steel was investigated. Molten metal was treated with a cerium-rich mischmetal contain 49.8% Ce, 21.8% La, 17.1% Nd, 5.5% Pr and 5.35% other rare earth metals making up the balance. The melting, quenching (920°C/water) and tempering (720°C/air) were performed under industrial conditions. Analysis included G20Mn5 cast steel fracture specimens subjected to Charpy V-notch impact testing at 20°C, -30°C and -40°C. The purpose of the analysis was to determine the influence of REM on the microstructure and mechanical properties of G20Mn5 cast steel and the REM effect on the morphology, impact strength and character of the fracture surfaces. In addition, a description of the mechanism by which fracture occurred in the two materials was proposed. The author demonstrated the beneficial effects of adding REM to molten steel, manifested by a 20 - 40% increase in impact toughness, depending on test temperature, as compared to the non-modified cast steel. Important findings included more than 100% increase in impact strength in comparison with the required impact toughness of 27J at -40C for heat treated steels (EN 10213).

Go to article

Authors and Affiliations

Justyna Kasińska
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

With the aid of eutectic modification treatment, the precipitation of coarse lamellar eutectic silicon can be suspended during the solidification of aluminum-silicon alloys, thereby the formation of fine-grained, fibrous eutectic Si can be promoted by the addition of small amounts of modifying elements, such as Sr, to the liquid alloy. The effectiveness of this technique is, however, highly dependent on many technological factors, and the degree of modification can be lowered during the various stages of melt preparation due to the oxidation of the Sr-content of the melt. During our research, we investigated the effect of rotary degassing melt treatments coupled with the addition of three different fluxes on the degree of modification of an Al-Si-Mg-Cu casting alloy. It was also studied, that whether additional Sr alloying made before and during the melt treatments can compensate the Sr fading with time. The degree of eutectic modification was characterized by thermal analysis (TA) and the microscopic investigation of TA specimens. It was found, that by using one of the three fluxes, and by adding Sr master alloy rods before the melt treatments, better modification levels could be achieved. It was also found that the measurement of Sr-concentration by optical emission spectroscopy alone cannot be used for controlling the level of eutectic modification.

Go to article

Authors and Affiliations

F. Vincze
M. Tokár
G. Fegyverneki
G. Gyarmati
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of investigations concerning the influence of gray cast iron modification on free vibration frequency of the disc casting. Three different chemical composition melts of gray cast iron were prepared in induction furnace. During gravity casting 0.05% and 0.3% mass of the Inolate modifier was added on stream of metal for changing graphite flakes in castings. Sound signal vibration of cast iron sample was registered by means on microphone for free vibration frequency measurements. Decreasing of free vibration frequency of modified cast iron in comparison with non modified castings was observed. Higher contents of modifier causes more decreasing of free vibration frequency. Cast iron with smaller contents of carbon and silicon have higher free vibration frequency in comparison with eutectic composition cast iron. Hardness of examined cast iron is lower when the more modifier is added during modification process. Free frequency is smaller with smaller Brinell hardness of disc casting. It was concluded that control of free vibration frequency of disc castings by means of chemical composition and modification process can improved comfort and safety of working parts.

Go to article

Authors and Affiliations

Z. Konopka
Małgorzata Łągiewka
ORCID: ORCID
A. Zyska
Download PDF Download RIS Download Bibtex

Abstract

The goal of the work was to investigate the influence of silver addition on the microstructure of CuNi2Si1 alloys. The investigated copper alloy was cast and then supersaturated, plastically deformed on the Gleeble 3800 simulator and finally aged. Structural changes were examined using optical microscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Orientation mapping was completed FEI Quanta 3D field emission gun scanning electron microscope (SEM) equipped with TSL electron backscattered diffraction (EBSD) system. The effect of structural and microstructural changes on hardness and conductivity was also investigated. Based on the mechanical tests it was found, that the mechanical properties and conductivity are improved due to heat and plastic treatment. It was also found that the precipitation hardening raises the hardness to the level of 40% whilst an increase in conductivity by 20% is observed.
Go to article

Authors and Affiliations

Beata Krupińska
1
ORCID: ORCID
Robert Chulist
2
Marcin Kondracki
3
ORCID: ORCID
Krzysztof Labisz
4

  1. Silesian University of Technology, Faculty of Mechanical Engineering, Department of Engineering Materials and Biomaterials, 44-100 Gliwice, Konarskiego St. 18a, Poland
  2. Institute of Metallurgy and Materials Science of Polish Academy of Sciences, 30-059 Krakow, Reymonta St. 25, Poland
  3. Silesian University of Technology, Faculty of Mechanical Engineering, Department of Foundry Engineering, 44-100 Gliwice, Konarskiego St. 18a, Poland
  4. Silesian University of Technology, Faculty of Transport and Aviation Engineering, Department of Railway Transport, 44-100 Gliwice, Konarskiego St. 18a, Poland

This page uses 'cookies'. Learn more