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Abstract: In this paper, two techniques for calculating the geoid-to-quasigeoid separation
are employed. One of them is GPS/Levelling customary method as a criterion where the
geoid undulation and height anomaly are computed by subtracting the ellipsoid height at-
tained via GPS from the orthometric height and normal height, respectively. Another ap-
proach is Sjöberg’s equation. We have used of the ICGEM website for definition of the
variables of the Sjöberg’s equation, as the applied reference model is the EGM2008 global
geopotential model and WGS84 reference ellipsoid. The investigations are performed over
the stations of the GPS/Leveling network related to three selected areas in desert, mountain
and flatland namely the Lout, Zagros and Khuzestan in Iran and afterward the correlation
coefficient between the geoid-to-quasigeoid separation calculated using the satellite data in
Sjöberg’s equation and GPS/Levelling method is estimated. The results indicate a straight
correlation between the estimated separations from the two methods as its value for the
Lout is 0.754, for the Zagros is 0.497 and for the Khuzestan is 0.659. consequently, using
the satellite data in Sjöberg’s equation for the regions where there are not the GPS/Levelling
and land gravity data, specially for the even areas, yield a satisfactory response of the geoid-
to-quasigeoid separation.

Keywords: geoid, GPS/levelling, ICGEM, quasigeoid, Sjöberg’s equation



180 Ata Eshaghzadeh, Roghayeh Alsadat Kalantari, Zohreh Moeini Hekmat

1. Introduction

Traditionally, global and local gravimetric quasigeoid models are determined and, then,
fitted to GPS/levelling data. The geoid is an equipotential surface of the Earth that cor-
responds to mean sea level, whereas the quasigeoid is a geometrical surface referred to a
normal height system. The geoid undulation (N) is the separation between the ellipsoid
and the geoid measured along a straight line between the geoid and ellipsoid which is
perpendicular to the ellipsoid. The height anomaly (ζ ) is the separation between the ref-
erence ellipsoid and quasigeoid along a perpendicular line to the ellipsoid. The Global
Positioning System (GPS) has been extensively utilized in surveying and mapping ap-
plications worldwide. A combination of gravimetrically derived quasigeoid heights over
a target area with ellipsoidal heights provided by GPS has become a standard procedure
in quasigeoid and height reference surface modelling.

In recent decades, separation of geoid from quasigeoid has been of high interests in
many geodetic and geophysical studies. For the realization of national and international
height reference levels, and for accuracy height determination in geodetic engineering,
it is essential to evaluate the geoid–quasigeoid separation with centimeter accuracy or
better (Flury and Rummel, 2009). This matter is considered as a necessity to gain better
understanding about height references recognized internationally.

In 1962, Molodensky formulated a geodetic boundary value problem for the physical
surface of the earth and, consequently, defined quasigeoid and geoid in space (Figure 1).
Tenzer et al. (2005) presented the expressions for an accurate computation of the mean
gravity along the plumb line and derived corresponding relation between the evaluation
of the mean actual and normal gravity values in definitions of the orthometric and nor-
mal heights. Sjöberg (2006) and Tenzer et al. (2006) derived the formula for the geoid-
to-quasigeoid separation by means of applying Bruns’ (1878) theorem. Kiamehr (2007)
introduced a new height datum for Iran based on combination of the gravimetric and
GPS/Levelling geoid models. Prutkin and Kless (2008) have solved Laplace equations
to evaluate the separation between geoid and quasigeoid in high level areas accurately.
Flury and Rummel (2009) develop a compact formulation for the rigorous treatment of
topographic masses and apply it to determine the geoid–quasigeoid separation. Sjöberg
(2010) proposed more accurate equation to separate geoid from quasigeoid. The expres-
sions for calculating the geoid-to-quasi-geoid separation in spatial and spectral domains
was summarized by Tenzer et al. (2015). Tenzer et al. (2016) applied the spectral expres-
sions to estimate the geoid-to-quasi-geoid separation globally.

Regarding the fact that the northern neighbors of Iran employ quasigeoid as levelling
reference, to unify and correlating levelling data in the area for local study purposes
and also controlling them, we need to calculate a quasigeoid for Iran area. Accurate
calculation of separation of quasigeoid from geoid seems to be essential. Therefore, in
this paper, the separation are done by GPS/Levelling and the proposed method based
on the Sjöberg’s equation (2010) for three areas in Iran and finally they are compared.
As the greater contribution to the geoid–quasigeoid separation is due to the effect of the
distribution of topographic masses on the gravity field (Flury and Rummel, 2009), we
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have employed the Sjöberg’s equation which is considered the topographic potentials at
the geoid and surface points.

The main objective in this study is the determination of the Sjöberg’s equation preci-
sion when the satellite data is applied for solving it. The numerical results obtained from
GPS/Levelling method is consider as a criterion.

2. GPS/Levelling method

The geoid-to-quasigeoid separation exhibits the difference between the geoid and the
quasi-geoid, or equivalently the difference between the normal and orthometric heights.
The orthometric and normal heights can be estimated using the observed or normal grav-
ity field data by the computational methods. The geometric GPS heights are related to
physically meaningful heights through the geoid or the quaeigeoid. Thus we can com-
pute geoid-to-quasigeoid separation (N−ζ ) employing GPS/Levelling. The evaluated
height by GPS is considered as ellipsoid height (distance of PQ0 in Figure 1). The height
anomaly ζ is obtained using GPS/Levelling datums via following formula:

ζGPS/Levelling = hGPS −HN, (1)

where, HN refers to normal height, i.e. QQ0 drawn in Figure 1. The geoid height N, is
computed using GPS/Levelling datums as:

NGPS/Levelling = hGPS −HO. (2)

Here, HO is orthometric height, i.e. PP0 in Figure 1. Finally, N−ζ is calculated by
subtracting the equations (1) from (2). Thus we can write:

N −ζ = HN −HO. (3)

Fig. 1. Different geodetic levels. PP0: orthometric height. PQ0: ellipsoidal height.
QQ0: normal height. N: undulation. ζ : height anomaly
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Although the N−ζ can directly obtain from HN −HO, but the estimated separation
values by HN −HO and ones are based on the subtraction between the NGPS.Levelling and
ζGPS/Levelling have slightly difference numerically.

3. Determination of N−ζ using Sjöberg’s equation

The second method to calculate N−ζ is accurate equation of Sjöberg (2010) as follows,
Which consists of three parts:

N −ζ ≈
∆gBO

P
γ

HO +
vgT − vpT

γ
+

δgBO −δgBO
P

γ
. (4)

The first part is
∆gBO

P
γ

HO known as approximate equation of Featherstone and Kirby

(1998) in which ∆gBO
P denotes (simple) Bouguer gravity anomaly at the computation

point P on the earth surface obtained from the following equation (Heiskanen and
Moritz, 1967)

∆gBO
P = g+0.3086H −0.1119H − γ. (5)

Here, H is orthometric height, g is observed gravity on the earth surface and γ refers
to ellipsoidal normal gravity. It is worth mentioning, the equation (4) was proposed by
Flury and Rummel (2009), but the last term of equation (4) was not clearly contained
in their final formulation. In this paper, in order to compute Bouger gravity anomaly,
the value of above mentioned variables, i.e. g, H and γ , have been gained from ICGEM
website which are estimated based on a combination of satellite and land data. Also, the
Bouger gravity anomaly at point P on the earth is accessible in ICGEM website directly.

γ is the average of normal gravity from geoid to reference ellipsoid or from earth
surface to quasigeoid which can be computed by the following equation (Heiskanen and
Moritz, 1967):

γ = γP0

[
1−
(
1+ f +m−2 f + sin2 φ

) H
a
+

H2

a2

]
, (6)

where, f = 0.00335281068118 is geometrical flattening, m = 0.00344978600308 is
Kloro constant, a = 6356752.3141m is ellipsoid semi axis, φ is latitude of P and
γP0 normal gravity of ellipsoid and is determined using Pizzertti (1894) formula,
λe =

(
1+β1 sin2 φ +β2 sin2 2φ

)
, where λe refers to normal gravity at the equator and

β1 = 0.0053024 and β2 = 0.0000059. In this paper, the value of ellipsoidal normal grav-
ity has been gained from ICGEM website.

The second part is
vgT − vpT

γ
(Flury and Rummel, 2009), where vgT is the topo-

graphic potential around the point located on the geoid and vpT is the computed to-
pographic potential around P on the earth surface which has been calculated using the
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prism formula proposed by Nagy et al. (2000) as will be elaborated further in the fol-
lowing section.

In order to obtain the second part of equation (3), vgT −vpT , topographic potential of
masses positioned between earth surface and geoid needs to be estimated. Accordingly,
the area around the point is divided into blocks based on the DTM data available in
ICGEM website. As seen, a schematic view of topographic division above geoid into
prisms is presented in Figure 2, whose centers referred to the computational points on
the GPS/Levelling station.

b) a)

Fig. 2. Unreal sample of the area division around the measuring points a) two-dimensional model; b) the
three dimensional model compose by contiguous prisms. The effect of gravimetric potential of blocks at

measuring points, on the earth surface and corresponding point on the geoid is evaluated

The blocks surrounding the measuring point are divided into three parts. The first
part is the potential effect of blocks with 30′′×30′′ spatial resolution which are located
at a distance of 0.5◦ latitude and longitude from measurement point. In the second part
the potential effect of blocks with 60′′ × 60′′ spatial resolution which are located at a
distance of 0.5–1◦ latitude and longitude from measurement point and, for the third one,
the potential effect of blocks with 1.5′ × 1.5′ spatial resolution which are located at a
distance of 1–2◦ latitude and longitude from measurement point is considered.

Due to trivial amount of the potential impact of further blocks, to reduce blocks num-
ber and, consequently, improve calculation speed and also running software in shorter
time duration, the potential effect of further blocks has been ignored.

The gravity potential is regarded as the main superposition function. Hence, vpT is
summation of prisms potential with respect to reference point on the earth surface and
vgT is summation of all prisms potential with respect to reference point on geoid are
subtracted. The mean density of 2.7 g/cm3 has been prescribed.

Finally, the third part,
δgBO −δgBO

P
γ

, in which is the difference between the average

of gravity distribution between the earth surface and the geoid, and the gravity distri-
bution at measuring point P as is normalized by the γ . Bouger distribution on the earth
surface is estimated as follows:

δgBO
P = gP − γP . (7)
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Here, gP is the calculated gravity at P point on the earth and γP is measured normal
gravity at P on the earth surface. To measure γP can be written in the following form
(Heiskanen and Moritz, 1967):

γP = γP0

[
1−2

(
1+ f +m− f sin2 φ

) h
a
+3
(

h
a

)2
]
. (8)

Here, h is ellipsoidal height of the point. The value variables in recent formula have
been gained from ICGEM website. It is worth mentioning that the WGS84 reference
ellipsoid has been employed in all calculations. And also,

δgBO =
δgBO

P +δgBO
P0

2
, (9)

δgBO
P = gP +0.3086h−0.1119h− γP0 , (10)

where h is ellipsoidal height (gained from mentioned site) and γP0 has already been
calculated.

4. The right angle prism formula

Considering Figure 3, gravity potential of right angle prism of ρ uniform density while
dimension of x1 ≤ x ≤ x2, y1 ≤ y ≤ y2, z1 ≤ z ≤ z2 and equals to (Nagi et al., 2000):

u(p) =
∫ dxdydz

r
=

x2∫
x1

y2∫
y1

z2∫
z1

dxdydz
r

, (11)

where,
r(x,y,z) =

√
x2 + y2 + z2 . (12)

Fig. 3. Right angle prism model
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The potential of prism at point P is equal to:

U(P) = u(P)Gρ . (13)

Here, G denotes to universal gravitational constant. Integrating equation (10) concludes
as follows:

u(p) =
∥∥∥xyLn(z+ r)+ yzLn(x+ r)+ zxLn(y+ r)−

x2

2
tan−1 yz

xr
− y2

2
tan−1 zx

yr
− z2

2
tan−1 xy

zr

∣∣∣∣ x2
x1

∣∣∣∣ y2
y1

∣∣∣∣ z2
z1

. (14)

5. Correlation coefficient

Correlation coefficient is considered as a measure used to determine association between
two variables. The correlation coefficient illustrates the strength and type of relationship
(straight or reverse). This coefficient ranges from 1 to −1 and in the case of nonlinear
relationship between two variables, it is equal to 0. The coefficient for x and y series is
computed using following equation:

correl(x,y) =

n

∑
i=1

(x− x)(y− y)√
n

∑
i=1

(x− x)2
n

∑
i=1

(y− y)2

. (15)

Here, x and y are the average of x and y series respectively. In this study, x and y are
the separation between geoid and quasigeoid estimated by the two mentioned strategies
on GPS stations. We consider the customary GPS/Levelling method as a criterion and
apply the correlation coefficient as a statistical method to show the estimated separa-
tions from both methods how are similar and to interpret qualitatively the increasing and
decreasing trend in the both series results.

The range of the correlation coefficient values is between −1 to 1. We have classified
this range to four categories as is presented in table 1. To express the correlation value
between two data set in percent, determination coefficient is used, as:

q = correl2 ×100. (16)

Table 1. Qualitative description of correlation coefficient ranges. There is no defined relationship at point 0

Correlation range 1 to 0.5 0.5 to 0 0 to −0.5 −0.5 to −1

Qualitative description Straight and good Straight and mean Reverse and weak Reverse and bad
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6. Areas under investigation

We have chosen three area for the investigation in Iran as are located in Lout dessert,
Zagros ranges and Khuzestan plain where these districts are shown by the red rectangles
in Figure 4. The information of the GPS/Levelling points including the observed gravity,
ellipsoidal height, orthometric height and so on, have been provided from the National
Cartographic Center of Iran. Figures 5, 6 and 7 indicate the GPS/Levelling benchmarks
in the specified district in Lout dessert, Zagros ranges and Khuzestan plain, respectively.

Fig. 4. The three areas under study (Lout desert, Zagros, Khuzestan) in Iran as specified
with the red rectangular which including GPS/Levelling stations

Fig. 5. Enlarged the area under study in Lout desert as shown in Fig. 4. Green points refer
to GPS/Levelling benchmark while the points circled in red are the determined ones in
order to measure correlation coefficient between Sjöberg method and GPS/Levelling data
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In order to compare geoid-to-quasigeoid separation estimated by the GPS/Levelling and
Sjöberg techniques, We considered 12 GPS station points in the Lout and Zagros and
10 GPS station points in the Khuzestan.

Fig. 6. Enlarged the under study area in Zagros as shown in Fig. 4. Orange
points refer to GPS/Levelling benchmark while the points circled in green are
the determined ones in order to measure correlation coefficient between Sjöberg

method and GPS/Levelling data

Fig. 7. Enlarged the under study area in Khuzestan as shown in Fig. 4. Purple
points refer to GPS/Levelling benchmark while the points circled in green are
the determined ones in order to measure correlation coefficient between Sjöberg

method and GPS/Levelling data

7. Results

The inferred geoid-to-quasigeoid separation from the both approaches have been sum-
marized in tables 2, 3 and 4. The correlation coefficient and determination coefficient be-
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tween the obtained geoid-to-quasigeoid separations on the evaluation points were com-
puted (Table 5). The results show a straight correlation between the computed separa-
tions using the both methods for the areas under study.

Table 2. Geoid – Quasigeoid separation computed using Sjöberg method and GPS/Levelling for different
points plotted in Figure 5

Point number (N−ζ )Gps/Levelling (m) (N−ζ )Sjöberg (m)

1 −0.253485 −0.304652

2 −0.217359 −0.184835

3 −0.153753 −0.207485

4 −0.137416 −0.106248

5 −0.124352 −0.162744

6 −0.113693 −0.088462

7 −0.126352 −0.161462

8 −0.133641 −0.113624

9 −0.108525 −0.155273

10 −0.095735 −0.145374

11 −0.082749 −0.134726

12 −0.093627 −0.153725

Table 3. Geoid – Quasigeoid separation computed using Sjöberg and GPS/Levelling for different points
plotted in Figure 6

Point number (N−ζ )Gps/Levelling (m) (N−ζ )Sjöberg (m)

1 −0.335275 −0.426273

2 −0.314527 −0.287344

3 −0.267351 −0.335237

4 −0.275631 −0.237463

5 −0.347583 −0.382631

6 −0.353784 −0.277846

7 −0.342693 −0.235735

8 −0.326482 −0.375367

9 −0.257465 −0.313517

10 −0.326835 −0.406427

11 −0.315354 −0.266378

12 −0.338134 −0.427316



Determination of correlation coefficient between geoid-to-quasigeoid separation . . . 189

Table 4. Geoid – Quasigeoid separation computed using Sjöberg and GPS/Levelling for different points
shown in Figure 7

Point number (N−ζ )Gps/Levelling (m) (N−ζ )Sjöberg (m)

1 −0.001637 −0.003261

2 −0.001426 −0.000146

3 −0.000835 −0.000343

4 −0.000004 −0.000207

5 0.000024 0.000058

6 0.000375 0.000863

7 0.000024 0.000045

8 −0.000383 −0.000172

9 −0.000601 −0.000864

10 −0.000846 −0.001159

Table 5. Coefficient of correlation and determination computed for Lout desert, Zagros and Khuzestan

Region

Parameter Lout desert Zagros Khuzestan

Correlation coefficient 0.754 0.497 0.659

Determination coefficient 60 25 43.4

Qualitative description Straight and good Straight and mean Straight and good

Accordingly, all three areas under evaluation including Lout, Zagros and Khuzes-
tan have been divided to networks of points of 0.07 degree interval and the amount of
geoid-to-quasigeoid separation has been calculated using described method based on the
Sjöberg’s equation.

Figures 8a, 9a and 10a illustrate the maps of the geoid-to-quasigeoid separation re-
sulting from Sjöberg method, as the position of the computational points are shown over
them and Figures 8b, 9b and 10b show the DTM maps related to Lout, Zagros and
Khuzestan, respectively. The recent Figures demonstrate that the higher area have the
less geoid-to-quasigeoid separation, i.e. N−ζ and vice versa. This matter is specially
visible in case of Lout and Zagros. For more accurate investigation, the topographic
height and geoid-to-quasigeoid separation N−ζ data with the same coordinates were
extracted with a interval 0.02 degree along the profiles AB (see Figures 8b, 9b and 10b),
as are shown in Figure 11a, b and c and can be found that the relation between N−ζ and
topographic height is not linear, i.e. correlation is negative.
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a) b)

Fig. 8. a) Geoid-to-Quasigeoid separation map computed using Sjöberg method for Lout desert.
The position of the computational points have been specified over the map. b) Topographic map

of Lout desert. The location and trend of the profile AB has been shown

a) b)

Fig. 9. a) Geoid-to-Quasigeoid separation map computed using Sjöberg method for Zagros region.
The position of the computational points have been specified over the map. b) Topographic map of

Zagros area. The location and trend of the profile AB has been shown

a) b)

Fig. 10. a) Geoid-to-Quasigeoid separation map computed using Sjöberg method for Khuzestan
province. The position of the computational points have been specified over the map. b) Topographic

map of Khuzestan province. The location and trend of the profile AB has been shown
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a)

b)

c)

Fig. 11. The variations of the topographic height and geoid-to-quasigeoid separation N−ζ along the profiles
AB for: a) Lout desert, b) Zagros region and c) Khuzestan province

8. Conclusion

Our main aims in this study are propounding a new approach for computing the topo-
graphic potentials at the geoid and surface points in the Sjöberg’s equation and using
ICGEM in determining the required components and comparing the separations evalu-
ated by the both explained techniques.

In this paper, Sjöberg’s equation was employed for estimating the geoid-to-quasi-
geoid separation as the requisite data is gotten from ICGEM website. Also, the separa-
tions obtained from GPS/Levelling prevalent approach was consider as a criterion for
comparison. Regarding the evaluated correlation coefficient and determination coeffi-
cient values for the areas under study brought in table 5, the Sjöberg method resulted
show an acceptable findings especially in the even parts, i.e. Lout desert and Khuzes-
tan flatland where the computed correlation coefficient of 0.754 and 0.659 for the these
districts indicate a straight and good correlation between the performance of the two
methods. The amount of the correlation coefficient for the Zagros district is given as
0.497 which can be interpreted as a straight and mean correlation.

The maximum and minimum difference between the two strategies obtained for Lout
desert is 0.060098 and 0.020017 m, for Zagros is 0.106958 and 0.027183 m and for
Khuzestan is 0.001624 and 0.000021 respectively.

Although the satellite data obtained from ICGEM has been applied to solve Sjöberg’s
equation, the results have enough and acceptable precise. Therefore, to evaluate geoid-
to-quasigeoid separation in areas without GPS/Levelling and gravity field data, the eval-
uations provided by Sjöberg’s equation based on the existing information in the ICGEM
website data can be useful and reliable.
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