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Abstract: The research article describes a method of isometric transformation and 
determining an exterior orientation of a measurement instrument. The method is based 
on a designation of a “virtual” translation of two relative oblique orthogonal systems 
to a common, known in the both systems, point. The relative angle orientation of the 
systems does not change as each of the systems is moved along its axis. The next 
step is the designation of the three rotation angles (e.g. Tait-Bryan or Euler angles), 
transformation of the system convoluted at the calculated angles and moving the system 
to the initial position where the primary coordinate system was. This way eliminates 
movements of the systems from the calculations and makes it possible to calculate angles 
of mutual rotation angles of two orthogonal systems primarily involved in the movement. 
The research article covers laboratory calculations for simulated data. The accuracy of 
the results is 10-6 m (10-3 regarding the accuracy of the input data). This confi rmed the 
correctness of the assumed calculation method. In the following step the method was 
verifi ed under fi eld conditions, where the accuracy of the method raised to 0.003 m. The 
proposed method enabled to make the measurements with the oblique and uncentered 
instrument, e.g. total station instrument set over an unknown point. This is the reason 
why the method was named by the authors as Total Free Station – TFS. The method may 
be also used for isometric transformations for photogrammetric purposes.
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1. Introduction

To describe a spatial position of objects (physical bodies) referential orthogonal 
systems defi ned in three-dimensional Euclidean space are usually adopted. The 
selection of the system is free and dictated by practical reasons. The Rectangular 
Cartesian coordinate system which is associated with the agreed beginning (material 
body) is called an inertial coordinate system (constant) or laboratory coordinate 
system. A system associated with a microsystem (an atom or molecule) of a particular 
body is called a non inertial or molecular coordinate system (Kielich, 1977), while 
in the fi eld of geodesy and photogrammetry this type of system is called an oblique 
system (Zalas et al., 2016).

The traditional system used in surveying is unequivocally defi ned by planes and 
axes of the levelled instrument, where the axis of rotation coincides with the local 
vertical line. The horizontal system is a specifi c type of the oblique system in which 
the rotation angles around the X and Y axes are equal to 0. This kind of system 
is very convenient as only four parameters of the transformation are necessary to 
defi ne it unequivocally (assuming that the scale would not change): three movement 
vector components and angle of rotation around the vertical line of the system. Thus, 
only three co-ordinates of one point and one fl at co-ordinate (x, y) of a different 
point must be known. However, sometimes a horizontal system is not suffi cient or 
even not suitable to perform particular tasks that surveyors have to face, and then 
the spatial transformation becomes necessary. Measurements performed in unstable 
environments, such as surveying on fl oating objects, high chimneys or surfaces 
subjected to strong vibrations (close to generators, working machines and other 
equipment), often require unconventional approaches to deal with this problem. In 
such a situation, when it is impossible to associate the surveying coordinate system 
with the vertical line it is necessary to work with the compensator instrument switched 
off. Moreover, it is crucial to build upon the reference system realized by main planes 
and axes of the instrument. The obtained measurement data must be calculated with 
spatial transformation methods for the fi nal coordinate system or the local coordinate 
system of the measured object.

Already in the seventies of the last century and for the needs of the shipbuilding 
industry, an optical levelling method was developed and used for the technological 
construction cycle of a ship on the ramp. The method allowed orienting planes and 
level axes of optical instruments in arbitrarily oblique systems. Commonly, especially 
in fi eld of industrial geodesy, the data obtained in measurements in a horizontal system 
must be transformed to a local coordinate system of a measured object that usually is 
an oblique system. In particular cases, it is necessary to perform a transformation of 
data from an oblique system to another one – just to control geometric dependences 
of a measured object (Niebylski, 1977; 1984).

In the following article a new algorithm for transforming the space in an oblique 
system is presented. The system is based on the transformation through similarity 
method used in photogrammetry (1). However, a different approach to the designation 
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of the system movement was proposed. The approach was based on so called 
“virtual movement”, i.e. movement between systems known in advance (virtual 
translation). This algorithm was implemented into traditional tacheometric surveying. 
The goal of the article is developing of free station method to the applications 
in non-stable places (e.g. fl oating vessels) were levelling of an instrument may 
not be possible.

2. Photogrammetric transformations in an oblique system

In photogrammetry and geodesy the basic and most frequently used transformation 
type is transformation through similarity. The method includes changing the scale, 
so called homotetia, translation and rotation – isometry (Kurczyński, 2014). A matrix 
that may be used to describe the isometric transformation using three angles (Tait-
Bryan angles) connected to a movement (Baranowski, 2013). In photogrammetric 
transformations, the following transformation is used:

 

 
= +

1 0 0
0
0

  
0

0 1 0
0

0
0

0 0 1
  

 
(1)

where:
ω – rotation around the X axis, the roll angle,
φ –  rotation around the Y axis, the pitch angle, 
κ –  rotation around the Z axis, the yaw angle,
X, Y, Z – coordinates in the primary coordinate system (without the rotation),
X’, Y’, Z’ – coordinates in the secondary coordinate system (oblique one),
X0, Y0, Z0 – translation vector (movement of the primary coordinate system),
λ – factor of the scale change.

After multiplying matrices containing the angles of rotation around particular axes 
and recording that transformation using the A rotation matrix, the transformation can 
be recorded (1) as following:
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where: 
a11, a12, a13, ..., a33 – factors of the A rotation matrix,
other signs as in (1).

The rotation matrix may be also expressed with Euler angles – nutation, precession 
and clear rotation – and then it takes the form of the B matrix.

 =
( , ) ( , ) ( , )
( , ) ( , ) ( , )
( , ) ( , ) ( , )

  (3)

where: the rotation matrix (3) contains angles of axis rotation relative to 
each other.

The transformations (1), (2), (3) are relatively unequivocal and are the 
transformations through similarity. They map an ordered section to another ordered 
section, i.e. vector to vector. The isometry does not change the lengths of the vectors. 
It also does not change the distance between points. The above statements are correct 
both for planes and spaces. Analogously, it takes place for the movement and rotation, 
but beside the rotations around a point, rotations around a straight line are available. 
According to Euler: Every rotation around a point is a rotation around a straight line 
passing through this point (Stark, 1974). 

Matrix A (2) can be consider for the small rotation angles and was applied in the 
Bursa-Wolf  (Bursa, 1962; Wolf, 1963) and  the Molodensky-Badekas (Molodensky 
et al., 1960; Badekas, 1969) transformation.

The transformations through similarity were also applied to other solutions 
for nonlinear inverse problems (Málek et al., 2007). The transformations through 
similarity are also commonly used in close range photogrammetry, in which the 
rotation angles are much larger in comparison to the traditional aerial survey (Jue, 
2008). For large rotation angles it is possible to defi ne them if only two adjust points 
located on the primary coordinate system’s axes are known (Zalas et al., 2016). For 
the transformation from the oblique system to a plane, the direct linear transformation 
(DLT) is applied, which is also based on the transformation (1), especially for data 
collected by unmanned aerial vehicles. This type of transformation is very popular due 
to the linear connections that link coordinates in both coordinate systems (Seedahmed 
and Habib, 2016). 

Rotation directions and signs were assumed in the formula (1) and (2) according 
to signs on the Figure 1 which shows the xy-plane.
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Fig. 1 The transformation through torsion – the rotation in the xy-plane 
at κ angle – torsion around the z axis (yaw angle, drift angle)

3. Proposed approach

The following article suggests a different approach to the transformation of 
coordinates in two relative oblique coordinate systems. To perform the transformation 
of the coordinates, it is obligatory to know four common points in both coordinate 
systems. In case of moving and rotating the system at three angles, the rotations 
are connected with the movements along particular axes. The traditional methods 
of surveying dictate to calculate them together with the movements. The proposed 
method is about defi ning the movement between systems (translation vector), which 
are called “virtual” ones, at fi rst and then defi ne three rotation angles. The virtual 
translation vector is designated based on the knowledge of one point in both coordinate 
systems. It is designated by moving two mutually oblique orthogonal systems to 
a common, known in the both systems, point. Every system is moved along its axis 
so the mutual angle orientation of the systems does not change (Figure 2), what is 
written as relations (Equation 4). After moving the systems their common centre 
is in the same point, what allows to calculate three rotation angles of the systems 
independently. 
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Fig. 2 The virtual movement of two relative oblique systems

 
=  

=       (4)
where:

  

= …  

= …  

= …  

= …   

 (5)

where in formulas (4), (5):
P – the matrix of points in the translated and convoluted system,
P’i –  the matrix of points composed of one point (vector starting with the point 0 

and ending with the point indexed with “i”) P’i,
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P –  the matrix of points in the primary coordinate system – without translation 
and convolution,

Pi –  the matrix of points in the primary coordinate system composed of one point 
Pi,

i – point number that becomes the common centre for both systems,
n –  natural number – number of points in the primary coordinate system (secondary 

coordinate system),
D –  the matrix in the primary coordinate system after moving to the common 

point with the “i” index,
D’–  the matrix in the translated and convoluted system (secondary coordinate 

system) after moving to the common point with the “i” index.

The next step is to determine three rotation angles (Euler angles and Tait-Bryan 
angles) and designate a matrix of the A rotation with the following relation:

 =   (6)

where: signs are assumed as in the relations (Equation 2), (Equation 4), (Equation 5).

To designate the matrix of the A rotation in the relation (Equation 5), it is obligatory 
to know at minimum three points in both reference system. These points are included 
in the D and D’ matrices. Regarding the fact that the A matrix fulfi ls the orthogonality 
conditions (Equation 7) Jue L. (2008).

 = =   (7)

where:
A – the rotation matrix defi ned in analogy to the relation (2), 
I –  the identity matrix.

After calculating the A matrix the next step is to translate the D’ system along the Pi 
vector (matrix). In practice, this means the “return” of the “convoluted” by the well-
known path, after which the primary coordinate system was moved (not convoluted 
one). The relation may be recorded as following: 

 = +   (8)

where: 
PT – the matrix of the points transformed from the duplicated system to the 

primary coordinate system, other signs are assumed as in the relations (Equation 6), 
(Equation 4), (Equation 5).
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The next step is to compare the transformed points in the PT and P matrices. The 
comparison is performed for points which were used for the transformation as well 
as for the check points. The last step is to calculate the average real errors for the 
compared points using the equation (9):

 

=  
=  
=   = + +   

 (9)

where:
mx, my, mz, mp –  average real errors respectively for the cooperates: x, y, z and 

the point,
Vx, Vy, Vz –  deviations after the transformation respectively for the cooperates: 

x, y, z.
The method described above was named the Total Free Station transformation (TFS) 
and it is the further development of the Free station method, in which the measurements 
are performed with a levelled instrument set in an unknown place (Schofi eld, 1984). 
In the proposed method an instrument is not levelled.

4. Surveying experiment

Within the experiment a few lab and field researches were performed. 
In the lab research the mathematics correctness of the proposed method was verifi ed 
with simulation data. In the lab research a random set of points, recorded in the P 
matrix, was assumed:

  =
9.425 6.686 36.856   
0.000 13.244 28.020
0.000 0.000 0.001

11.137 10.632 7.908
8.690 5.895 7.072

0.440 4.297 3.788
   

1.361 13.433 4.929
38.746 45.308 2.337
2.288 1.236 1.120

 
 

In the P matrix each of columns corresponds to one point (the vectors hooked at 
the origin). The fi rst line records the X coordinate, the second line records the Y 
coordinate, and the third line records the Z coordinate. It was assumed that the 
coordinates are indicated in [m] and recorded with a precision of +-1 mm. Then, the 
P matrix was moved by the random vector (matrix):
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=
1555.555 1555.555 1555.555 

100.675 100.675 100.675
154.321 154.321 154.321

1555.555 1555.555 1555.555
100.675 100.675 100.675

154.321 154.321 154.321
   

1555.555 1555.555 1555.555
100.675 100.675 100.675

154.321 154.321 154.321
 

and then the translated system of points was rotated by multiplying with the A matrix 
of the rotation:

 
= =

0.774 0.633 0.010
0.622 0.763 0.174
0.118 0.128 0.985

 
 

The A matrix was calculated according to the relation (Equation 2) for the assumed 
angles ω = 10.000000, φ = 0.578930, κ = 39.307160. In this way the coordinates of 
the points in the translated and rotated system (at three angles) were obtained and 
recorded in the P matrix:

=
1273.0716 1262.563 1219.5139   
870.5708 878.9725 863.1438
323.2771 324.6507 321.4169

1279.8964 1277.6962 1267.3799
864.9286 866.0774 874.3655
322.799 326.8957 327.7344

   
1242.2657 1226.6732 1263.4573
894.7214 890.7025 860.0466
329.5428 327.6059 320.1854

 

In the following step the inverse transformation was performed according to the TFS 
transformation. At fi rst a displacement to the centroid of systems was performed 
(virtual translation) using the point no. 2 (i = 2) as the centroid. This allowed obtaining 
the matrices D and D’ in both systems computed by applying (Equation 4):

 

2.739 0.000 43.542   
13.244 0.000 14.776
0.000 0.000 0.001

4.451 3.946 1.222
21.934 19.139 6.172
0.440 4.297 3.788

   
5.325 20.119 11.615

25.502 32.064 15.581
2.288 1.236 1.120

 

10.509 0.000 43.049   
8.402 0.000 15.829
1.374 0.000 3.234

17.333 15.133 4.817
14.044 12.895 4.607
1.852 2.245 3.084

   
20.297 35.890 0.894

15.749 11.730 18.926
4.892 2.955 4.465

 

After the translation of the systems to the joint point (centroid – the second column 
in the D and D’ matrices – above) – the point became a common origin of both 
coordinate systems. This was obtained without a simultaneous change of the system 
angle orientation relative to each other. Then, sequentially according to the relations 
(Equation 4), (Equation 6) – and taking into account  (Equation 7) a rotation of the 
secondary coordinate system was performed and in accordance with the relation 
(Equation 8) the system was moved along a vector (matrix) counter to the one which 
was used to move the primary coordinate system previously (virtual translation). The 
transformed coordinates that took the form of:
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9.425004 6.686 36.85602   
0.000005 13.244 28.019995
0.000001 0.000 0.001006

11.137007 10.632008 7.908004
8.689992 5.894991 7.072003

0.439998 4.296996 3.787998
   

1.360993 13.433015 4.929001
38.745991 45.307988 2.336994
2.288001 1.236 1.120004

 

(the higher precision was assumed on purpose) were compared to the coordinates of 
the primary coordinate system. The following deviations in the specifi c points were 
achieved as follows (small values close to zero):   

  

000004 0 0.00002   
0.000005 0 0.000005
0.000001 0 0.000006

0.000007 0.000008 0.000004
 0.000008 0.000009 0.000003
 0.000002 0.000004 0.000002

   
0.000007 0.000015 0.000001
0.000009 0.000012 0.000006
0.000001 0 0.000004

 

Then, according to the relations (Equation 10) the average real errors were calculated. 
The small values indicate a proper performance of the proposed algorithm. The 
following values were obtained:

 mx = 0.000004 [m]   my = 0.000003 [m]   mz = 0.000001 [m] 

In the result the accuracy of the position of the points after the transformation 
amounted 10-6 m and the accuracy of the input coordinates was 10-3 m. The errors 
obtained for the simulated data were 103 times lower than the accuracy of the input 
data. It was therefore concluded that the transformation method is mathematically 
correct and consequently the fi eld researches were continued. 

The tacheometric surveying was performed in two mutually oblique coordinate 
systems that were translated by an unknown value (Figure 3). In the fi rst case the 
instrument used for the surveying was levelled and centred with the compensator 
switched on (P matrix), while in the second case the instrument was not levelled but 
moved and the surveying coordinate system was connected to the moved and oblique 
instrument. Additionally, the instrument had the compensator switched off (P’ matrix). 
The fi eld surveying was performed with the theodolite station (model Trimble M3) 
with the angle accuracy of 3” and 2 mm + 2 ppm distance measurement accuracy 
measured to refl ective foil. Eight points distant of 10 – 50 m from the instrument 
were surveyed in two full series. The points were signalled with a refl ective foil with 
a cross. After calculating the average coordinates, the average error of the typical 
concern was obtained and it amounted 0.5 – 3.2 mm. In this way two matrices of the 
coordinates were obtained:

=
0.000 25723.3 15798.8   
0.000 2.0 6623.0
0.000 1648.0 6783.5

889.8 16239.5 33676.3
15720.3 25695.3 23131
7168.4 2210.0 1422

   
8293.8 27883 11769.3

43591.8 39376.5 2138.3
56 15 23

 

 

=
3034.0 28488.0 17657.5   
3387.3 1.0 5207.3
1490.5 774.3 5706.0

1669.8 16511.5 27305.5
12250.5 19913.5 30778.3
5781.3 463 1023.5

   
585.0 35882.5 14983.8
47688.8 38725.8 3950.5
2002.0 1026 1246.5
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The coordinates in the P and P’ matrices were indicated in [mm]. Each column 
includes one point (a vector anchored to the origin). Next, the transformation of the 
coordinates from the P’ oblique coordinate system to the P primary coordinate system 
was performed with the TFS method and in accordance with relations (Equation 4), 
(Equation 6) taking into account (Equation 8). Finally, the real errors were calculated 
based on (Equation 10) and the obtained values were as following: 

Table 1. TFS errors in the site surveys

Real errors mx [mm] my [mm] mz [mm] mp [mm]

For points used for the 
transformation 0.003 0.005 0.008 0.010

For the check points 2.6 0.5 2.1 3.4

5. Discussion on results and conclusions

During the calculations in the laboratory coordinate system the 10-3 accuracy of the 
input data was obtained. This proves the mathematical correctness of the proposed 
method – the TFS transformation. During the fi eld surveys the typical observation 
error, resulting mostly from the accuracy of the instrument, was 0.5–3.2 mm.

For the TFS transformation, three points were used: points number 4, 6 and 7 
(column number of the P matrix). For these points the average errors were the lowest. 
Various variants of points were tested and regardless the confi guration the error did not 
exceed the value: mp ≤ 5.6 mm. The lowest errors obtained for points no. 4, 6 and 7 
allow developing the hypothesis that the reason for such results are the points forming 
a triangle with the largest surface area of all triangles that would be possible to 
create and at the same time using the points of the P matrix (the levelled and centred 
coordinate system). This minimizes the effect of the extrapolation when rotating the 
points by the calculated angles (for the most distant points). The points 4, 6 and 7 
are characterized by the fact that their highest absolute values of the coordinates 
are as respectively: x, y, z. At the same time the solution was tested – calculating 
the matrix of the rotation – with a selection of 4 points. In the case of points 
no. 4, 6, 7, the same errors were obtained and the accuracy did not increase. Moreover, 
in case of the calculations in three adjust points the calculations are possible, if none 
of three points is a beginning for the coordinate system. In this case to calculate the 
matrix of the rotations it is obligatory to add the fourth point. The point which is 
the beginning for the coordinate system, after the virtual translation, should be well 
traceable, designated very carefully and measured in at least two full survey series.

Comparing the obtained accuracies of the TFS transformation with the typical 
concern error obtained during surveying, it should be stated that they are at the same 
level. Therefore, the transformation, despite the double measurements  (in the primary 
coordinate system and in the secondary coordinate system) and the summation of 
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the errors, does not affect the reduction of the accuracy. It was fi nally stated that the 
developed TFS transformation method is useful for surveying. Thus, it is possible 
that performing the measurements with the oblique instrument set in an unknown 
place (with the compensator switched off) has no infl uence on the accuracy of the 
transformed coordinates. For the TFS transformation four adjust points are obligatory. 
They must be known in both coordinate systems. One of them is necessary for 
calculating the virtual translation, while the other three points are useful for calculating 
the rotation matrix. The use of modifi ed calculations (by the virtual translation), 
used in photogrammetry for surveying, fulfi lled the task. Additionally, in this case 
the method was useful also for high rotation angles what is not so often using in 
photogrammetric transformations. According to the authors, the method may be found 
useful for local, precise surveying as well as for other geodynamic and engineering 
purposes, especially in non-stable places (e.g. on fl oating vessels) were levelling of 
an instrument may not be possible.

Fig. 3. Oblique tachymeter during surveying 
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