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Abstract. The processing of cartographic data demands human involvement. Up-to-date 
algorithms try to automate a part of this process. The goal is to obtain a digital model, or 
additional information about shape and topology of input geometric objects. A topological 
skeleton is one of the most important tools in the branch of science called shape analysis. 
It represents topological and geometrical characteristics of input data. Its plot depends 
on using algorithms such as medial axis, skeletonization, erosion, thinning, area collapse 
and many others. Area collapse, also known as dimension change, replaces input data 
with lower-dimensional geometric objects like, for example, a polygon with a polygonal 
chain, a line segment with a point.
The goal of this paper is to introduce a new algorithm for the automatic calculation of 
polygonal chains representing a 2D polygon. The output is entirely contained within the 
area of the input polygon, and it has a linear plot without branches. The computational 
process is automatic and repeatable. The requirements of input data are discussed. The 
author analyzes results based on the method of computing ends of output polygonal 
chains. Additional methods to improve results are explored. The algorithm was tested 
on real-world cartographic data received from BDOT/GESUT databases, and on point 
clouds from laser scanning. An implementation for computing hatching of embankment 
is described.

Keywords: shape analysis, Polygon collapse, medial axis, geometry processing, 
spatial database

1. Introduction

There are many ways to collect data for spatial databases. Elements of the environment 
its surroundings are measured with classical survey methods such as tacheometry, as 
well as with modern ones, like terrestrial and airborne laser scanning. Cartographic 
data, like maps and drawings, can be scanned, vectorized and digitalized.

Nowadays, the progress in the fi eld of obtaining automated data is outpacing the 
processing of this data. The existing geometrical algorithms still do not match the 



Michał Mateusz Buczek24

empirical abilities of a human mind. This is the reason many branches of science, 
such as point cloud modeling or cartography, require human work. The results of 
the computerized determination of geometrical and topological features and relations 
are much worse than those obtained by humans. The branch of science called shape 
analysis tries to fi nd a solution to these problems through developing even more 
sophisticated algorithms.

One of the main tools used in shape analysis are algorithms used for the automated 
determination of geometrical features of datasets, namely symmetry and main axes, 
skeleton lines, edges, planes, and many others. Processes for fi tting geometrical 
objects into point clouds were designed for 3D modeling. In digital cartography, 
algorithms for generalization and simplifi cation of shapes are used during the process 
of changing the map scale.

Mainly, the algorithms for computation of topological skeletons, such as medial 
axis (MA) or skeletonization, are exploited in determining the shape and the geometric 
features. These algorithms compute new geometrical objects by simplifying the shapes 
of the input data. Therefore, the obtained objects require less hard disc space and 
less computational resources in further processing. These advantages facilitate further 
processing, as well as spatial and statistical analyses. It is especially essential for big 
data such as point clouds. Output geometric objects, such as skeletons, can be used in 
shape analyses for GIS purposes (Haunert and Sester, 2008).

New computational methods are still being researched and developed. Researches 
try to achieve several goals. Algorithms must be characterized by their effectiveness, 
result accuracy, topological correctness with the input data, and usage simplicity.

The author introduces an algorithm calculating a polygonal chain approximating 
the mean axis of 2D polygon. The computational schema is presented and described 
by a pseudo-code. The purposes, conditions and limitations of the algorithm are 
discussed. The author indicates the methods of improving the fi nal results. The tests 
were conducted in simple theoretical cases, as well as on the real-world spatial 
data from BDOT databases. The implementation of the algorithm, in accordance 
with the Polish GESUT and BDOT law in force, was presented. The usefulness 
of the new algorithm in processing big data was tested with data from laser 
scanning.

2. Algorithms in Shape Analysis

Researches concerning area collapse are a part of a scientifi c fi eld called shape 
analysis. Shape analysis studies the automatic determination of geometrical features 
for digital visualization. It can be obtained by revealing a shape or a boundary of 
an object (point clouds, 3D models) or new geometries corresponding to the input’s 
shape (geometrical axes, skeleton lines, and directional lines) (Pavlidis, 1980).

The result objects are used in the further analyses of the topology and shape 
of the input data, and in their visualization. Shape analysis is implemented in 
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computer graphics (Amenta et al., 2001), processing of digital pictures (Brandt et al., 
1991), medicine (Bharatkumar et al. 1994), human visual form perception systems 
(Loncaric, 1998) and many other fi elds of study. In survey applications, they are 
primarily applicable in cartography (Haunert and Sester, 2008) and 3D modeling of 
point clouds (Bucksch et al., 2009).

Asymptotic computational complexity (e.g. big Oh notation) is one of most 
important indicators of an algorithm’s effi ciency. It describes the dependency between 
the size of the input data and the time needed to process them. It does not deal 
with specifi c computational steps of algorithms, only their complexity. It can be well 
illustrated with an example of a FOR loop, existing in almost any programming 
language (e.g. for (i=0; i  <  n; i++)). This loop executes a collection of actions for 
every element in an n-elements set. In total, the operation is repeated n-times, which 
means that the asymptotic notation equals O(n). Computation time depends on the 
number of elements via input (n) and the methods in which the algorithm deals with 
consecutive iterations. Big Oh notation is commonly used in the comparison of an 
algorithm’s effi ciency.

A topological skeleton is one of the most important tools in the fi eld of shape 
analysis. It emphasizes the topological and geometrical properties of the input data. 
The change of an area into a polygonal chain is called area collapse or dimension 
change. Computation and plot of the topological skeleton depends on the type of 
algorithm that is used, for instance, medial axis, skeletonization, erosion, thinning 
and others.

One of the oldest methods to compute the topological skeleton are Voronoi 
diagrams (Voronoï, 1908). They divide a plane into regions based on the distance to 
points (seeds, Voronoi vertexes) which approximates the topological skeleton. Brandt 
(1994) has proved this with sample density approaching infi nity seeds converging 
to the medial axis. Shamos and Hoey (1975) proposed using Voronoi diagrams 
in neighborhood analysis. Its advantages were the unambiguity of its results and 
the effi ciency. Since then, the Voronoi diagrams are used as a part of other, more 
complicated methods.

Skeletonization algorithms are one of the most important groups of collapse 
algorithms. In the simple approach, the polygon’s triangulation is used (Bader and 
Weibel, 1997). If a polygon’s edge is at the same time the edge of a triangle, then 
the centers of the two remaining edges are points of a skeleton. Otherwise, additional 
actions are required in order to determine skeleton vertexes, such as Conformal 
Delaunay Triangulation or Constrained Delaunay Triangulation.

As an alternative, Aichholzer et al. (1996) have proposed the Straight Skeleton. The 
polygon’s boundary is divided into single lines called wavefronts. The waveforms are 
propagated inside in a shrinking process. Each new skeleton edge is a bisector of two 
wavefronts (polygon edges). Skeleton vertexes lay on the intersections of consecutive 
pairs of skeleton lines, or on the point where the wavefront edge collapses to zero 
length. Adding points on the boundary can improve the skeleton’s plot. The output 
shape resembles a rooftop.



Michał Mateusz Buczek26

Using the Straight Skeleton, Haunert and Sester (2008) described computing road 
centerlines from cadastral datasets (geometrical representation of parcels, forms of 
land use). After creating a topological skeleton, the authors remodeled junctions to 
fi t the predefi ned demands – in each intersection there are at least three extensions of 
road axes, and all interception points within a junction must be connected by those 
extensions. The fi nal result could be used in further GIS analyses.

Skeletonization algorithms are highly effective in the computation of a tree 
skeleton from airborne and terrestrial laser scanning. Bucksch et al. (2009) have 
presented the results of their algorithm SkelTre. They generated an octree graph from 
a point cloud divided into octree cells. The extracted skeleton was characterized by its 
centeredness and the topological correctness. Dong et al. (2015) have proposed their 
own method to extract a tree skeleton. They used the constrained Laplacian smoothing 
method directly on the point cloud, without any surface reconstruction. After the 
computation of the output object from sample points, the result is smoothened. In 
both approaches, the algorithm’s results can be used in the management, stocktaking 
and parameterization of forest crops.

Medial axis (MA) algorithms belong to the second large group of collapse 
procedures. In comparison to the skeletonization, MA provides smoother geometrical 
results. However, the higher level of computing schema complexity can undoubtedly 
be treated as one of the main disadvantages of this approach.

The main goal of this algorithm is to fi nd points equidistant from at least two 
edges of a polygon (Blum, 1967). Connecting those points results in a new geometrical 
object strictly related to the original polygon.

In order to present the idea behind this solution, Blum (1967) compared its 
working to a grass fi re. Let us assume that the boundary of a shape is on fi re. The 
fronts of the fl ames move inward at a uniform rate. The set of points indicated by 
places where two different fronts meet and both extinguish, is the set of medial axis 
points (Blum, 1967; Chin et al., 1999).

Despite the simplicity of this idea, the computation of equidistant points proves 
problematic. Blum proposed a theoretical approach to determine the distance to the 
shape’s boundaries from every point within the shape. It is mathematically impossible 
to check all points in fi nite time. Researchers are looking for new solutions using, 
among others, discrete points to compute new geometrical objects approximating the 
medial axis (Aichholzer and Aurenhammer, 1996; Dey and Zhao, 2004).

The second main area of medial axis development concerns its effi ciency. In 1982, 
Lee presented an algorithm for simple shapes with n-vertexes in time O(n·log(n)). 
A few years later an algorithm designed to calculate Voronoi diagrams and medial axis 
in linear time O(n) was devised (Aggarwal et al., 1989). Since then, new algorithms 
have to show similar effi ciency and they must simplify computational schema in 
order to facilitate implementation in CAD programs. 

Additional mathematical tools were proposed in order to improve calculations and 
approximation of medial axis, e.g. Lemma decomposition (Wee, 1997), histogram 
decomposition (Djidjev and Lingas, 2004), Sturm series (Culver et al., 2004), and 
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many others. They have a positive infl uence on the processing, particularly for more 
complicated geometrical objects, especially in 3D.

To generalize Blum’s assumptions, a medial axis is a result of an infi nite union 
of balls (circles in 2D). Each medial axis vertex may be a center of a sphere (circle) 
tangent to a boundary at least in two points. Amenta et al. (2001) assumed the 
MAT approximation as a fi nite union of balls and defi ned a new, piecewise-linear 
approximation called Power Crust.

From a suffi ciently dense sample of points, the subsets of the Voronoi balls 
are selected. The result is a surface reconstructed from the sample points. It is also 
a boundary of a polyhedral solid. The authors proved that, as the sampling density 
goes to infi nity, Power Crust’s results converge with the ones provided by the medial 
axis.

Medial axis algorithms are implemented in survey applications, including those 
for point cloud processing. Lee (2000) presented an approach to approximate a simple 
curve without self-intersections. The input data was a set of unorganized points in the 
form of a point cloud.

The point cloud was reduced to a thin curve-like shape using the improved moving 
least-squares technique. The next step was to reconstruct a smooth curve. The author 
suggested the implementation of his algorithm to reconstruct surface and model point 
sets for e.g. pipelines.

Fogg et al. (2014) described the usage of medial axis in the process of generating 
mesh. At the beginning, medial axis is used in the effective determination of mesh 
singularities. Topological and geometrical information is used in order to eliminate 
these singularities. The fi nal mesh is adequate to the geometric shape and deals 
effectively with concavities of the input objects.

The shape analysis also deals with the problem of shape matching between 
2D and 3D objects, and reconstruction of 3D objects from 2D objects. Matching 
algorithms face problems with the optimality and quality of the correspondence, for 
example. 

Scientists proposed different approaches in fi nding 3D helical curve from 2D data, 
like using generalized helicoids (Piuze et al., 2011), computing based on matching the 
input curve by its orthogonal projection (Cherin et al., 2014), or based on the best 
approximation of noisy input (Cordier et al., 2016).

Willcocks et al. (2016) introduced an algorithm to fi nd 3D parametric curves in 
three steps. In the fi rst step, they compute the main structural curve, as the main part 
of the computed 2D morphological skeleton. Then, the image is straightened on the 
structural curve and, fi nally, the 3D parametric curve is computed from the image. 
The usage of the skeleton for more complicated input objects makes the computation 
impossible, because it’s hard to identify the main structural curve from a no tree-
shaped skeleton.

Lähner et al. (2016) presented an automatic method for non-rigid 2D-to-3D 
matching. The continuous curve on the 3D target surface is computed from the input 
2D closed planar curve. Both input objects are discretized and can be described by m 
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(2D curve) and n vertices (3D surface). The algorithm recognizes matching vertices 
optimally, based on the minimal energy function using the function of distance. 
Because input objects are compared locally, the shape of 3D surfaces may vary from 
the input 2D curve. The result can be obtained in O(mn2 log(n)) time.

The modern digital cartography deals with the problems of dimension change, 
area collapse, and searching for characteristic vertexes. Kozioł et al. (2012) created 
an automated algorithm which searches for so-called cartographic control points. It is 
used in the generalization process of input data. The net of connected control points 
is similar to the topological skeleton. However, its vertexes density is lower. That is 
why certain elements may intersect the boundary of the original shape.

Another approach to the generalization process was presented by Szombara 
(2013). He combined the medial axis transformation with the generalization tool using 
the Perkal method (the construction of an elemental circle) and Chrobak’s elemental 
triangle. It provided a new, automatic tool for the cartographic generalization of digital 
data stored in spatial databases. The algorithm’s output is repeatable and unaffected 
by the operator’s actions.

Scientists also propose using mathematical tools like spline curves for modeling 
2D objects and point sets. Researchers focus on creating new tools to achieve their 
smoothness, good characteristics, and properties etc. An example of such a method, 
weighted-quadratic trigonometric spline, was presented by Sarfraz et al. (2016). Other 
researchers focused on the application of those tools for 2D and 3D data (Lenda, 
2006, Lenda and Mirek, 2013). The results of those methods depend strongly on the 
shape of the input objects. Preserving the function’s smoothness is more important 
than presenting the true shape of the described objects. 

In software, Rhinoceros was implemented for the simple solution of computing 
the average curve, called the “Mean Curve”. The algorithm fi nds the pairs of points 
in proportional distances from the ends of the input curves. For each pair of points, 
the mean curve goes through the point in between them. For two, similar curves, the 
results are satisfying. For more complicated objects, the result objects can lay partly 
outside both input curves.

None of the solutions presented above are simultaneously highly effi cient, easily 
implementable, and likely to produce a satisfying approximation of the real mean 
axis. Some geometrical operations do not require a high precision level offered by 
algorithms to compute medial axis or skeletonization. The author of this paper sets 
himself a goal of creating a computation schema that is simple in implementing, 
which would fulfi ll several conditions at the same time. 

The main conditions are repeatability, and receiving a plot approximating the shape 
of the input data. This was achieved by following the strict method of computing 
vertexes. The second condition is that the output object should be contained in its 
entirety in the input data (the overlap is allowed). It requires an additional topological 
control during the computation of vertexes. The third condition is that, in opposition 
to the algorithms presented above, the plot should lack branches. The algorithm was 
tailored to satisfy the requirements of the Polish law in force (BDOT, 2015). It must 
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compute an axis of elongated polygons, which is by defi nition, without branches. The 
asymptotic computational complexity of this algorithm equals O(n), with n determined 
during the fi rst step, while setting parameters.

3. Method

The presented algorithm requires the input data in the form of a line chain, hereafter 
referred to as “object” or “shape.” A computation schema of vertexes is similar to the 
medial axis and the skeletonization.

The new output shape, obtained with the help of the described algorithm, will 
be called the “curve of minimal radii” (CMR) or “output curve.” All vertexes of the 
CMR are equidistant to at least two elements of the input shape’s boundary, just like 
the medial axis. The method of vertex determination is different than the one used 
for the MA. In the CMR, the algorithm does not check every point contained by the 
shape, but it computes consecutive vertexes using points on the line chain.

The algorithm requires input data in the form of a shape divided into two, 
approximately even, and similar parts. Before the computation of the consecutive 
CMR vertexes, one of these two parts is chosen to be the Main Curve (MC), and 
the other one – the Auxiliary Curve (AC). If the input shape contains two disjoint 
polygon chains, then the main curve is one of them, and the auxiliary curve is the 
other one (Figure 1). 

Fig. 1. Example of a disjoined object (red – MC, blue – AC)

If the input shape is a polygon, the MC is a continuous part of its boundary, and 
the AC – its remaining part (Figure 2). There cannot be a situation in which the 
boundary’s segment belongs to neither of these two curves, or belongs to both of 
them at the same time. The proper choice of the MC and the AC determines the shape 
of the CMR. 
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Fig. 2. Example of a polygonal object (red – MC, blue – AC)

At the beginning, points Pi are computed on the main curve in fi xed intervals. Each 
element of Pi in the point set is the center of a circle with its radius approaching 
infi nity (Figure 3a). For each segment of the auxiliary curve, a circle with a tangent 
point on this segment is found. As a result, a point set of tangent points Ej

 is created.

Fig. 3. a) determining circles b) computing minimal radii c) creating curve of minimal radii 
(red – MC, blue – AC, green – circle, purple – radius, brown – CMR)

Several geometrical conditions have to be respected during the calculation of a point 
Ej. The whole line segment PiEj must be contained within the object. If it intersects 
the boundary, then the point Ej is ignored. Then the algorithm searches for another 
point on this segment of the AC, which could create a qualifying line segment PiEj. 
If such a point does not exist, the algorithm continues with the calculations for the 
next segment of the AC. This topological condition guarantees that all of the obtained 
points of the CMR will be inside (covered by) the boundary of the input shape.

Figure 4 depicts the process of choosing points on AC. Segment connecting point 
Pi with closest point Ej doesn’t meet the topological conditions described above. The 
same situation is with the next closest point Ej+1. Both segments intersect MC. Thus, 
the part of them that lays outside the fi gure and in some situations the segment’s 
middle point, could also lay outside the object. The closest points Ej+2 and Ej+3 on the 
next two segments of AC meet the topological conditions. In the result, the shortest 
segment PiEj+2 is the radius of the smallest circle (Figure 3a), and it is used in further 
computation.
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Fig. 4. Example of computing minimal radii to different segments from point Pi 
(red – MC, blue – AC, green – part of circle, purple – radius)

The Point Ej of the shortest line segment PiEj becomes the end point Qi of a radius 
connecting the main and the auxiliary curves (Figure 3b). The point Si, the median 
point of the line segment PiQj, is a new vertex of the CMR. The new line chain 
connecting consecutive points Si is the fi nal output curve (Figure 3c). 
The described computation schema can be presented with a pseudo-code.

In the analytical approach, the process is based on the computation of distances 
between the point Pi and all of the segments of the AC. Each segment is tested for the 
fulfi llment of the topological condition: Is the new line segment contained or covered 
by the input shape? If none of the segments fulfi ll this condition, then the point is 
omitted and the next point Pi is tested.
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On the auxiliary curve, tangent points Qi of the circle with the center in point Pi 
and the radius equal to the length PiQi are computed. In some particular cases, there 
will be more than one such point. That is why in the next step the median points 
of minimal radius are computed from the set of points. In the end, a new vector is 
constructed from the ordered median points. This vector is the result output object 
called the Curve of Minimal Radii.

4. Results

For the fi rst step of computations, one has to determine the position of points Pi on 
the main curve. The simplest approach is to build the point set only with the break 
points of the main curve and continue to the next steps. However, this approach is not 
recommended. The CMR would not properly represent the real shape of the object. It 
could be caused by the low density of the input’s vertexes or their irregular distribution. 
If there are too many vertexes on the MC, computations may take considerably longer 
without providing noticeably more adequate results. The recommended approach is to 
choose points in the fi xed interval on the MC. It makes the algorithm resistant to the 
problems presented above. 

In the fi xed intervals approach, the direction of the MC has an infl uence on the 
CMR plots. Points Pi marked in the intervals counted from the beginning of the MC, 
may not overlap with points P’i marked in the same intervals counted from the end 
of the MC. To eliminate this problem, one should use the commensurate intervals 
approach. For example, the distance between points may be counted by using the 
Equation 1.

 = =   (1)

where: 
di – interval between the consecutive points Pi, 
LKG – length of the main curve, 
sil – number of points Pi to be obtained on the main curve, 
sproc –  proportion between the searched interval and the length of the main curve in 

percent.

The best results can be obtained by using commensurate intervals that are 
complemented with the main curve’s break points. To avoid the infl uence of the MC 
disturbances, one can consider an arbitrary modifi cation of the point set Pi through 
eliminating and adding points. 

The CMR plot is resistant to disturbances of the auxiliary curve, but is strongly 
related to the shape of the main curve and the chosen interval approach. The curve 
plot inside an object can be modifi ed by moving segments between the main and 
the auxiliary curves, altering the point set Pi and the interval, and changing initial 
conditions. 
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By the initial conditions, the author means the methods of the determination of 
end segments of the CRM on the ends of an input object. It is achieved by choosing 
the end vertexes position. The choice is dependent on the input shape and the purpose 
of output objects. Several conditions are proposed below. Depending on the situation, 
end vertexes may: 
1. Overlap end points of the main curve, 
2. Overlap median points of the segments between corresponding ends of the main 

and the auxiliary curves (if the curves are disjointed), 
3. Overlap median points of the radii of circles with center points in the ends of the 

main curve (if they are calculated for the segments of the AC disjointed with the 
MC), 

4. Fulfi ll other conditions determined by the user.
Elements on the left of Figure 5 present the differences in the plot of the CMR ends 
depending on the shape of the MC. For each example the fi rst assumption was made 
– the CMR end points have to overlap end points of the main curve. Depending on 
the shape of the main curve, the end segments of the CMR have different positions. 
The second result (left, in the middle) is the closest to the anticipations about the 
symmetry axis. In this case the MC and the AC of similar length and shape were used. 

Fig. 5. Dependency between variants of the main curve and the shape of the CMR end segments for 
the pure algorithm (left side) and algorithm with initial conditions 

(red – MC, blue – AC, green – CMR)
If the input shape is a polygon with sharp ends, the fi rst initial condition gives the best 
results. Additionally, for strongly irregular shapes, the infl uence of small disturbances 
decreases (Figure 6). The second and third conditions are designed to use with the 
input data containing two disjoined line chains. 
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Fig. 6. The CMR computed for non-trivial object (red – MC, blue – AC, black – CMR)

Dealing with the end segments of the CMR is one of the biggest problems to solve. 
When the MC and initial conditions are selected incorrectly, the results would be far 
from perfect, as presented in Figure 5 (left). Methods of computing the fi rst points of 
the CMR can be modifi ed to improve results on their ends. 

The problem with the end segment’s disturbance was caused by the assumption 
that in order to compute the output object, the minimal radius should be used. For the 
points Pi on the fi rst and on the last segment of the MC, the minimal radii overlap 
those segments. One of the recommended solutions to this problem is to choose points 
Ej on the MC, moved away from its beginning by the distance equal to the interval 
di, or proportionally to the length of the segments. Another way of solving this 
problem is to remove arbitrary fi rst points Pi from the point set taken to calculations. 
Figure 5 depicts the results of an unmodifi ed algorithm (left) and an algorithm using 
proportional intervals on the fi rst segments of the MC and the AC (right).

Figure 7 depicts complicated objects with disturbances on both the MC and AC. 
The infl uence is visible on the CMR (black line). The altering of the point set Pi 
resulted in the local improvement of the results (green line). Due to the correlation 
between shapes of the CMR and the MC, the output object cannot be treated 
as a topological skeleton. However, the plot of the CMR for regular polygons is 
a suffi cient approximation of a topological skeleton. Along with the increase of the 
distance from the ends, the infl uence of the initial conditions on the result decreases. In 
the middle part of an output object, the plot is the same for different initial conditions, 
and it is also similar to the results obtained from other algorithms. The fi nal decision, 
which conditions should be used in computation, depends on the shape of the input 
object.



Area collapse algorithm computing new curve for geometric objects 35

Fig. 7. CMR computer for complicated object (red – MC, blue – AC, black – CMR, green – CRM 
variant with Pi points elimination)

7. Discussion

The sample object (Figure 4) was used to compare results of the CMR algorithm with 
other methods. Figure 8 presents results of the CMR and three different algorithms: 
medial axis, straight skeleton, and Rhinoceros’s mean curve. The medial axis and 
skeletonization results are branched objects, while the mean curve and CMR are 
single curve objects. If a single curve is required in further computation, the results 
of medial axis and skeletonization should be processed and reshaped. It would require 
assuming some additional conditions for an unambiguous output. On the other hand, 
single curve objects are useless in full description of an input object’s shape. 

Fig. 8. Results of different methods: a) medial axis, b) straight skeleton, c) Rhinoceros’s mean curve, 
d) CMR (red – MC, blue – AC, black – method’s result)

Figure 9 compares the results of the used algorithms. In the middle part, the mean 
curve represents incorrectly the center of the input object, it lays too close to the AC. 
In the same part, medial axis and straight skeleton have different shapes. The CMR 
lays between them, and the regular part (upper part) is collinear or very closed to 
them. The ends of the medial axis and skeleton are dividing into a few segments and 
the CMR is collinear to one of them, and closed to the mean curve. 
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Fig. 9. Comparison of results of different methods (red – MC, blue – AC, black – CMR, green 
– medial axis, brown – straight skeleton, purple – Rhinoceros’s mean curve)

The shape of single curve depends on the MC and AC. Picking them differently 
would change the general shape of the CMR and the mean curve. In addition, the 
CMR is infl uenced also by the initial conditions. From tested methods, the mean 
curve was the simplest one and the results don’t represent the shape correctly. The 
CMR algorithm’s results that are presented are similar to those from more advanced 
algorithms like medial axis and skeletonization. Thus, the algorithm should be chosen 
depending on the further purpose of the computed new curve.

The CMR algorithm was developed as a tool supporting hatching, defi ned in the 
amendment to the Polish law about the spatial database for topographical objects and 
utility infrastructure. For some objects on the map, a directional polyline (Polish: 
“polilinia kierunkowa”) was introduced. It is defi ned as “an edge of an object parallel 
to the longitudinal symmetry axis of the object,” and as “a direction of a conveyor or 
a movement direction of a gantry” (GESUT 2015, BDOT 2015). According to these 
defi nitions, the directional polyline can be:
− The main curve in the computation of the CMR, as long as it overlaps a part of 

a boundary, 
− The CMR itself, if it lays within an object.

According to the law, the CAD programs have to offer a drawing tool for the 
directional polyline. The CMR algorithm could be an element of such a program’s 
graphic engine, generating an automatic proposition of its plot. In this situation, the 
CAD user would only have to modify its plot in unambiguous situations.

The curve of minimal radii can be applied in the process of hatching of a map 
object, e.g. embankment. BDOT 2015 defi nes its directional polyline as one of the 
edges of this object. Modern spatial databases do not store hatch objects; hatching is 
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generated automatically during the plotting of an object on the map. Except for the 
hatching pattern, the law does not specify any methods of computing its elements.

Nowadays, CAD programs use various methods in order to generate hatching. 
The biggest discrepancies appear with complicated and irregular geometrical objects. 
Graphical mistakes and mutual intersections may occur in the fi nal result. Figure 10 
depicts an improper hatching of a non-trivial embankment. 

The author propounds the implementation of the presented algorithm as a solution 
to this problem. The CMR is always a curve without branches. Thus, it can be a basis 
for the generation of hatching elongated objects, such as embankments, gantries, or 
water gates. Additionally, the proper choice of the main curve improves the results for 
irregular objects. The main curve is defi ned during the drawing of an input object, or 
directly before the algorithm’s calculations, as the object’s directional polyline. 

Fig. 10. Intersections of hatch lines (left), Hatch lines trimmed to the CMR (right)

Tests were conducted for the objects of a reinforced embankment (cartographic code 
BUBZ03_01). The symbol of embankment is constructed from four major elements: 
upper edge line, lower edge line, side edge line and hatching. Graphic representation 
defi ned by the law describes only regular cases with three types of edges. The side 
edges have lengths a and c (Figure 11). The distance between hatch lines b is equated 
from Equation 2:

 =   (2)

Fig. 11. Embankment hatching representation (BDOT 2015)

Additionally, every second hatch line length is as long as a half of the mean between 
a and c. Figure 6 depicts a case where the upper and lower edges are constrictive at 
the ends. According to Equation 2, lengths a and c should equal 0. It would make 
generating the hatching of such an object impossible.
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The law only defi nes methods to compute regular cases. For various lengths 
a and c, determining the half lengths of hatch lines creates ambiguities. The author 
tested the CMR as a line chain to trim every second hatch line. Due to the possible 
occurrence of 0 length of a and c, distance b was counted separately for every hatch 
line from a and c determined locally. An additional condition of the minimal distance 
of b was made to preserve the readability of the map, and to avoid the infi nite loop 
where length b approaches 0.

The CMR was used in the computation of embankment’s hatching, according to 
the following convention. The object was divided into two line chains: the upper 
edge of embankment (the directional polyline) and the lower edge. The directional 
polyline becomes the MA. The second line chain becomes the AC. The CMR may 
be computed independently, or simultaneously with hatching lines. In the fi rst option, 
the user has to defi ne the interval between point Pi. In the second option, this interval 
can be equal to distance b. During the tests the fi rst option was used. In order to 
calculate distance b, the previous value of c becomes a. If value a or c equals 0, or 
value b is smaller than the set constant, the minimal distance b is applied. The point 
of the MC moved from the previous point (or the fi rst vertex of the MC) by interval 
b, is the fi rst end of a hatch line. From this point the distance to the AC is measured. 
The line connecting the MC and the AC is a normal line and it becomes a hatch line. 
Every second line was trimmed to the CMR. The fi nal result is presented in Figure 
12. Topological conditions for the CMR ensure that the consecutive hatch lines have 
similar lengths.

Fig. 12. Test result of hatching trimmed to CMR

The second proposed implementation is the usage of the CMR in hatching, depending 
on the symmetry axis of an object. The CMR may approximate this axis, especially 
for irregular objects, where the symmetry axes are not obvious. Due to the simplicity 
of the algorithm, it can successfully replace the symmetry axis for regular objects, 
such as gantries and conveyors. Figure 13 depicts the graphic representation of 
a conveyor (BDOT 2015). The center point of every point lays on the symmetry 
axis. Every second circle has to be tangent to both edges of a cartographic sign. The 
CMR algorithm fulfi lls the same criteria in the computation. Thus, with the interval 
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between Pi approaching 0, it contains center points of all circles tangent to the MC. 
The defi nition of the CMR ensures that big circles never intersect the lines of the 
object, and the small circles lay in the middle between them.

Fig. 13. Conveyor hatching representation (BDOT 2015)

Apart from the cartographic fi eld of studies (2D objects), the presented algorithm 
was tested in the area of processing 3D data like point clouds. The survey evaluation 
of building health and geometrical features is made in the intersecting planes. Thus, 
the presented algorithm for 2D curve could be applied for objects like towers and 
chimneys.

To compute 2D curve, one has to intersect point cloud fi rst, and generalize the 
ordered point sets into two planar curves (Figure 14a). Figure 14b presents points 
grouped into the MC and the AC with the tool called Average Depth, with a radius 
0.01m from the CAD program Microstation. The computations were conducted in the 
coordinate system of the intersecting plane. As a result, the CMR approximated the 
symmetry axis of the object in the intersecting plane. To compute the end segments, 
the author chose the second presented initial condition – median points between the 
ends of two disjoined curves.

Fig. 14. a) Intersection of chimney point cloud, b) Curves generated from point cloud, c) computed 
CMR (solid line) (left dashed line – the MC, right dashed line – the AC)

The output object (Figure 14c) proves vulnerable to the disturbances of the main curve. 
In the bottom part of the point cloud, the plot of the CMR approximates the symmetry 
axis of the intersection, and the deviations are imperceptible. The disturbances in the 
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top part, however, infl uence the plot of the CMR. The output curve converges to the 
MC in the disturbed segment. 

To improve the results, the author propounds the arbitrary elimination of points Pi 
on the disturbed segment of the MC, or using generalizing and simplifying algorithms 
on the output object. Another way to resolve the problem of the disturbances, is to 
compute another CMR, replacing the MC and the AC with each other, and to make 
an averaged output from these two CMRs. 

Figure 15 presents the top part of the chimney walls in two intersections, in 
directions X and Y. For each direction two CMR were computed, for each wall as 
the MC. In the lower part, the curves are almost the same. In the top part, CMR’s 
shape is different. The two averaged outputs were computed with two methods: 
one as the Rhinoceros’ mean curve and the second as curve connecting points 
computed as the middle points of two curves on the same height. As a result, new 
curves better approximate the real object’s axis, but there are small differences 
between them.

Fig. 15. The intersection of chimney’s top (red line), with 2 CMR (dashed violet line), mean curve 
(black line) and curve from middle points (blue line)

Regardless of the choice of the presented methods, the fi nal result is a better 
approximation of the symmetry axis in every part of intersection. But there is a need 
for further investigation and improvement of methods to average curves. More effort 
should be put on approximating the CMR in the end parts. It is also worth it to check 
the behavior of the algorithm for two curves in 3D.
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Conclusions

The presented algorithm was designed to approximate the symmetry axis of 
geometric objects. It has a simple computation schema and the low number of 
steps needed to obtain results. As opposed to other algorithms, such as Medial 
Axis, there is no need to discretize the area of a polygon. It positively improves the 
effi ciency of the automatic generation of axes for many cartographic objects at the 
same time. 

One of the most important features, is the requirement that it possesses 
a directional polyline called the main curve. It is the basis for computations of the 
minimal radii. The implementation of the algorithm requires that the curve should be 
modifi able so the user could defi ne it before the computations. The algorithm may 
use a directional polyline defi ned for other purposes for specifi ed objects of spatial 
databases. To its important features, one can add the method used to compute the 
interval, the choice between setting initial conditions and modifying the Pi point set. 
The proper assortment of these elements improves the fi nal result. 

The topological conditions of the CMR ensure, that the output object is 
completely contained by the input object. However, the result cannot be equated with 
the topological skeleton due to the lack of branches. The comparison with different 
methods proved, that the CMR algorithm can replace more complicated algorithms. 
The output object is similar to, or can even overlap, the main branch of result objects 
obtained by using medial axis or skeletonization.

The conducted tests present the usefulness of the described algorithm in digital 
cartography. The author also presented the practical implementation prescribed by 
the law in force (BDOT 2015). The ways to improve the CMR results with other 
algorithms, e.g. the ones serving generalization, simplifi cation and averaging 
of geometric objects, are worth researching. It may especially improve the 
results for point clouds. It may lead to the creation of the algorithm’s variant for 
3D objects. 
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