
ARCHIVES OF ACOUSTICS

Vol. 41, No. 2, pp. 245–254 (2016)

Copyright c© 2016 by PAN – IPPT

DOI: 10.1515/aoa-2016-0024

A Signal Subspace Speech Enhancement Approach Based
on Joint Low-Rank and Sparse Matrix Decomposition

Chengli SUN(1), (2), Jianxiao XIE(1), Yan LENG(3)

(1) School of information, Nanchang Hangkong University
Nanchang, 330063, China; e-mail: xiejianxiao@126.com

(2) Science and Technology on Avionics Integration Laboratory
Shanghai, China

(3)College of Physics and Electronics, Shandong Normal University
East Wenhua Road 88, 250014, Ji’nan, China

(received April 13, 2015; accepted January 18, 2016 )

Subspace-based methods have been effectively used to estimate enhanced speech from noisy speech
samples. In the traditional subspace approaches, a critical step is splitting of two invariant subspaces
associated with signal and noise via subspace decomposition, which is often performed by singular-value
decomposition or eigenvalue decomposition. However, these decomposition algorithms are highly sensitive
to the presence of large corruptions, resulting in a large amount of residual noise within enhanced speech in
low signal-to-noise ratio (SNR) situations. In this paper, a joint low-rank and sparse matrix decomposition
(JLSMD) based subspace method is proposed for speech enhancement. In the proposed method, we firstly
structure the corrupted data as a Toeplitz matrix and estimate its effective rank value for the underlying
clean speech matrix. Then the subspace decomposition is performed by means of JLSMD, where the
decomposed low-rank part corresponds to enhanced speech and the sparse part corresponds to noise
signal, respectively. An extensive set of experiments have been carried out for both of white Gaussian
noise and real-world noise. Experimental results show that the proposed method performs better than
conventional methods in many types of strong noise conditions, in terms of yielding less residual noise
and lower speech distortion.

Keywords: subspace speech enhancement; singular value decomposition; joint low-rank and sparse ma-
trix decomposition.

1. Introduction

Speech is a significant form of human communica-
tion, but it is always seriously impacted by the in-
evitable background noise in real world conditions,
which lets the noisy speech have low auditory quality
and also makes performance of speech processing sys-
tem degradate or even fail. Therefore, designing a suit-
able speech enhancement algorithm to reduce the neg-
ative effect of noise is of great importance (Vaseghi,
2006).
In the past 50 years, speech enhancement has at-

tracted plenty of attention. According to the process-
ing domain, traditional speech enhancement meth-
ods can roughly fall into three categories including
time, frequency, and time-frequency domain methods.

Time domain methods include the parametric model
based method (Gannot et al., 1998; Vaseghi, 2006;
Kim et al., 2000) and subspace method (Dendrinos
et al., 1991; Hu, Loizou, 2003). Frequency domain
methods include Wiener filtering method (Ephraim,
Malah, 1984), Markov model (Jax, Vary, 2003), and
spectral subtraction (Boll, 1979). Time-frequency do-
main methods include the wavelet transform method
(Mallat, 1999), auditory masking method (Virag,
1999), and constrained low-rank and sparse matrix de-
composition (CLSMD) method (Sun et al., 2014).
Due to its capability of preserving speech intelligi-

bility, subspace based speech enhancement algorithms
have recently drawn a great attention. The principle of
the subspace methods is to separate the noisy speech
observation space into a signal subspace and a noise
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subspace, and the enhanced speech was constructed
using only the components of the signal within the sig-
nal subspace. In the subspace-based algorithms, sub-
space decomposition is a critical step for subspace sep-
aration, which is often performed via Karhunen-Loeve
transform (KLT) (Ephraim, Van Trees, 1995) or
singular value decomposition (SVD) (Moor, 1993).
Thus, a key issue in developing a subspace-based model
is the way of splitting and refining the signal and
noise subspace in an optimal way. Abolhassani et al.
(2007) introduced the variance of the reconstruction
error (VRE) criterion to optimise the subspace selec-
tion for speech enhancement. Saadoune et al. (2014)
seeked to optimise the subspace decomposition model
by incorporating the psychoacoustic properties of the
human auditory system into the subspace filter to re-
construct the enhanced signal. Jin (Jin, Scordilis,
2006) proposed a modified subspace method by using
a linear prediction (LP) residual technique to construct
the LP coefficient matrix for speech enhancement.
At the same time, many efforts were made to im-

prove the performance of subspace-based algorithms,
and the excellent noise reduction capabilities of sub-
space filtering techniques are confirmed by several
studies. The existing subspace-based speech enhance-
ment methods still suffer from the problem of low de-
composition accuracy in the presence of large noise,
resulting in a high remainder noise within enhanced
speech in strong noise cases. In this paper, we propose
a new subspace-based method for speech enhancement
based on the principle of joint low-rank and sparse ma-
trix decomposition (JLSMD). The proposed method
differs from the previous subspace based methods in
its decomposition pattern. The main idea behind our
method is motivated by the recent development of low-
rank and sparse models (LSMs) theory. According to
the LSMs theory, if a given corrupted data matrix X
has an underlying low-rank structure, yet corrupted by
sparse additive noises, we denote these two ingredients
as L and S. The underlying low-rank component L can
be effectively recovered by solving a convex optimisa-
tion problem, even if the noise is arbitrary in mag-
nitude. In the time domain, owing to the short-time
stability of voice, speech signals within different time-
frames can be assumed to have a low-rank structure.
On the other hand, due to the randomness of noise,
background noise is more variable than speech and
thus can be regarded as being high-rank and sparse.
Thus JLSMD theory can be exploited to recover the
underlying enhanced speech from noisy signal.
LSMs technique has been initially used in com-

puter vision applications, such as moving object de-
tection (Xu et al., 2012), traffic anomalies detection
(Mardani, Mateos, 2013), image restoration, and
alignment (Peng et al., 2012), etc. It can be also ap-
plied in music information retrieval system for sep-
aration of singing voice from the musical accompa-

niment. More recently, LSMs theory was introduced
into the speech enhancement task in our previous work
(Sun et al., 2014), where a constrained low-rank and
sparse matrix decomposition (CLSMD) algorithm is
designed for noise reduction. In the time-frequency do-
main, since (white) noise amplitude spectra within dif-
ferent time frames are usually highly correlated with
each other, noise signal can be assumed as a low-rank
component. On the other hand, speech signal can be re-
garded as relatively sparse in audio recordings. There-
fore, by means of CLSMD, the noisy speech spectro-
gram can be decomposed into a low-rank part corre-
sponding to noise and a sparse part corresponding to
speech.
It should be pointed out that the JLSMD based

subspace method is different from the CLSMD based
approach (Sun et al., 2014). Both of them are closely
related in the sense of performing noise reduction using
LSMs technique, but they vary in the assumptions and
working pattern. The former assumes that speech is
low-rank and noise is sparse, while the latter is just
the opposite, i.e., the noise is low-rank and speech is
sparse. Besides, CLSMD is a batch learning algorithm
working in the time-frequency domain, while JLSMD
is performed in the time-domain and is able to work
frame-by-frame. Hence, the JLSMD is more suitable
for real-time speech denoising task.
This paper is organised as follows. Section 2 intro-

duces related work for the proposed method. Section 3
introduces JLSMD based subspace decomposition al-
gorithm. In the Sec. 4, we describe the JLSMD based
signal subspace speech enhancement system. Some im-
plementation details and experimental results are de-
scribed in the Sec. 5. Finally, the conclusions are given
in the Sec. 6.

2. Related work

2.1. SVD-based subspace speech enhancement method

Let us consider the problem of enhancement of
a speech signal contaminated by an independent ad-
ditive noise. Suppose that a noisy signal vector y(t) ∈
RN is the sum of a clean signal vector x(t) ∈ RN and
a noise signal vector d(t) ∈ RN ,

y(t) = x(t) + d(t), (1)

where N represents the frame length. Arranging the
N -dimensional vectors into a (N − l + 1) × l matrix
with Toeplitz structure, we can get

Y = X +D, (2)

where l represents a positive integer and l = N/3.
Specifically, the form of observation matrix Y is writ-
ten as
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Y =




y(l− 1) y(l − 2) · · · y(0)
y(l) y(l − 1) · · · y(1)
...

...
...

...
y(N − 1) y(N − 2) · · · y(N − l)


. (3)

Assuming that the rank of matrix Y is p, the op-
timal enhanced speech matrix X̂ can be estimated ac-
cording to the following least-square criterion.

X̂ = min
X̂

∥∥∥X̂ −X
∥∥∥
2

F
rank(X̂) ≤ p, (4)

where ‖•‖F is the Frobenius norm.
If d(t) is a white Gaussian noise, it satisfies the

conditions DTD = σ2
dI and X

HD = 0, where σ2
d rep-

resents the variance of noise. The optimal solution of
(4) can be obtained by SVD of Y

Y = U
∑

V H , (5)

X̂p =

p∑

k=1

σkukv
T
k , (6)

where U and V are the left and right singular vec-
tor matrix of Y ;

∑
is the diagonal eigenvalue matrix

composed of the singular values σk; uk, and vk are the
column vector of U and V , respectively.
The above low-rank matrix X̂p represents the orig-

inal speech matrix X in the sense of least-square min-
imisation. This may get the optimal estimate when the
noise is small, independent, and identically distributed
Gaussian.
If d(t) is a colored noise signal, the conditions

DTD = σ2
dI and XHD = 0 are no longer valid

(Golub, Van Loan, 1989). In this case, we can seek
a prewhitening matrix W to make sure the equation
E
[
(DW )TDW

]
= I is fulfilled. Indeed, the noise sig-

nal can be prewhitened by a multiplication by

YW = XW +DW. (7)

If noise matrix D is available, we can factor D =
QR via QR decomposition, where Q is a standard or-
thogonal matrix (QTQ = I) and R is the Cholesky fac-
tor ofDTD. FromQ = DR−1, we can obtainW = R−1

satisfying the condition (DR−1)T (DR−1) = QTQ = I.
To sum up, if the additive noise is a colored noise,

the transformed matrix Y = Y R−1 should be used
instead of Y . Then the traditional subspace decom-
position is used to decompose the transformed matrix
Y . After the SVD modification by (6), a correspond-
ing dewhitening operation (a postmultiplication by the
matrix R) of X̂p should be included by

Zp = X̂pR. (8)

Note that Zp obtained by the above step is not
a Toeplitz matrix. To let Zp be Toeplitz-structured, we

should reformat it by arithmetic averaging along the
diagonals of X̂p (Tufts, Kumaresan, 1982; Tufts
et al., 1982).

2.2. Low-rank and sparse models

Principal component analysis (PCA) (Jolliffe,
2002) has been attracting much attention due to its
wide applications to pattern recognition and com-
puter vision. It seeks to accurately estimate the low-
dimensional subspace with the given high-dimensional
data via SVD. As it is well known, however, the PCA
method is sensitive to non-Gaussian noises and out-
liers, which is often the case in real problems due to
the mechanism of data acquisition.
To address this robustness issue, Wright et al.

proposed the robust PCA technique (Wright et al.,
2009). The goal of robust PCA is to recover a low rank
matrix L ∈ Rm×n from the corrupted observed data
matrix Y ∈ Rm×n

Y = L+ S, (9)

where the matrix S ∈ Rm×n is assumed to be sparsely
supported and random in amplitude. This can be
achieved by solving the following optimisation prob-
lem:

minL,Srank(L)+γ ‖S‖0 subject to Y = L+S, (10)

where l0-norm ‖S‖0 counts the number of nonzero el-
ements in the matrix S and γ is a balance parameter.
Formula (10) is a highly nonconvex optimisation prob-
lem, and we can not solve it directly. Fortunately, this
problem can be converted into the following convex
optimisation:

minL,S‖L‖∗ + γ ‖S‖1 subject to Y = L+ S, (11)

where ‖L‖∗ represents nuclear norm (Candes, Plan,
2010), which is the sum of all singular values ‖L‖∗ =∑
i

σi(L), and ‖S‖1 is l1-norm which is defined as the
sum of absolute values of the matrix entries. This prob-
lem is known to have a stable solution if L and S are
sufficiently incoherent (Candes et al., 2011), i.e., L is
exactly low-rank and S is exactly sparse.
If the decomposition with predefined constrains

rank(L) ≤ p and ‖S‖0 ≤ r is allowed, the low-rank
matrix recovery problem can be solved by minimising
the following decomposition error (Toh, Yun, 2010):

minL,S ‖Y − L− S‖2F ,

subject to rank(L) ≤ p

and ‖S‖0 ≤ r.

(12)

In practice, p and r are preferred to be restricted
in order to control the model complexity of L and S.
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3. Joint low-rank and sparse matrix

decomposition algorithm

Splitting of signal and noise subspaces via decom-
position algorithms, which are often done by SVD or
eigenvalue decomposition, is a critical step in subspace
approaches. As mentioned above, these decomposition
algorithms are brittle to the presence of large corrup-
tions and suffer from a low decomposition accuracy.
In this work, we propose a new subspace decomposi-
tion algorithm based on the JLSMD, which is robust in
strong noise conditions and less sensitive to the large
interferences.

Problem 1 (P1). Suppose we are given a noisy
data matrix Y , and know that it may be decomposed
as Y = L + S +G, where L is a low-rank matrix cor-
responding to clean speech, S is a sparse matrix corre-
sponding to the noise signal, and G is a decomposition
error matrix. Let p and r be the rank constraint of L
and sparse constraint of S, respectively. The P1 is to
recover the underlying speech matrix L from corrupted
audio data.
Through minimising the decomposition error G,

the P1 can be solved by the following optimisation:

minL,S ‖Y − L− S‖2F ,

subject to rank(L) ≤ p

and ‖S‖0 ≤ r.

(13)

The above formula can be solved by alternatively
solving the following two formulas until convergence:

Lt = argminrank(L)≤p ‖Y − L− St−1‖2F ,

St = argmin‖S‖
0
≤r ‖Y − Lt − S‖2F .

(14)

Although the above formula is a nonconvex optimisa-
tion, its global solutions exist (Wright et al., 2009).
In (Wright et al., 2009) they use a singular value

hard thresholding of Y −St−1 to update Lt and entry-
wise hard thresholding of Y −Lt to update St, respec-
tively.

Lt =

p∑

i=1

λiUiV
T
i ,

SV D(Y − St−1) = UΛV T ,

St = PC(Y − Lt),

(15)

where C is a nonzero subset of the first k largest entries
of |Y − Lt|, and PC(x) is equivalent to projecting x
onto the entry set C (Candes, Terence, 2010), which
is defined as (PC(X) = X , X ∈ C). Due to the sparse
matrix S being from partial observation, we get more
a accurate S by the thresholding functions.
Since in the proposed method the distribution of

the outlier should be sparse and random enough (Zhou

et al., 2013), we use the entry-wise hard thresholding
function to estimate S (Chang et al., 2000), which is
ϕu(x) = x·1(|x| > u). This gets the input, if it is larger
than the threshold; if not, it is set to zero. The formula
is as

St = (X − Lt)⊙ [(X − Lt) > u], u > 0, (16)

where the operation ⊙ is an element-wise multiplica-
tion.
There is a problem about the computation used

with the SVD for updating the matrix Lt, because the
SVD requires much computation time. Therefore, in
the paper a method of fast low-rank approximation
(Zhou, Tao, 2011) is proposed, which is bilateral ran-
dom projections (BRP). Given a matrix X ∈ Rm×n

the formula

L = Y1(A
T
2 Y1)

−1
Y T
2 (17)

is rank-p approximation of X , where Y1 = XA1, Y2 =
XTA2, A1 ∈ Rn×p, and A2 ∈ Rm×p are Gaussian
random matrices. In (Fazel et al., 2008) matrix X
can be recovered from L, and it can reduce the time
cost.
Thus the speech and noise components can be de-

composed into the low-rank and sparse subspace re-
spectively by the JLSMD based subspace decomposi-
tion.
We have the following optimisation algorithm for

JLSMD.

Algorithm 1. JLSMD based subspace decomposition algo-
rithm.

Input: p, ε, max, u;
Output: L = Lt, S = St;
Initialise: L0 = X,S0 = 0, t = 0;
While not converged do

t = t+ 1;
A1 = randn(n, p);
A2 = randn(m, p);
Y1 = Lt−1A1;
Y2 = LT

t−1A2;
Lt = Y1(A

T
2 Y1)

−1Y T
2 ;

%Update the low rank matrix
Rt = Lt−1 − Lt + St−1;
St = Rt ⊙ (Rt > u);
%Update the sparse matrix

If
‖L0 − Lt − St‖

2
F

‖X‖2F
≤ ε or t == max

converged=1;
break;
end
Lt = Lt +Rt − St;

end while
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3.1. Convergence of JLSMD

In this section we will show the convergence
properties of JLSMD, of which the objective value
G = ‖X − L− S‖2F (error G) converges to a local min-
imum. From (Zhou, Tao, 2011) we can get that the
value Gt = ‖X − Lt − St‖2F keeps decreasing and con-
verges to a local minimum. Meanwhile we can get the
conclusion that the solutions L and S respectively con-
verge to local optimums with the linear rate less than 1,
and the converge speeds will be slowed by augmenting

for L :
‖∆L‖F

‖L+∆L‖F
, ∆L = (S+G)− PC(S+G),

for S :
‖∆S‖F

‖L+∆S‖F
, ∆S = (L+G)− PM (L+G),

(18)

M =
{
H ∈ Rm×n : rank(H) = p

}
(19)

but it will ruin the convergence unless ‖G‖F ≫ ‖S‖F
or ‖G‖F ≫ ‖L‖F . The derivations of the formulas can
be found in (Zhou, Tao, 2011).
Therefore, JLSMD is able to get the approximated

sparse matrix and low-rank matrix when G is not over-
whelming.

3.2. The main parameters in JLSMD

There are two important parameters in JLSMD
method, one is the affecting rank parameter e and the
other one is the sparse constraint parameter u. When
we use the analysis-by-synthesis approach to determine
the effective rank p, the value e could affect the veracity
of p, while the parameter u controls the sparsity of S.
The bigger value u is, the less noise the noisy speech
signal has. Then we should choose the more precise pa-
rameter u to estimate the sparse matrix S. For a better
speech enhacement performance, the parameters (e, u)
should be selected.

4. Speech enhancement based on JLSMD

Regarding the basic theories of subspace signal
enhancement, when a speech signal is infected with
an additive noise, its singular values are changed
(Zehtabian et al., 2010). Thus we derive an approach
of JLSMD to remove the noise (sparse component)
from the singular values, and more precisely recover
the clean speech. In this section, we give the imple-
mentation details of the proposed method for white
noise and colored noise, respectively.

4.1. In the white noise case

Figure 1 shows the block diagram of the enhanced
speech based on JLSMD for white noise. At first, the
noisy speech signal is divided into frames in the time
domain. Then we transform each frame of the noisy

Fig. 1. Block diagram of the enhanced
speech based on JLSMD for white noise.

speech into Toeplitz matrix. Next we determine the ef-
fective rank p with the analysis-by-synthesis approach
(Bakamides et al., 1991). The noisy speech matrix Y
is decomposed into the low-rank matrix L with the
rank p and the sparse matrix S by the JLSMD optimi-
sation algorithm, where the matrix L is the enhanced
speech matrix. Thus we get L and remove the sparse
matrix S which is noise signal component. But L is
not the Toeplitz matrix, we average all the diagonal
elements of L to let it became a Toeplitz matrix form.
Finally, the enhanced speech is constructed by taking
the inverse transform of constructing Toeplitz matrix
and least-squares overlap-add synthesis (Quatieri,
2002).

4.2. In the colored noise case

Figure 2 shows the block diagram of the enhanced
speech based on JLSMD for the colored noise. As com-
pared with the white noise case, before the step of esti-
mating the effective rank, we add the step of perform-
ing a prewhitening of noisy speech signal Y . After the
procedure of JLSMD, we will perform a dewhitening
of L. The next procedure is the same as in the white
noise case.
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Fig. 2. Block diagram of the enhanced speech
based on JLSMD for the colored noise.

4.3. Estimate the effective rank value

The input of JLSMD needs to know the rank value
p for the underlying speech matrix X (Chambers,
1977). In this paper, we estimate this parameter us-
ing a synthesis approach (Bakamides et al., 1991) in
which consecutive reconstructions are performed and
the resulting error power is compared to the noise vari-
ance in order to get the best approximation of the
original clean speech signal. The number of the sin-
gular values corresponding to the reconstruction error
power as close as possible to the noise variance gives
the best estimate of p.
Assuming that noise signal d(n) and speech signal

x(n) are uncorrelated and taking the ensemble aver-
ages of the squares of (1), we get

E
[
y2(n)

]
= E

[
x2(n)

]
+ E

[
d2(n)

]
. (20)

If d(n) and x(n) are zero-mean signals, the above
formula can be simplified as

σ2
y = σ2

x + σ2
d, (21)

where d(n) represents the noise signal, σ2
d is the noise

variance. The signal variance σ2
x is the power of the

clean signal. Assuming that xk(n) represents the syn-
thesised signal using the first k singular values, the
following quantity is defined as

Ek = E
[
y2(n)

]
− E

[
x2k(n)

]
, (22)

where Ek represents the power difference between the
noisy signal y(n) and the synthesised signal xk(n). If
the synthesised signal xk(n) is close to the clean signal
x(n), that is xk(n) ≈ x(n), Ek ≈ E

[
d2(n)

]
, which is

the noise variance, xk(n) is closer to the signal x(n) and
formula

(
Ek − E

[
d2(n)

])
is closer to zero. In this case

the formula
(
Ek − E

[
d2(n)

])
can be used to determine

the effective rank of matrix X . Thus
(
Ek − E

[
d2(n)

])

can be written as

Ek − σ2
d = E

[
x2(n)

]
− E

[
x2k(n)

]
. (23)

When k is less than the actual rank p(k < p),
the energy of the synthesised signal is less than that
of the clean signal (E

[
x2k(n)

]
< E

[
x2(n)

]
), because

xk(n) does not contain all the clean signal. When
k is more than the rank p(k > p), the energy of
the synthesised signal is more than the clean signal
(E
[
x2k(n)

]
> E

[
x2(n)

]
). Because of the addition of

noise, the value
(
Ek − σ2

d

)
is negative. This implies

that when k = p, the value of
(
Ek − σ2

d

)
must be

zero. From what has been discussed above, the effective
rank of matrix X can be determined through observ-
ing whether the value of

(
Ek − σ2

d

)
is zero. And it is

defined as:

e(k) =
∣∣Ek − σ2

d

∣∣ , k = 1, 2, . . . , l, (24)

where e(k) represents the noise error estimation. At
this time the minimum of e(k) is used for detection of
the effective rank of X . Therefore the precise value of
the rank p = k can be obtained by determining the
fixed parameter e.

5. Experiments

For the performance evaluation of the proposed
JLSMD method, we choose a total of 30 sentences
(sp01∼sp30) taken from NOIZEUS database (Hu,
Loizou, 2008) whose sampling frequency is 8 kHz.
All measurement scores are averaged over the 30
test sentences. The noisy speeches used for evaluat-
ing are taken from five types of noise sources, includ-
ing “white”, “pink”, “F16”, “Hfchannel”, and “Exhi-
bition” noises at 0 dB, 5 dB, 10 dB, and 15 dB SNR,
respectively. The frame length is 264 sample points
(33 ms) with 50% frame overlap. The column and
row sizes of the Toeplitz sample matrix X adopted
in JLSMD are 88 and 176, respectively. We repeat the
experiments ten times, then calculate PESQ-MOS and
segmental-SNR (segSNR) scores on the average.
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5.1. Influence of the error level e on the performance
of speech enhancement

In this section, we will examine the influence of e on
the performance of speech enhancement. The speech
signal corrupted by Gaussian white noise and pink
noise are used for the experiments at different SNR
levels. In the proposed method we fix the threshold
u = 0.09, increase e from −3 to 3 at the interval of 1,
and set e = −σ2

d/12.
Table 1 shows PESQ-MOS scores for the white

noise (0 dB to 15 dB) in the case of e from −3 to 3
and e = −σ2

d/12, where the PESQ-MOS and segSNR
scores “0” represent that the parameter e causes the
method to produce an error “index exceeds matrix di-
mensions”, from which we infer that parameter e is
highly related to the SNR (or noise energy). From the
Table 1 we can know that the parameter e = −3 can
obtain the best performance at 0 dB, the parameter
e = −2 can obtain the best performance at 5 dB,
and the parameter e = 0 gets the best performance
at 10 dB and 15 dB, respectively. Meanwhile, we can
see that the best e value obtained will change as the
noise energy varies. Thus we set e = −σ2

d/12 for all the
cases where σ2

d is the noise energy.

Table 1. PESQ-MOS scores for the white noise (0 dB to
15 dB) in the case of e from −3 to 3 and e = −σ2

d/12.

e 0 dB 5 dB 10 dB 15 dB

−3 2.0600 2.4185 0 0

−2 2.0313 2.4577 0 0

−1 2.0122 2.4077 0 0

0 1.9698 2.3369 2.8051 3.1644

1 1.9011 2.2497 2.7265 2.8899

2 1.8277 2.1281 2.4766 2.6008

3 1.7807 1.9945 2.2047 2.4506

−σ2
d/12 2.0521 2.4657 2.8561 3.1827

Table 2 shows segSNR scores for the white noise
(0 dB to 15 dB) in the case of e from 3 to −3 and

Table 2. segSNR scores for the white noise (0 dB to 15 dB)
in the case of e from −3 to 3 and e = −σ2

d/12.

e 0 dB 5 dB 10 dB 15 dB

−3 1.4430 2.3160 0 0

−2 1.3931 2.7264 0 0

−1 1.3694 3.9254 0 0

0 1.2424 3.9048 6.5603 8.9028

1 1.0427 3.6216 5.7790 7.0296

2 0.8548 3.2723 4.8747 5.8892

3 0.8457 2.9027 4.4607 5.1568

−σ2
d/12 1.4692 3.9634 6.5863 9.0824

e = −σ2
d/12, from which we also find that when we set

e = −σ2
d/12, the highest segSNR is obtained. There-

fore, we set the parameter e as −σ2
d/12 in JLSMD

method in the white noise case.
Tables 3 and 4 show the PESQ-MOS and segSNR

scores for the colored noise in the case of e from −3
to 2 and e = −σ2

d/12, respectively. Since the segSNR
scores have less variation as the parameter e increases,
we can deem that e = −σ2

d/12 is appropriate in the
JLSMD method in the colored noise.

Table 3. PESQ-MOS scores for the colored noise (0 dB to
15 dB) in the case of e from −3 to 2 and e = −σ2

d/12.

e 0 dB 5 dB 10 dB 15 dB

−3 2.0695 2.4115 2.7461 3.0883

−2 2.0412 2.4122 2.7568 3.0910

−1 2.0210 2.4090 2.7627 3.1130

0 2.0060 2.3833 2.7551 3.0810

1 1.9827 2.3658 2.7313 3.0720

2 1.9590 2.3301 2.7136 3.0540

−σ2
d/12 2.0682 2.4196 2.7685 3.1357

Table 4. segSNR scores for the colored noise (0 dB to
15 dB) in the case of e from −3 to 2 and e = −σ2

d/12.

e 0 dB 5 dB 10 dB 15 dB

−3 −1.2221 1.2772 4.0219 6.5562

−2 −1.0776 1.4007 4.0473 6.6662

−1 −1.0598 1.5341 4,1078 6.7460

0 −0.9762 1.6540 4.2134 6.8132

1 −0.8656 1.7341 4.3215 6.9326

2 −0.8843 1.7556 4.3623 6.9753

−σ2
d/12 −1.0663 1.3942 4.0621 6.7524

5.2. Influence of the sparse constraint u
on performance

In this section, we will examine the influence from
the sparse constraint u on the performance of speech
enhancement in the case of Gaussian white noise and
colored noise (pink noise). We experimentally set that
the parameter u = 0.09 in the white noise case and
u = 0.4 in the colored noise case.

5.3. Performance in the Gaussian white noise

In this section we will evaluate the performance
of JLSMD method in the Gaussian white noise sit-
uation. Five well-known enhancement approaches are
compared with the proposed method, including KLT
– a generalised subspace approach of KLT (Hu,
Loizou, 2003), SSboll – spectral subtraction (Boll,
1979), SSVD – original subspace approach of SVD
(Dendrinos et al., 1991), MMSE – minimum mean-
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square error short-time spectral amplitude estimator
(Ephraim, Malah, 1984), Wiener-Wiener filter based
on tracking a priori SNR using Decision-Directed
method (Plapous et al., 2006), and CLSMD – a con-
strained low-rank and sparse matrix decomposition al-
gorithm (Sun et al., 2014). For the JLSMD method we
set = −σ2

d/12, u = 0.09 and max = 50.
Tables 5 and 6 show the comparison of performance

in terms of PESQ-MOS and segSNR scores. The larger
the PESQ-MOS and segSNR scores are, the better
the performance is. From Tables 5 and 6 we can see
that the proposed method JLSMD has got the high-
est PESQ-MOS and segSNR scores among all the con-
trastive methods, except at 0 dB where CLSMD has
the highest segSNR scores. This manifests that the
JLSMD method has good speech enhancement perfor-
mance in the white noise condition.

Table 5. segSNR scores for comparison of different methods
in the case of the white noise.

Method 0 dB 5 dB 10 dB 15 dB

KLT 1.1005 3.5290 5.9374 8.0588

MMSS −0.4641 0.7874 2.1194 3.3749

SSboll −3.5192 −2.2135 −1.0612 0.0514

Wiener −2.1775 −1.3365 −0.1136 1.0583

SSVD 0.4106 2.9652 5.4880 7.9579

CLSMD 2.1466 3.6858 4.8563 5.6401

JLSMD 1.4688 3.9700 6.5965 9.0741

Table 6. PESQ-MOS scores for comparison of different
methods in the case of the white noise.

Method 0 dB 5 dB 10 dB 15 dB

KLT 1.9945 2.3975 2.7441 3.0788

MMSS 1.4551 1.7107 2.1402 2.4981

SSboll 1.6510 1.9436 2.1790 2.4626

Wiener 1.6048 1.9707 2.3049 2.5118

SSVD 1.7132 2.1944 2.5968 2.9725

CLSMD 2.0095 2.3845 2.5877 2.7207

JLSMD 2.0556 2.4785 2.8446 3.1980

As compared with SSVD, the proposed method has
higher PESQ-MOS and segSNR scores, which shows
that the proposed method has markedly improved in
the low and high SNR situations. The results imply
that the proposed method has significant advantages
over this traditional method.

5.4. Performance in the colored noise and some
real-world noises

In this section we will evaluate the performance
of the aforementioned speech enhancement methods

in the colored noise, including pink noise and some
real-world noises. For the JLSMD method we set =
−σ2

d/12, u = 0.4 and max = 50.
Tables 7 and 8 summarise the performance com-

parison of PESQ-MOS and segSNR scores. In terms
of segSNR, it is observed that JLSMD achieved the
highest segSNR scores at 10 dB and 15 dB in the F16
noise condition. Thus we can deem that the proposed
method is slightly better in noise reduction case, which
needs to be improved in the near future.

Table 7. segSNR scores for comparison of different methods
in different noise types.

noise method 0 dB 5 dB 10 dB 15 dB

Pink

KLT 0.7753 3.0972 5.3781 7.4626

MMSS −0.6958 0.6341 1.9652 3.1325

SSboll −1.3319 −0.2226 1.1602 2.2906

Wiener 0.9521 1.8636 2.3352 2.9784

SSVD −3.2675 −0.6419 2.1777 5.0420

CLSMD 0.0866 1.7255 3.0208 3.7591

JLSMD −1.0672 1.4034 4.0446 6.7695

F16

KLT 0.6788 2.9767 5.2685 7.4231

MMSS −0.7410 0.6536 1.9044 3.0734

SSboll −1.1499 −0.0636 1.1943 2.3623

Wiener 1.1499 2.0009 2.6108 3.0081

SSVD −0.2814 2.1453 4.9328 7.7252

CLSMD −0.3976 1.5103 3.0328 3.6692

JLSMD 0.1948 2.6306 5.2773 7.8629

Hfchannel

KLT 0.7043 3.2218 5.6871 7.8663

MMSS −2.1817 −0.7791 0.7254 1.9933

SSboll −3.0755 −1.4375 0.1127 1.5833

Wiener 1.0176 1.9490 2.6083 3.0045

SSVD −1.5944 1.0135 3.6927 6.3480

CLSMD 0.7115 2.6017 4.2193 5.2412

JLSMD −0.4876 2.0446 4.7303 7.3973

Exhibition

KLT −0.7101 1.6229 4.2136 6.7344

MMSS −2.3439 −0.8301 0.8341 2.2832

SSboll −2.2941 −0.7509 0.6080 1.8858

Wiener −0.4744 0.4790 1.5603 2.3289

SSVD −1.8785 0.9330 3.4139 6.1403

CLSMD −1.7303 0.3608 2.2839 3.7397

JLSMD −1.6766 1.0386 3.6229 6.4200

In terms of PESQ-MOS it is observed that JLSMD
method obtains the highest PESQ-MOS scores in most
of noise cases except at 0 dB in the pink noise con-
dition, where CLSMD is better than JLSMD, and
at 15 dB in the pink noise conditions, where KLT is
slightly better than JLSMD. It is observed that the
proposed method is adept in improving the overall
quality of the enhanced speech, which can make the
enhanced speech sound more confortable.
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Table 8. PSEQ-MOS scores for comparision of different
methods in different noise types.

noise method 0 dB 5 dB 10 dB 15 dB

Pink

KLT 2.0687 2.4121 2.7548 3.1258

MMSS 1.9211 1.3030 2.5694 2.7894

SSboll 1.8367 2.1344 2.5027 2.7715

Wiener 1.8312 2.2279 2.5724 2.8487

SSVD 1.6869 2.0543 2.5733 2.6990

CLSMD 2.0916 2.4143 2.6350 2.7636

JLSMD 2.0712 2.4283 2.7703 3.1212

F16

KLT 2.0528 2.4223 2.7550 3.1269

MMSS 2.0332 2.3485 2.6231 2.8269

SSboll 1.8933 2.2068 2.5602 2.8275

Wiener 1.8210 2.2625 2.6199 2.8881

SSVD 1.6870 2.1395 2.5574 2.9407

CLSMD 1.9856 2.3135 2.5978 2.7225

JLSMD 2.1690 2.5255 2.8521 3.1969

Hfchannel

KLT 1.9298 2.2846 2.6363 2.9316

MMSS 1.7677 2.1285 2.4918 2.7633

SSboll 1.6881 2.0043 2.3303 2.6764

Wiener 1.6944 2.1144 2.4890 2.7785

SSVD 1.6643 2.0635 2.4255 2.7764

CLSMD 1.9331 2.2958 2.5628 2.7044

JLSMD 1.9580 2.3436 2.7071 3.0563

Exhibition

KLT 1.5453 2.0555 2.3917 2.7689

MMSS 1.5597 2.0096 2.3538 2.6546

SSboll 1.5400 1.9701 2.3470 2.6390

Wiener 1.1555 1.6836 2.1119 2.4862

SSVD 1.1597 1.7662 2.1561 2.5669

CLSMD 1.4421 1.9325 2.2944 2.5610

JLSMD 1.5654 2.0721 2.4107 2.7753

As compared with the CLSMD method, JLSMD
obtains the higher PESQ-MOS scores, except at 0 dB
in the pink noise conditions, where CLSMD is better
than JLSMD. But CLSMD gets higher segSNR scores
in 0 dB and 5 dB conditions. These results indicate
that CLSMD has more noise reduction capability in
strong noise environments, while JLSMD is better in
improving the overall quality of the enhanced speech.
As compared with the SSVD method, the proposed

method also gets higher scores in terms of segSNR
and PESQ-MOS. The result shows that the proposed
method has improved the performance of the original
subspace method SSVD in the coloured noise.

6. Conclusions

In this paper, we presented a signal subspace speech
enhancement based on JLSMD. The new subspace de-
composition algorithm based on JLSMD is less sensi-

tive to the large interferences as compared with tra-
ditional algorithms, and can significantly reduce noise.
Experiments demonstrate that the proposed method is
good at improving the overall enhanced speech quality,
especially in low SNRs and white noise.
Simultaneously it should be pointed out that

JLSMD method has improved the original subspace
method based on SVD and can wipe out more residual
noise. In the future research work we will devote more
efforts to improving the noise reduction performance
in the colored noise.
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