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Abstract 

Knowledge of future river flow information is fundamental for development and management of a river sys-
tem. In this study, Waterval River flow was forecasted by SARIMA model using GRETL statistical software. Mean 
monthly flows from 1960 to 2016 were used for modelling and forecasting. Different unit root and Mann–Kendall 
trend analysis proved the stationarity of the observed flow time series. Based on seasonally differenced correlogram 
characteristics, different SARIMA models were evaluated; their parameters were optimized, and diagnostic check 
up of forecasts was made using white noise and heteroscedasticity tests. Finally, based on minimum Akaike Infor-
mation (AI) and Hannan–Quinn (HQ) criteria, SARIMA (3, 0, 2) x (3, 1, 3)12 model was selected for Waterval Riv-
er flow forecasting. Comparison of forecast performance of SARIMA models with that of computational intelligent 
forecasting techniques was recommended for future study. 
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INTRODUCTION 

Accurate river flow forecasting provides infor-
mation for any water resources planning systems like 
irrigation schemes, city and environmental plans, res-
ervoir operation strategies, flood and drought analy-
sis, and for designing and maintaining of hydraulic 
structures. Forecasting helps to anticipate river flow 
with use of historical river flow characteristics [BOX 
et al. 2008]. One of the many techniques used for 
forecasting is a time series model.  

In time series models, historical traits are as-
sumed to manifest themselves in the future [VAHDAT 
et al. 2011]. NAIL and MOMANI [2009] and ADHI-

KARY et al. [2012] noticed that a researcher having 
only a single time series of historical records may use 
the univariate Box–Jenkins method for predicting the 
coming observations without looking for the time se-

ries of other variables. Many univariate stochastic 
models like autoregressive integrated moving average 
(ARIMA) ones that use probability and statistics are 
in use for forecasting purposes [BROCKWELL, DAVIS 
2002; WANG et al. 2008].  

For ARIMA time series that have a tendency of 
showing a periodic behaviour after certain time inter-
vals, its extension called seasonal ARIMA (SARIMA) 
modelling approach, is used [BOX et al. 2008]. Season-
al differencing in this model reduces the periodic inten-
sity and makes a series static [SALAS et al. 1980].  

MOEENI et al. [2017] showed that for each 
monthly stream flow and water temperature series, 
seasonal differencing in ARIMA models is the best 
stationarization method in terms of periodic effect 
elimination and model forecasting accuracy as com-
pared to seasonal standardization and spectral analy-
sis. The SARIMA model also performed best among 
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Thomas-Fiering and Spectral Analysis types of sto-
chastic mathematical models in forecasting flow of 
five rivers in the Atrak basin, north-eastern Iran 
[TEYMOURI, FATHZADEH 2015]. 

Several studies on modelling of time series data us-
ing SARIMA models have been undertaken in hydrol-
ogy, meteorology and other fields. PAPALASKARIS et al. 
[2016] employed a SARIMA model to perform short-
term forecasts of monthly rainfall in Kavala city, 
Greece, which was aimed at identifying the potential 
patterns of flood and drought cycles occurring in this 
area. TARIQ and ABBASABD [2016] used a SARIMA 
model for Nyala station (Sudan), which was considered 
appropriate for forecasting monthly rainfalls.  

VALIPOUR [2015] proved the appropriateness of 
SARIMA model for long-term runoff forecasting in the 
United States as compared to the ARIMA models. 
SARIMA model was also found to be appropriate to 
simulate water quality in the Danube River (Europe) 
under extreme discharges and water temperature condi-
tions [PEKÁROVÁ et al. 2009]. KOMORNÍKOVÁ et al. 
[2008] used a hybrid forecasting model which com-
bines separate nonlinear regime-switching time series 
for forecasting monthly inflows into Liptovská Mara 
reservoir (Slovakia).  

GAUTAM and SINHA [2016] used SARIMA model 
for forecasting of mean monthly reference crop evap-
otranspiration in Bokaro (India). BELAYNEH and 

ADAMOWSKI [2013] indicated the best performance of 
hybrid wavelet neural network models in drought 
forecasting in the Awash River Basin (Ethiopia).  
TIWARI et al. [2016] forecasted water demand of the 
Calgary City (Canada) using extreme learning ma-
chines (ELM). This study showed a greater overall 
performance of hybrid wavelet transformed ELM 
(WA-ELM) model as compared to the ELM model. 
Using a boosting ensemble multi-wavelet extreme 
learning machine (Multi-WA-ELM) model improved 
water quality forecasting as compared to individual 
WA-ELM and ELM models [BARZEGAR et al. 2017].  

The extreme learning machine model has shown 
better forecasting ability as compared to the support 
vector machine model for forecasting monthly 
groundwater levels at two observation wells located in 
Canada [YADAV et al. 2017]. A hybrid least square 
support vector regression-gravitational search algo-
rithm (HLGSA) was successfully used for predicting 
monthly river flows in Astor and Shyok catchments 
(Pakistan) [ADNAN et al. 2017]. YANG et al. [2017] 
have demonstrated the importance of the use of dif-
ferent climate phenomenon indices together with dif-
ferent artificial intelligence techniques for reservoir 
monthly inflow forecasting.  

ALI [2013] used a SARIMA model for rainfall 
forecasting in Baghdad, Iraq. In this study, rainfall 
forecast for four years was achieved showing similar 
trends compared to the original data. JANHABI and JHA 
[2013] used a SARIMA model for rainfall forecasting 
in the Mahanadi River Basin, India. CHANG et al. 
[2012] concluded that the SARIMA model is an appro-
priate method for modelling and predicting monthly 

precipitation in Yantai, China. GERRETSADIKAN and 

SHARMA [2011] employed the SARIMA model for 
forecasting future values of monthly rainfall in the Tig-
ray region, Ethiopia. SARIMA modelling was also 
used to forecast rainfall in Port-Harcourt, Nigeria 
[OSARUMWENSE 2013]. 

The Waterval River in South Africa supplies 
a significant amount of flow to the Vaal River, and 
hence to the Vaal Dam which is a principal provider of 
water to Gauteng province. Therefore, for planning and 
management of Waterval River system and optimal 
real-time adaptive operation of Vaal Dam reservoir, 
forecasting of the current and future Waterval River 
flows is vital. Based on extensive literature review 
there is no river flow forecasting study conducted on 
Waterval River. 

In this study, monthly Waterval River flow was 
forecasted using SARIMA model with seasonal dif-
ferencing. The developed model helps water resource 
managers and decision makers for development and 
management of Waterval River and optimal adaptive 
operation of Vaal Dam.  

MATERIAL AND METHODS 

RESEARCH AREA NARRATIVE 

Waterval River is found in the Olifant River Basin 
with a catchment area of 188 km2 at the gauging station 
that is located at 25.03594 S and 30.21941 E. The 
Waterval River catchment area (located between 
26.32833 and 27.15611S and between 28.41361 and 
29.47611 E) consists of the main river (the Waterval 
River) and its tributaries. The Waterval River flows in  
a south-westerly direction towards its destination, the 
Vaal River, which in turn, feeds into the Vaal Dam.  

DATA PREPARATION 

The Waterval River flow data was accessed from 
the Department of Water and Sanitation of South Af-
rica. Waterval River has 672 mean monthly flow ob-
servations from 3rd October 1960 to 17th September 
2016. The first 612 mean monthly flows from October 
1960 to September 2011 were used for model calibra-
tion. The rest 60 observations from October 2011 to 
September 2016 were used for model validation “in-
sample” forecast. Finally, all 672 flow data were used 
for five years “out of sample” forecasting from Octo-
ber 2016 to September 2021. Gnu Regression, Econ-
ometrics and Time-series Library (GRETL) [COT-

TRELL, LUCCHETTI 2017] computer program was used 
for river flow modelling and forecasting.  

SARIMA MODELLING 

SARIMA model is the product of seasonal and 
non-seasonal polynomials and is designated by 
SARIMA (p, d, q) x (P, D, Q)S, where (p, d, q) and 
(P, D, Q) are non-seasonal and seasonal components, 
respectively with a seasonality‘s’. SARIMA model 
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was defined at Equation 1 [BOX et al. 2008, CRYER, 
CHAN 2008; WANG et al. 2008]: 

 Φ(BS) φ(B)(1 – BS)D (1 – B)d yt = Θ(BS) (B)t (1) 

where: Ф and φ = autoregressive (AR) parameters of 
seasonal and non-seasonal components, respectively; 
Θ and  = moving average (MA) parameters of sea-
sonal and non-seasonal components, respectively; B = 
backward operator, B(yt) = yt–1; (1–BS)D = Dth seasonal 
difference of season s; (1 – B)d = dth non-seasonal dif-
ference; t = an independently distributed random var-
iable; P and p = the orders of the AR components;  
Q and q = the orders of MA components; D and d are 
difference terms.  

Four sequential steps [BOX et al. 2008; WANG et 
al. 2008] as described below were followed for 
SARIMA modelling and forecasting.  

Model identification. The first step for model 
identification is the examination of the river flows 
stationarity. For this purpose, graphical methods: 
sample autocorrelation function (ACF) and sample 
partial autocorrelation functions (PACF) [SINGH et al. 
2012] were used. Moreover, unit root test has been 
made using Augmented Dickey–Fuller (ADF) [DICK-

EY, FULLER 1979], Phillips–Perron (PP) [PHILLIPS, 
PERRON 1988], and Kwiatkowski–Philips–Schmidt–
Shin (KPSS) [KWIATKOWSKI et al. 1992] at 0.5 sig-
nificance level (α = 0.05). In addition, stationarity was 
checked by Mann–Kendall trend test (MK) [KENDALL 

1975] using XLSTAT2017.  
During model identification, a type (seasonal or 

non-seasonal) and order (p, q, P, Q) of model parame-
ters were determined on the basis of an ACF diagram 
[CRYER, CHAN 2008; SALAS et al. 1980]. According 
to BROCKWELL and DAVIS [2002], for seasonal com-
ponents of SARIMA model, P and Q are usually less 
than three and D is seldom greater than one. Based on 
the stated principles, many SARIMA models were 
identified.  

Parameter estimation. Conditional maximum 
likelihood called “conditional sum of squares”  
[HAMILTON 1994] was used to optimize SARIMA 
parameters. 

Diagnostic checking. The residual correlograms 
(ACF and PACF), Ljung–Box Q Tests [LJUNG, BOX 
1978] and Durbin–Watson test [DURBIN, WATSON 
1951] were applied to test white noise (autocorrela-
tion) of model forecasts. Whether the ACF and PACF 
of the residual values at various lags were settled 
within tolerance interval at 95% confidence limits was 
evaluated. 

Forecasting and performance evaluation of 
models. As a final step for modelling, forecast preci-
sion was evaluated against performance measures 
(Equations 2 to 4): Akaike information (AI) [AKAIKE 
1974] and Schwarz Bayes (SB) [SCHWARZ 1978] and 
Hannan–Quinn (HQ) [HANNAN, QUINN 1979] criteria. 
Model performances were also checked by root mean 
square error (RMSE) and mean absolute error (MAE). 

A model having the lowest AI, SB and HQ was select-
ed for river flow forecasting: 

 LkAI log2    (2) 

 LnkSB loglog2   (3) 

 nkLHQ loglog2log2   (4) 

where: k = the amount of estimable parameters; L = 
maximum likelihood; n = number of sample. 

RESULTS AND DISCUSSION 

STATIONARITY TESTS 

The monthly time series plot of historical Water-
val River flow from October 1960 to September 2016 
is shown in Figure 1. No noticeable change about the 
mean is seen from the figure. But, periodic peaks 
(during the wet season] and lows (during the dry sea-
son) from the figure show the seasonality of the time 
series. Therefore, based on Figure 1, the river flow 
series looks stationary except for its seasonality. 
However, stationarity of river flow series was further 
proved by Mann–Kendall trend (MK) test; DF, PP 
and KPSS unit root tests at α = 0.05 (Tab. 1). 

 

Fig. 1. Time series plot of observed mean monthly flows 
from 1960 to 2016; source: own study  

Table 1. Mann–Kendall trend test and unit root tests for 
observed mean monthly flows 

Mann–Kendall trend test Unit root and stationarity tests

Parameter
Mann–
Kendall 

test 

seasonal 
Mann– 
Kendall 

test 
/ period = 

12 

parameter ADF PP KPSS

Kendall's –0.013 –0.011 
  

(observed 
value) 

–6.968 –7.409 0.110

S –2895.000 –209.000
  

(critical 
value) 

–0.923 –1.941 0.149

p-value** 0.619 0.671 p-value* <0.0001 <0.0001 0.124

 0.05 0.05  0.05 0.05 0.05 

* one tailed; ** two tailed.  
Explanations: ADF = Augmented Dickey–Fuller test, PP = Phil-
lips–Perron test, KPSS = Kwiatkowski–Philips–Schmidt–Shin test. 
Source: own study. 
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From MK evaluation, the value of p is 0.619 
(Tab. 1). This shows the absence of trend in general 
for Waterval River flow time series. Moreover, the  
p-value of 0.671 for seasonal Mann–Kendall test 
shows there is no trend not due to seasonality when 
12 months seasonality was taken into account. There-
fore, Waterval River has no trend based on Mann–
Kendall trend tests.  

From Table 1, the computed p-value of <0.0001 
for DF and PP test is lower than the significance level 
(α = 0.05). This rejects the nonstationary null hypoth-
esis (i.e., there is unit root) at their level and proves the 
stationarity of the river flow. Moreover, the stationari-
ty of the time series was further proved by KPSS test 
since the computed p-value of 0.124 was greater than 
the significance level (α = 0.05). Thus, based on all of 
the above stationarity analysis, the observed mean 
monthly flow time series was found to be stationary. 

MODEL IDENTIFICATION 

The stationarity of the observed mean monthly 
flow series was evidently confirmed in section 3.1. 
Hence, no need of non-seasonal differencing (d = 0) 
but seasonal differencing is required for seasonal sta-
tionarity. Moreover, as it is seen in Figure 2, signifi-
cant spikes were observed at interval of every 12 
months (12th, 24th, 36th lags…) at ACF plot and at lag 
12th of PACF plot. These significant spikes revealed 
that observed mean monthly flow series is seasonally 
nonstationary.  

Thus, seasonal differencing (D = 1) of the ob-
served flow data was done to make time series sea-
sonally stationary. For further investigation, SARIMA 
(p, 0, q) (P, 1, Q)12 models were suggested. Initial, 
parameter p, q, P and Q of these models were deter-
mined based on the characteristics of seasonally dif-
ferenced ACF and PACF plots (Fig. 3). 

From ACF graph (Fig. 3), the seasonally differ-
enced series has positive value significant spikes at 
1st, 2nd, 3rd and 4th lags and ACF cuts off after 5th lag 
for non-seasonal component. ACF has also a negative 
significant spike at 12th lags and decayed after lag 23th 
for the seasonal component. Therefore, 1–4 moving 
average (MA) values for non-seasonal and one sea-
sonal moving average (SMA) values were suggested 
for model identification.  

Similarly, PACF of the seasonally differenced se-
ries has significant spikes at 1st lag for non-seasonal 
and at 12th and 24th lags for seasonal components. 
Then, the values of PACF cuts off up to lag 36. Hence 
one autoregressive (AR) parameters for non-seasonal 
and two seasonal autoregressive (SAR) parameters 
were suggested to be included in the SARIMA model.  

Therefore, SARIMA (3, 0, 1) (3, 1, 1)12 was iden-
tified as an initial model. However, as model identifi-
cation involves much trial and error, maximum values 
of 3 were set for each p, q, P and Q in SARIMA mod-
el combinations. Therefore, based on the given condi-
tions more than 23 SARIMA models were identified 
further evaluation.  

PARAMETER ESTIMATION 

Fit statistics/Performance measures. The sum-
mary of the fit statistics for out of sample forecast 
from October 2016 to September 2021 is shown in 
Table 2 for the first four best-fit SARIMA models out 
of so many models evaluated by GReTL software. 
Based on minimum performance measures, mainly by 
the minimum value of AI and HQ statistics, SARIMA 
(3, 0, 2) (3, 1, 3)12 has performed best in forecasting 
mean monthly flows of Waterval River.  
 
Table 2. Performance values of the first four best models 

Parameter 
SARIMA 

(3,0,3) (3,1,3) (3,0,2) (3,1,3) 3,0,1) (3,1,3) (3,0,0) (3,1,3)
 AI 2100.168 2098.172 2101.418 2104.832 
 SB 2157.775 2151.348 2150.163 2149.146 
 HQ 2122.559 2118.840 2120.364 2122.056 
 RMSE 1.342 1.342 1.444 1.332 
 MAE 0.956 0.956 1.094 0.946 

Explanations: AI = Akaike information, SB = Schwarz Bayes crite-
rion, HQ = Hannan–Quinn information criterion, RMSE = root 
mean square error, MAE = mean absolute error.  
Source: own study.  

Parameters of selected models. Model parameter 
values (Tab. 3) which were optimized using conditional 
maximum likelihood method were all within the range 
of minimum and maximum significance intervals.  
 
Table 3. Parameter estimates for SARIMA (3, 0, 2) (3, 1, 3) 
model 

Parameter φ1 φ2 φ3 1 2 3 1 2 1 2 3 

Value 

−0
.0

32
 

0.
00

7 

0.
29

5 

−1
.1

77
 

−0
.8

41
 

0.
01

7 

0.
64

4 

0.
38

0 

0.
33

8 

−0
.2

13
 

−0
.8

97
 

Explanations: φ1, φ2, φ3 = autoagressive parameters of non-seasonal 
components, 1, 2, 3 = moving average parameters of non-seasonal 
components, 1, 2 = autoagressive parameters of seasonal compo-
nents, 1, 2, 3 = moving average parameters of seasonal compo-
nents.  
Source: own study.  

DIAGNOSTIC CHECKING 

Autocorrelation test 
From the plots of residual ACF and PACF (Fig. 4), 

all residual values at various lags were settled within 
tolerance interval at 95% confidence limits. This means 
each residual is very small relative to its standard error 
and shows the existence of no significant correlation 
between residuals. As a result, the errors obtained from 
the model are white noise or independent.  

This graphical method of white noise test was also 
supported by Ljung–Box Q' and Durbin–Watson auto-
correlation tests (Tab. 4). Ljung–Box Q' test for auto-
correlation up to the maximum lag order of 36 was 29.1 
at the p-value of 0.26. Similarly, the p-value of Durbin–
Watson test for autocorrelation was 0.328. The larger 
p-values in these tests in comparison to significance 
level (α = 0.05) prove the absence of autocorrelations 
among residuals. Thus, the selected model is appropri-
ate because of its capability of removing the residuals 
dependency from the data. 



Application of SARIMA model to forecasting monthly flows in Waterval River, South Africa 233 

 © PAN in Warsaw, 2017; © ITP in Falenty, 2017; Journal of Water and Land Development. No. 35 (X–XII) 

 

Fig. 2. Autocorrelation function (ACF) and partial autocorrelation functions (PACF)  
for historical Waterval River flows; source: own study 

 

Fig. 3. Seasonally differenced autocorrelation function (ACF) and partial autocorrelation  
functions (PACF) for monthly Waterval River flows; source: own study  

HETEROSCEDASTICITY TESTS 

The results of heteroscedasticity test of residuals 
are shown in Table 4. The computed p-values of 0.804 
in Breusch–Pagan’s test and 0.963 in White’s tests, 
were all greater than the significance level (α = 0.05). 
These prove that residuals are not heteroscedastic but 

homoscedastic. This means the residuals from a linear 
SARIMA model have a variance that is dependent of 
the observations. Therefore, based on heteroscedastic 
tests, the selected model is adequate for Waterval River 
flow forecasting. Jarque–Bera normality test value of 
residuals is 4.86452 with p-value 0.0878. this proves 
that the residuals are normally distributed at α = 0.05. 

ACF

PACF 

ACF 

PACF 
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Fig. 4. Autocorrelation function (ACF) and partial autocorrelation functions (PACF) of residuals; source: own study 

 

Fig. 5. Observed, predicted and forecasted mean monthly flows; source: own study 

Table 4. Autocorrelation and heteroscedasticity tests  

Parameter 
Autocorrelation test Heteroscedasticity test 

Ljung– 
Box Q' 

Durbin– 
Watson 

Breusch– 
Pagan 

White 

p 0.26 0.328 0.804 0.963 

 0.05 0.05 0.05 0.05 

Source: own study.  

SARIMA FORECASTING 

A historical, validation and prediction (forecast) 
graph for monthly Waterval River flows time series 
using SARIMA (3, 0, 2) (3, 1, 3)12 model is shown in 
Figure 5. In addition to its best performance, the pat-
tern of the out of sample forecast graph is similar with 
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that of the validation and historical graph but unable 
to capture very high flows. In general, the selected 
model is appropriate for Waterval River forecasting.  

From SARIMA (3, 0, 2) x (3, 1, 3)12 model, the 
order of p is 3 means that the current time series (yt) is 
reliant on its preceding data yt–1, yt–2, and yt–3. The 
order P is 3 means that yt is reliant on its preceding 
years’ data of yt–12, yt–24, and yt–36. The order q is 
2 means yt is reliant on its preceding random shock  
t–1 and t–2,; and the order Q is 3 means that yt is reli-
ant on its preceding random shocks of t–12, t–24 and 
t–36. As non-seasonal component of this model was 
stationary, no non-seasonal differencing was used  
(d = 0). However, seasonal differencing was used on-
ly once (D = 1) to remove seasonality in the model.  

CONCLUSIONS 

To aid planning and management of Waterval 
River system and for an optimal real-time adaptive 
operation of Vaal Dam reservoir, current and future 
Waterval River flows information is vital. To this end, 
Waterval River flow was modeled and forecasted us-
ing GRETL statistical software. Out of several models 
identified and evaluated, SARIMA (3,0,2)×(3,1,3)12 
model was selected for Waterval River flow forecast-
ing for its minimum values of Akaike Information and 
Hannan–Quinn criteria. In addition to its best perfor-
mance, the pattern of the out of sample forecast mean 
monthly flows graph is similar with that of the ob-
served mean monthly flows graph. Consequently, the 
selected model is appropriate for Waterval River fore-
casting.  

Thus, the forecasted mean monthly flows infor-
mation and the developed model help water resource 
managers and decision makers for development and 
management of Waterval River, and optimal opera-
tion of Vaal Dam reservoir, in the Olifant basin. 
Comparison of forecast performance of SARIMA 
models with that of computational intelligent forecast-
ing techniques was recommended for future study. 
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Zastosowanie modelu SARIMA do prognozowania miesięcznych przepływów rzeki Waterval  
w Południowej Afryce  

STRESZCZENIE 

Znajomość przyszłego przepływu wody w rzece jest istotna dla rozwoju i zarządzania w systemie rzecznym. 
W badaniach prezentowanych w niniejszym artykule prognozowano przepływ w rzece Waterval w Republice 
Południowej Afryki, używając modelu SARIMA i programu statystycznego GRETL. Do modelowania i budo-
wania prognoz wykorzystano średnie miesięczne przepływy z lat 1960–2016. Różne pierwiastki jednostkowe  
i analiza trendu Manna–Kendalla dowiodły stacjonarności obserwowanych szeregów czasowych przepływu. Na 
podstawie sezonowo zróżnicowanych charakterystyk korelogramu oceniono różne modele SARIMA zoptymali-
zowano ich parametry i wykonano diagnostyczne sprawdzenie prognoz za pomocą białego szumu i testów hete-
roscedastyczności. Na podstawie minimum AI i kryteriów Hannana–Quinna (HQ), wybrano model SARIMA (3, 
0, 2) x (3, 1, 3)12 do prognozowania przepływu w rzece Waterval. W dalszych badaniach proponuje się porów-
nanie prognozowania za pomocą modeli SARIMA i technik komputerowych. 
 
Słowa kluczowe: analiza trendu, biały szum, heteroscedastyczność, ocena, test stacjonarności  


