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Abstract: Land surveyors, photogrammetrists, remote sensing engineers and profession-
als in the Earth sciences are often faced with the task of transferring coordinates from
one geodetic datum into another to serve their desired purpose. The essence is to create
compatibility between data related to different geodetic reference frames for geospatial ap-
plications. Strictly speaking, conventional techniques of conformal, affine and projective
transformation models are mostly used to accomplish such task. With developing countries
like Ghana where there is no immediate plans to establish geocentric datum and still rely
on the astro-geodetic datums as it national mapping reference surface, there is the urgent
need to explore the suitability of other transformation methods. In this study, an effort has
been made to explore the proficiency of the Extreme Learning Machine (ELM) as a novel
alternative coordinate transformation method. The proposed ELM approach was applied to
data found in the Ghana geodetic reference network. The ELM transformation result has
been analysed and compared with benchmark methods of backpropagation neural network
(BPNN), radial basis function neural network (RBFNN), two-dimensional (2D) affine and
2D conformal. The overall study results indicate that the ELM can produce comparable
transformation results to the widely used BPNN and RBFNN, but better than the 2D affine
and 2D conformal. The results produced by ELM has demonstrated it as a promising tool
for coordinate transformation in Ghana.

Keywords: coordinate transformation, extreme learning machine, backpropagation neu-
ral network, radial basis function neural network, geodetic datum



322 Yao Yevenyo Ziggah, Yakubu Issaka, Prosper Basommi Laari, Zhenyang Hui

1. Introduction

Unifying data related to different geodetic datums is a geodetically sensitive means to
create data compatibility and to reduce potential errors due to different datums posi-
tion, size and shape. This data unification is usually accomplished through the process
of coordinate transformation. This transformation is highly significant to Earth resource
professionals because natural and man-made features are usually represented geograph-
ically by positional information. For example, exploration and extraction of natural re-
sources such as gold, bauxite, manganese, diamond, oil and natural gas require the use of
coordinates to identify their locations. Therefore, it is quite clear that accurate positional
information should be provided for proper planning, management and decision making.
Hence, the essence of performing coordinate transformation is to help integrate data
obtained in the national and global coordinate systems (Konakoğlu and Gökalp, 2016)
thereby enabling Earth resource professionals to accurately use coordinates required in
a specific datum.

So far, various techniques have been reported in the literature for performing coor-
dinate transformation in both 2D and 3D, respectively. The present study is focussed on
the 2D coordinate transformation since the coordinate system used in Ghana for survey-
ing and mapping purposes is a 2D projected grid coordinate (Easting, Northing) based
on the Transverse Mercator 1◦ NW (Ayer and Fosu, 2008; Mugnier, 2000). Moreover,
the two local geodetic datums namely Accra 1929 and Leigon 1977 are being used con-
currently for geodetic tasks even though the Accra 1929 datum is the official system of
reference recommended by the Ghana Survey and Mapping Division (Ayer and Fosu,
2008). Hence, the field practitioners in Ghana are required to transform the Leigon 1977
datum coordinates into the Accra 1929 datum. Furthermore, with Ghana having no im-
mediate plans to establish geocentric datum and still rely on the two aforementioned
astro-geodetic datums for its surveying and mapping activities, there is the pressing need
to assess the capability of other coordinate transformation procedures. These assertions
made here have also been opined by several researchers in Ghana (Poku-Gyamfi, 2009;
Dzidefo, 2011; Kotzev, 2013). It is therefore necessary to apply and test the potential of
alternative methods applicable to transform 2D coordinates between the Accra 1929 and
Legion 1977 datums in Ghana.

Generally, in the 2D coordinate transformation, three conventional techniques are
usually applied. These are conformal, affine and projective transformation models, re-
spectively (Ghilani, 2010). Several studies have been carried out regarding the efficiency
of these classical methods. Authors, for example, Al-Ruzouq and Dimitrova (2006) eval-
uated the performance of 2D-conformal, affine and projective techniques for merging
mismatched old cadastral maps prepared at different scales in the early thirties and cur-
rent ground truths by determining transformation parameters for cadastral mapping in
Jordan. Here, the transformation techniques were applied to match coordinates from
IKONOS satellite image and scanned cadastral maps with orthophoto points. The ap-
plicability of the transformation techniques to different relief was also tested. It was
proposed that in flat areas the 2D affine model was better, while the 2D projective
model was more appropriate for hilly areas. The 2D conformal model, on the other
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hand, was recommended for less demanding accuracy geodetic applications in Jordan.
Deakin (2007) provided the theoretical basis and application of 2D conformal model for
cadastral surveying purposes and determination of the transformation parameters using
least squares adjustment technique. The successes of 2D affine model applied to ordi-
nary least squares, least absolute value and total least squares procedures have also been
demonstrated in Sisman (2014). The essence of the study was to apply different adjust-
ment procedures to the 2D affine model for transforming the analogue cadastral maps
produced in 1990 using the conventional surveying technique for the Samsun Province
into the Turkish national coordinate system. The presented analyses in Sisman (2014)
revealed that the ordinary least squares method was more appropriate if the data points
is free from blunders and systematic errors. However, for the determination of erroneous
measurements, the author suggested that the least absolute value must first be applied
before using the least squares method. In Fotiou and Kaltsikis (2016), a modified mixed
model based on the Gauss Helmert model of the 2D conformal model was presented. It
was observed that the use of the modified mixed model is useful in instances where the
co-located points have different precision. With regards to equal observation precision,
the modified mixed model and Gauss Helmert model provided identical transformation
results as those of the traditional Gaussian mixture model. Elsewhere, conversion of
the physical constraints into mathematical notations and to use constrained total least
squares to solve the problem of 2D affine transformation has been presented (Zhang et
al., 2016). In Dönmez and Tunc (2016), the 2D conformal and first order polynomial
model was applied to transform orthophoto and cadastral map of the Kagithane District
in Istanbul, Turkey. The results revealed that both transformation methods produced reli-
able and accurate transformed coordinate values. Based on the results obtained, Dönmez
and Tunc (2016) concluded that cadastral maps could be used as base maps for aerial
orthophotos. It is quite logical to state here that the use of the conventional 2D coordi-
nate transformation techniques for geodetic applications is still an on-going research in
geodetic sciences.

In the last few years, several soft computing methods have been used as alternative
to the aforementioned conventional techniques to perform coordinate transformation. Of
particular significance to mention, the artificial neural network (ANN) algorithms have
been accepted as a reliable tool for research due its function approximation, clustering
and pattern recognition abilities. Generally, ANN has been the most widely used meth-
ods for both 2D and 3D coordinate transformation. The reason is that several authors
have extensively investigated the capability and applicability of the radial basis function
neural network (RBFNN) as alternative to the traditional methods. Their obtained results
have been compared to the conventional methods such as the three-parameter, standard
Molodensky equation, Bursa-Wolf, Molodensky-Badekas, 2D conformal model and 2D
Affine, respectively (Barsi, 2001; Tierra et al., 2008, 2009; Gullu, 2010; Gullu et al.,
2011; Konakoğlu et al., 2016). Similarly, the back propagation neural network (BPNN)
has also been tested and compared in the same fashion (Zaletnyik, 2004; Lao-Sheng
and Yi-Jin, 2006; Turgut, 2010; Yilmaz and Gullu, 2012; Mihalache, 2012; Tierra and
Romero, 2014; Konakoğlu et al., 2016; Konakoğlu and Gökalp, 2016). The general con-
clusions gathered from these studies indicate that the RBFNN and BPNN calibrated
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correctly on the model construction dataset (training) and predicted the test coordinates
with better accuracy than the conventional transformation methods. The supervised train-
ing of the RBFNN and BPNN was carried out in those studies using co-located points
in both the input and output systems. It was demonstrated that using the ANN eliminate
the estimation of transformation parameters because a single training was enough for de-
veloping ANN transformation model. Therefore, a well-structured ANN would produce
results that could be used for practical surveying and mapping purposes.

It must be acknowledged that an investigation into a genetic-based method using
symbolic regression for directly transforming GPS coordinates to 2D coordinates has
also been studied (Wu et al., 2008). The proposed approach could statistically reduce
inaccuracy associated with data related to the local reference ellipsoid as well as the
GPS coordinates used. However, a major shortcoming of the genetic-based approach
is slow convergence in the training phase even though the coordinates could be cal-
culated straightforwardly once a regression formula is formed. In addition, re-training
is required when new untrained data are introduced for a new area. This phenomenon
has been attributed to the fact that the genetic-based approach does not support incre-
mental regression. A preliminary study on the concept of the neuro-fuzzy neural net-
work based on the Takagi-Sugeno-Kang system for coordinate transformation has also
been explored of which encouraging results have been reported (Gil and Mrówczyńska,
2012). Recently, ElSayed and Ali (2016) applied fuzzy multiple linear regression to
assess its effect on total least squares and ordinary least squares in coordinate transfor-
mation process. The authors considered the weighted and unweighted conditions of ap-
plying the least squares methods. Improved transformation result was reported with the
fuzzy approach which eliminates the need to accurately assign weight and confidence
to the data.

From the above, it is obvious that soft computing algorithms have situated them-
selves as one of the present and most proficient methods that can be utilized as alterna-
tives to other coordinate transformation methods. Although ANN techniques have exten-
sively and successfully been utilised in coordinate transformation, the methods exhibit
some practical drawbacks. Firstly, because ANN uses the gradient-based algorithms,
the speed of learning is generally slower and thus computationally expensive (Huang et
al., 2006a). Moreover, the ANN require setting up of several training parameters that
are iteratively tuned which sometimes may result in converging in local minima rather
than global minima (Huang et al., 2006a). As a means to overcome these defects, this
study applied the extreme learning machine (ELM), which is a moderately new learning
paradigm introduced by Huang et al. (2006b) for single-hidden-layer feedforward neural
network. It must be noted that the ELM system process information in the hidden layer
and the hidden nodes are the neurons found in the hidden layer.

ELM has been shown to offer some advantages over the ANN in terms of higher
computational speed, global optimum realisation, good generalisation performance and
less manual interference in the model formulation process (Huang and Babri, 1998;
Huang et al., 2006b, 2015). It is noteworthy that the ELM have found applications in
a number of geoscientific domains not limited to, landslide studies (Lian et al., 2014;
Huang et al., 2017), change detection (Pal, 2009; Chang et al., 2010), meteorological



2D Cadastral Coordinate Transformation 325

studies (Mohammadi, 2015; Lazarevska, 2016), Earth orientation parameters estimation
(Lei et al., 2015) and hydrological studies (Tiwari et al., 2016; Deo and Sahin, 2016;
Deo et al., 2017).

In spite of the fact that several scholars have applied the ELM model in recent years,
performing coordinate transformation using this new robust technique to offer increased
accuracy and reliability have not been captured in the literature. In line with that, the
present study applied the ELM algorithm for the first time to perform coordinate trans-
formation. The main objective of this study is to investigate the viability of utilising an
ELM algorithm in coordinate transformation. Moreover, it is aimed at exploiting the mer-
its of this method to perform cadastral coordinate transformation from the Leigon 1977
datum to the official Accra 1929 datum as a case study in Ghana geodetic reference net-
work. Recent studies in Ghana have shown that the benchmarks methods of BPNN and
RBFNN have been applied to carry out coordinate transformation between Accra 1929
and Leigon 1977 datums (Ziggah et al., 2016; Kumi-Boateng and Ziggah, 2017). There-
fore, to ascertain the proficiency of the ELM in this study, its resulting performance was
compared with the BPNN, RBFNN and two classical transformation methods (2D affine
and 2D conformal). Usage of the proposed ELM approach could meet the accuracy stan-
dards required for cadastral applications in Ghana. Additionally, the results presented in
this study have shown that ELM is very useful and can be an outstanding supplement to
other cadastral coordinate transformation methods utilised in Ghana.

In the next section, the study area and data utilised are described. Section 3 briefly
presents the theoretical concept of the methods applied and how the models were formu-
lated. Section 4 gives the statistical performance indicators used to evaluate the results
produced by the various methods, while Section 5 discusses the results. The study ends
with conclusions in Section 6, respectively.

2. Study area and data description

The entire study was focused on the Ghana geodetic reference network (Figure 1). Ghana
is a West African country that shares border in the West with Ivory Coast, Togo to the
East, Burkina Faso to the North and Gulf of Guinea to the South. Its total land area is
approximately 238,540 km2 (Fosu et al., 2006) and lies between latitudes 4◦ 30′ N and
11◦ N, and between longitudes 3◦ W and 1◦ E, respectively (Mugnier, 2000).

Two national horizontal geodetic datums, the Accra datum 1929 and Leigon da-
tum 1977 are being utilised concurrently by geodetic practitioners in Ghana (Ayer
and Fosu, 2008; Mugnier, 2000; Poku-Gyamfi, 2009). The Accra 1929 datum is the
local realisation of the War Office 1926 ellipsoid, while the Leigon 1977 datum is
the realisation of the Clark 1880 (modified) ellipsoid (Ayer and Fosu, 2008; Ayer,
2008). The ellipsoid properties of the War Office 1926 include semi-major axis (a) =
6378299.99899832 m and semi-minor axis (b) = 6356751.68824042 m. However, the
Clark 1880 (modified) has the semi-major axis (a) = 6378249.145 m and semi-minor
axis (b) = 6356514.870 m. The Ghana national mapping coordinate system is a 2D
projected grid coordinates of Easting and Northing based on the Transverse Mercator
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Fig. 1. Study Area: distribution of data points

1◦ NW. That is, Ghana’s adopted Transverse Mercator projection has longitude 1◦ 00′ W
as its central meridian having latitude 4◦ 40′ N. In order to avoid negative coordinates,
274319.736 m has been added to all Y coordinates that served as the false Easting, while
the false Northing has been set to zero. A scale factor of 0.99975 is used at the central
meridian so that the scale distortion exceeds the projection values only at the extreme
ends of the country (Mugnier, 2000).

In the present study, 46 co-located control points (Figure 1) in projected grid coor-
dinates for the Accra 1929 and Leigon 1977 datums have been provided by the Ghana
Survey and Mapping Division of Lands Commission from the on-going Land Admin-
istration Project funded by the World Bank. These dataset constitute the national local
coordinates of the on-going nationwide Global Positioning System (GPS) reference net-
work establishment. The area coverage (five regions) of the 46 co-located control points
(Figure 1) constitute the completed first phase of the Land Administration Project.

3. Methods

The following sections give a brief account on the theoretical concepts of the various
techniques applied in this study.
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3.1. Extreme learning machine

ELM introduced by Huang et al. (2006a) is a new training algorithm for single-hidden-
layer feedforward neural network (SLFN) that can be applied to solve pattern recogni-
tion, clustering and function estimation related problems. This algorithm has the ability
to randomly select the hidden and input layer neurons connecting weights as well as
the biases of the hidden layer based on the condition that the hidden layer activation
function is infinitely differentiable. Unlike the backpropagation learning algorithm, the
randomly assigned weights and biases in the ELM remain the same during the training
process. Moreover, in the ELM model development process only the number of hidden
layer neurons is needed to be set by the modeller. Hence, the ELM algorithm trains ten
times faster than the backpropagation neural network (Huang et al., 2006; Zhang et al.,
2013; Deo and Sahin, 2016).

Given a set of training examples D =
{
(xi,y j) | i = 1,2, . . . ,n

}
with input data

xi = [xi1, . . . ,xin]
T ∈ Rn and expected output values y j = [y j1, . . . ,y jm]

T ∈ Rm, where Rn

is the n-dimensional vector space and Rm one-dimensional output vector space. If the
SLFN can successfully approximate the training samples D with zero error, then the
output y j of the ELM for the generalised SLFN can be expressed mathematically in
Eq. (1) as

y j =
Q

∑
i=1

βig(wi,bi,x j), j = 1, . . . ,n, (1)

where Q denotes the hidden layer nodes, g(x) is the activation function, wi is the in-
terconnecting weight between the i-th hidden node and the input nodes. bi indicate the
bias associated with the i-th hidden node and βi is the weight vector connecting the i-
th hidden node and the output node. Representing Eq. (1) in a compact form will give
Eq. (2).

Hβ = Y, (2)

where H is the output matrix of the hidden layer, β (defined in Eq. (1)) and Y is the
desired target matrix of the training data. The mathematical notations for H, β and Y are
given by Eqs. (3), (4) and (5), respectively. It should be noted that the i-th column of the
H matrix (Eq. (3)) is the i-th output of the hidden node that matches the inputs x1, x2,
x3, . . . , xn.

H(w1, . . . ,wL, bi, . . . ,bL, x1, . . . ,xn) =

 g(w1,b1,x1) . . . g(wL,bL,x1)
... . . .

...
g(w1,b1,xn) . . . g(wL,bL,xn)


n×L

, (3)

β =

 β T
1
...

β T
L


L×m

, (4)
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Y =

 yT
1
...

yT
n


n×m

. (5)

Consequently, training the SLFN becomes computing the output weights β̂ connect-
ing the hidden layer to the output layer by finding the minimum norm least squares
solution of Eq. (2). Hence, Eq. (2) becomes Eq. (6) for β̂ .

β̂ = H+Y. (6)

Here, H+ denotes Moore-Penrose generalised inverse of the hidden layer output
matrix H and Y = [y1, . . . ,yn]

T .
The procedural framework of the ELM algorithm can be summarised as follows:
i. Input weights wi and hidden layer threshold bi should be randomly assigned based

on the input data, activation function and number of hidden neurons.
ii. Compute the output matrix H for the hidden layer.

iii. Determine the output layer weight β̂ expressed in Eq. (6).

3.2. Back propagation neural network

The present study applied the most widely used supervised BPNN which allows for the
iterative fine-tuning of weights to improve the prediction accuracy of a model (Rumel-
hart et al., 1986). The BPNN, as utilised in this study, is a three-layered network (Fig-
ure 2) where (X1,X2,X3, . . . ,Xi) and (Y1,Y2,Y3, . . . ,YK) are the input and target training
examples.

Fig. 2. BPNN architecture

Based on the theoretical work of Hornik et al. (1986), defining one hidden layer
is enough to proficiently approximate any discrete and continuous nonlinear function
with the desired accuracy. Therefore, the present study applied one hidden layer in the



2D Cadastral Coordinate Transformation 329

BPNN structure. The optimum number of hidden neurons was determined by sequential
trial and error procedure by monitoring the training and testing stages mean squared
error values and making sound judgments. These hidden neurons allow the network to
capture the pattern in the data and map the nonlinearity between input and output data
sets (Swadi, 2010).

The computational procedures of the BPNN model are described as follows. First,
the training input data (X1,X2,X3, . . . ,Xi) is received from the external environment by
the input layer. This is then sent directly into the network through the hidden layer
nodes. In the hidden layer, the inputs data are multiplied by their respective weights
and summed together with a bias C. Equation (7) illustrates the calculation process in
the hidden layer node j.

network j =C j +∑Wji Xi , i = 1,2, . . . ,m, j = 1,2, . . . ,s, (7)

where Xi represents the input data of the unit i, Wji is the weight connecting the input
layer unit i to the hidden unit j. The output of the hidden layer unit j denoted as H j is
given by Eq. (8).

H j = t f (network j), (8)

where tf denote the transfer function. This study applied the hyperbolic tangent transfer
function (Eq. (9)) (Yonaba et al., 2010) in the hidden layer.

f (x) = tanh(x) =
2

1+ e−2x −1. (9)

The output layer then receives the outputs of the hidden layer units H j as its input.
Here, the output layer computes the networkh given by Eq. (10) as

networkh =Ch +∑αh jH j , j = 1, 2, . . . ,s, h = 1, (10)

where networkh is the network value for the output unit h, αh j is the weight linking the
hidden unit j to the output unit h and H j is the output of the hidden unit j, which is input
for the output unit h. The output unit then applies a transfer function f to the networkh.
The linear transfer function was used in the output layer. The output layer unit h results
can be defined in Eq. (11) as

Yh = f
(

Ch +∑αh jG
(
C j +∑WjiXi

))
. (11)

If the forecasted results from Eq. (11) differ from the expected outputs, an error is
computed and reverted through the network from the output layer to the input layer. The
main objective is to minimize the prediction error by changing the connection weights
(W and α) (Eq. (11)) using a learning rule. It is worth mentioning that during the learn-
ing phase the bias input for the hidden and output layer neurons is adjusted like the
other weights values. Due to the slowness to reach convergence, coupled with ineffi-
ciency and lack of robustness by the gradient descent algorithm when training a mul-
tilayer network, several authors have resorted to the Levenberg–Marquardt algorithm
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(Zounemat-Kermani, 2012; Afzali, 2012). This is because the Levenberg–Marquardt al-
gorithm has the capability to overcome the shortcomings of the gradient descent method.
Hence, this study applied the Levenberg–Marquardt algorithm in the multilayer network.
This algorithm can be viewed as a combination of steepest descent algorithm and the
Gauss–Newton optimization technique (Hao and Wilamowski, 2011). Its mathematical
representation is given in Eq. (12).

L = JT J+V I, (12)

where: J is the Jacobian matrix containing the derivatives of each error to each weight,
V is a scalar called the combination coefficient and I is the identity matrix. The update
rule of Levenberg–Marquardt algorithm can be defined in Eq. (13) as:

∆W =
(
JT J+V I

)−1
JE, (13)

where: E is an error vector. In the course of the training process, the Levenberg–
Marquardt algorithm switches between the steepest descent algorithm and the Gauss–
Newton algorithm. When the scalar value V is close to zero or small, Eq. (13) approaches
the update rule of the Gauss–Newton algorithm (Hao and Wilamowski, 2011) written in
Eq. (14) as

∆W =
(
JT J
)−1

JE. (14)

In contrast, when the scalar value V is very large, Eq. (13) approximate to the steepest
descent algorithm given by Eq. (15).

∆w = βg, (15)

where β is the learning constant and g being the gradient expressed in Eq. (16).

g =
∂E(X ,w)

∂w
=

[
∂E
∂w1

∂E
∂w2

· · · ∂E
∂wN

]T

. (16)

The network will stop the iteration process when there is no further improvement in
the estimated errors.

3.3. Radial basis function neural network

RBFNN is a feed-forward network that utilises the supervised learning technique for
solving function approximation and classification related problems (Broomhead and
Lowe, 1988; Marwala, 2013). The network is made up of input, hidden and output
layers which are directly connected together. The input and output units comprise
of the explanatory and predicted response variable. The RBFNN uses a single hid-
den layer which applies the radial basis transfer function to approximate the training
data in a high-dimensional space with some precision (Aharkava, 2010). Figure 3 de-
picts a simple RBFNN architecture of inputs (X1,X2,X3, . . . ,XN), radial basis functions
(ϕ1,ϕ2, . . . ,ϕM), weights (W1,W2, . . . ,WN) and output (Y ), respectively.
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Fig. 3. RBFNN scheme

Given a set of input vector X = {x1,x2, . . . ,xN} ∈ RN and corresponding output
Y = {y1,y2, . . . ,yk} ∈ R, the RBFNN task is to produce a function say g(x) that can suf-
ficiently map the input–output relationship of the dataset. The RBFNN model (Bishop,
1995; Marwala, 2013) has been represented mathematically in Eq. (17).

yk = gk(x) =
M

∑
j=1

w jkϕ j(x), k = 1,2,3, . . . ,M. (17)

Here, yk ∈ R is the predicted outcome of the network based on X (input vectors), M
represents the total number of hidden neurons, w jk are the output weights corresponding
to the link between a hidden node and an output node, ϕ j(.) is the j-th nonlinear transfer
function. The number of hidden layer neurons in the RBFNN corresponds to the number
of radial basis function (RBF) applied during the training phase of the network. It is
therefore essential to select an adequate number of RBFs such that the centres of these
basis functions can correctly map the surface of the input space (Yih-Jiuan, 1998). The
present study chose and implemented the Gaussian activation function (Eq. (18)) in the
hidden layer chamber.

ϕ j = exp

(
−
∥∥X −C j

∥∥2

2σ 2
j

)
. (18)

Here, C j = {c1, c2, . . . ,cN} ∈ RN represents the centre of the j-th radial basis func-
tion ϕ j, ∥ ∥ denotes a norm on RN which is usually considered to be the Euclidean
distance and σ is the width parameter related to the radial basis functions ϕ j. The reason
for applying the Gaussian transfer function lies in its ability to adapt well to unseen data
without substantially changing the results produced by the input data that have previ-
ously been trained (Aharkava, 2010).

Consequently, determining a suitable RBFNN model (Eq. (17)) comprise of a two-
step procedure. The first step involves the selection of the basis function centres C j
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(Eq. (18)) and the width parameter σ (Eq. (18)). The second procedure entails calcu-
lating the weights values. As explained by Marwala (2013), the output weights and the
centres of the basis function can be determined successfully during training by using
suitable types of training algorithms including, among others, clustering techniques, gra-
dient descent and least squares algorithm. This study adopted the least squares approach.
The least squares technique automatically determines the number of centres insofar as
a fixed value of the width parameter of the radial basis function is known. Here, the
least squares approach is used as a clustering technique to select centres from a subset
of the data set. Detailed description on the least squares algorithm for determining the
centres of the radial basis function can be found in (Yih-Jiuan, 1998; Orr, 1996; Chen
et al., 1991). After determining the centres, the next step is to calculate the intercon-
nected weights between the hidden and output layers. This is normally accomplished
by applying the pseudo-inverse least squares method popularly referred to as Moore–
Penrose pseudo inverse (Moore, 1920; Penrose, 1955). The general expression of the
weight vector W (Marwala, 2013) is given by Eq. (19) as

Wk× j =
(
ϕm×k ϕ T

m×k +λ Im×m
)−1 ϕ TYm× j , (19)

where ϕm×k is the hidden layer transfer function matrix, Ym× j is the output matrix with m
depicting the training samples, k signifying the number of hidden neurons, I the identity
matrix and λ the regularization parameter. Equation (19) reduces to Eq. (20) when there
is no regularisation parameter.

Wk× j =
(
ϕm×k ϕ T

m×k
)−1 ϕ TYm× j . (20)

3.4. 2D conformal transformation model

The 2D conformal model consists of four parameters that needed to be determined. The
parameters include two translations, a scale factor and rotation. The translation parame-
ters indicate the extent of variation between the origins of the source and target datums.
The scale factor creates equal dimension in the reference axes. The rotational parameter
depicts the parallelism of the source and target reference axes. The 2D conformal model
was applied to transform 2D coordinates from the Leigon 1977 datum to Accra 1929 da-
tum in the Ghana geodetic reference network. The 2D conformal model (Ghilani, 2010)
could be expressed in Eq. (21) as

aEclark −bNclark + c = Ewar

bEclark +aNclark +d = Nwar
, (21)

where a = µ cosβ ; b = µ sinβ ; c = Tx; d = Ty; β = tan−1
(

b
a

)
; µ =

a
cosβ

.

Here a, b, c and d are the unknown transformation parameters to be estimated,
(Tx, Ty) are the translations, β is the rotation, µ is the scale factor, (Eclark, Nclark) and
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(Nwar, Nwar) are the source and target datum coordinates related to the Leigon 1977 and
Accra 1929 datums, respectively. In order to calculate the transformation parameters,
Eq. (21) was solved using least squares by expressing it into matrix form as indicated in
Eq. (22).

BX +V = L, (22)

where X is the vector of the unknown transformation parameters to be determined, B is
the coefficient matrix of X , V is the residual and L is the vector of the observation. The
corresponding matrices of Eq. (22) are given by Eq. (23).

B =


Eclark −Nclark 1 0
Nclark Eclark 0 1

...
...

...
...

Eclarkn −Nclarkn 1 0
Nclarkn Eclarkn 0 1

 , X =


a
b
c
d

, L =


Ewar
Nwar

...
Ewarn

Nwarn

, V =


vEwar

vNwar
...

vEwarn

vNwarn

. (23)

Consequently, X (Eq. (22)) was estimated using Eq. (24).

X = (BT B)−1BT B. (24)

3.5. 2D affine transformation model

The 2D affine model requires the determination of six transformation parameters. The
parameters of this model involves two translations of the origin, a rotation about the ori-
gin, two scale factors (x- and y-direction) and a lack of orthogonality correction between
the x- and y-axes. The 2D affine model was applied to transform 2D coordinates between
the two local geodetic datums used in Ghana. The 2D affine model (Sisman, 2014) can
be defined in Eq. (25) as

aEclark +bNclark + c = Ewar

d Eclark + eNclark + f = Nwar
, (25)

where a = µx × cosα; b =−µy × sinβ ; c = Tx; d = µx × sinα; e = µy × cosβ ; f = Ty.
Here a, b, c, d, e and f are the unknown transformation parameters to be computed.

The rest of the variable terms in Eq. (25) are the same as defined in Eq. (21). To solve
for the unknown transformation parameters X , Eq. (25) was simplified into a similar
matrix form shown in Eq. (23) and the unknown transformation parameters (X) were
then determined using Eq. (24).

3.6. Model construction

The 46 co-located national triangulation points in the two datums which form part of
the completed first phase of Ghana GPS reference network (Figure 1) were used in the
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ELM, BPNN, RBFNN, 2D conformal, and 2D affine methodology. In order to execute
the various methods utilised in this study, the 46 co-located points were partitioned into
training and testing. The training data was used to construct the transformation mod-
els for the various techniques while the testing data was used to independently assess
the competence of the models formed. In this study, 31 co-located points were used for
training and the remaining 15 points were used for testing. The training data was care-
fully selected to cover the entire study area (five regions) as shown in Figure 4. Similarly,
the testing points chosen are evenly distributed across the regions under study (Figure 4).
The essence is to help provide a better understanding on the efficiency and strength of
the various methods when performing 2D coordinate transformation in the study area.
In effect, the extent of application for each developed transformation model within the
five regions of study (Figure 4) will be clearly known. Figure 4 shows a spatial map of
the geographical distributions of the selected training and testing data used in this study.

Fig. 4. Selected training and testing data points

Subsequently, the Easting (E) and Northing (N) in the Leigon 1977 datum denoted
in this study as (Eclark, Nclark) was used as the input data while (Ewar, Nwar) in the Accra
1929 datum was used as the output data. These were the input and ouput data utilised
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to perform the coordinate transformation. The chosen input and output data was then
normalized (Mueller and Hemond, 2013) into the interval [−1, 1] using Eq. (26).

ri = rmin +
(rmax − rmin)× (di −dmin)

(dmax −dmin)
, (26)

where ri represents the normalized data, di is the measured coordinate values, while dmin
and dmax represents the minimum and maximum value of the measured coordinates with
rmax and rmin values set at 1 and −1, respectively.

4. Model adequacy assessments

The quality of the transformation results produced by BPNN, RBFNN, ELM, 2D con-
formal, and 2D affine model was assessed in conformance with the differences between
the measured and the predicted coordinates. To achieve that, the following performance
indices (PI) were used: mean squared error (MSE), standard deviation (SD), horizontal
positional error (HE), minimum error (min error), maximum error (max error) and aver-
age horizontal positional error (MHE). Equations (27) to (31) present their mathematical
notations.

min error = min
(
|Di −Pi|

)n
i=1 , (27)

max error = max
(
|Di −Pi|

)n
i=1 , (28)

HE =
√

(EDi −EPi)
2 +(NDi −NPi)

2, (29)

MHE =
1
n

n

∑
i=1

HEi , (30)

SD =

√
1

n−1

n

∑
i=1

(ei − ē)2. (31)

Here, n is the number of training or testing observation, D and P are the measured
and predicted coordinates produced by the various approaches with i = 1, . . . , n. D and
P is the mean of the measured and predicted coordinates, while e denote the residuals
and ē is the mean of the residuals. (ED, ND) are the measured coordinates in Easting
and Northing and (EP, NP) are the transformed coordinates produced by the various
procedures.

5. Results and discussion

The following sections present the transformation results produced by the various meth-
ods applied in this study.
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5.1. Transformation parameters estimated

The transformation parameters determined using the 31 co-located points (training data)
with their resulting standard deviation (SD) values obtained for the classical 2D affine
and 2D conformal models are presented in Tables 1 and 2, respectively. The essence
for computing the SD values (Tables 1 and 2) here was to ascertain the precision of the
derived transformation parameters by knowing how far the determined parameters vary
from it most probable value (mean).

Table 1. 2D affine model transformation parameters from Leigon datum
to Accra datum (units in metres)

Parameters Values SD

A 1.00001260 2.38E−06

B 1.36E−05 1.36E−06

C 0.5414654 0.6367

D −5.39E−06 2.38E−06

E 1.00001 1.36E−06

F −2.3336951 0.6367

Table 2. 2D conformal model transformation parameters from Leigon
datum to Accra datum (units in metres)

Parameters Values SD

A 1.00001 1.13E−06

B −0.00001 1.13E−06

C 1.56449 0.37599

D −1.10457 0.37599

5.2. Soft computing models formed

In the ANNs (BPNN and RBFNN) model formulation, the plane coordinates
(Eclark, Nclark) were used as the input layer data while (Ewar, Nwar) was used as the
output layer data. In determining the best BPNN and RBFNN structure, the MSE and R
values of all the trained models for each training and testing phase were monitored. The
model that furnished the least MSE and largest R results in the testing dataset was cho-
sen as the optimum BPNN and RBFNN scheme. The optimum trained RBFNN model
consisted of two inputs (Eclark, Nclark), a single hidden layer with 18 neurons and two
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outputs (Ewar, Nwar), that is, [2–18–2]. The BPNN, on the other hand, had [2–8–1] for
predicting Ewar output vector and [2–11–1] for the Nwar output vector. This means that,
the optimum BPNN model for predicting the output Ewar comprised of two inputs with
eight hidden neurons while that for the Nwar consisted of eleven hidden neurons with
two inputs. With regards to the ELM, several activation functions were tested in order to
select the one that produced the best coordinate transformation results. Upon several tri-
als, the sine activation function expressed in Eq. (32) produced the optimal results. The
optimal ELM model structure was [2–24–2]. Thus, two inputs (Eclark, Nclark) having a
single hidden layer with 24 neurons and two outputs (Ewar, Nwar), respectively.

f (x) = sin(x). (32)

5.3. Test results

After successfully building the trained models, the testing data was employed to assess
the veracity of the developed models. This was done by calculating the horizontal posi-
tional error (Eq. (29)). The essence was to quantify and provide a better description of
how much the transformed coordinates given by BPNN, RBFNN, ELM, 2D conformal
and 2D affine deviated from the measured horizontal coordinates.

The computed HE (Eq. (29)) for the various methods are shown in Figure 5 as box-
whisker plots. In Figure 5, the central mark is the horizontal error median, the edges
of the box is the first and third quartile, and the lower and upper whiskers signify the
minimum and maximum error range. The essence of Figure 5 is to provide a graphical
rendition of the summary statistics based on the calculated horizontal residuals achieved
by each method. In Figure 5, it can be observed that the BPNN, RBFNN and ELM
achieved less horizontal positional error variability than the classical 2D affine and 2D

Fig. 5. Horizontal positional error variation based on the testing data
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conformal. It is also evident from Fig. 5 that the interquartile range length for the BPNN,
RBFNN and ELM is smaller than the 2D affine and 2D conformal models. The error dis-
tributions shown in Figure 5 signify that the transformed coordinates produced from the
BPNN, RBFNN and ELM vary marginally from the measured positions. These results
further suggest that the proposed ELM performed generally well to the widely applied
benchmark methods (BPNN and RBFNN) in coordinate transformation.

The strength of BPNN, RBFNN and ELM lies in their ability to learn and adapt
to the intrinsic patterns found in the training and testing data sets. Furthermore, the
ELM, RBFNN and BPNN adaptive computational strategy gives them more flexibility
as compared to the compact nature of the classical transformation equations.

Summary statistics of the horizontal positional errors (Eq. (29)) for the testing data
are given in Table 3.

Table 3. Statistics of the total horizontal positional errors for the testing data (units in metres)

Model MHE Minimum Maximum SD

2D affine 0.799 0.276 1.618 0.357

2D conformal 0.831 0.027 1.519 0.397

BPNN 0.354 0.052 0.995 0.230

RBFNN 0.287 0.095 0.591 0.140

ELM 0.452 0.125 0.930 0.283

In Table 3, the computed MHE (Eq. (30)) results indicate the shifts in average terms
between the transformed horizontal positions and the measured data. According to Ta-
ble 3, the BPNN, RBFNN and ELM model produced an improvement in the average
horizontal positional error as compared to the classical techniques. The minimum and
maximum results shown in Table 3 quantify the range of horizontal positional errors
achieved when the methods were applied in the study area. With respect to the SD val-
ues, it can be inferred that the quality of transformation results from BPNN, RBFNN
and ELM are far better than the 2D affine and 2D conformal methods.

From a practical point of view, the testing results produced by the BPNN, RBFNN
and ELM are logical and related to the legal regulations set by the Ghana Survey and
Mapping Division of Lands Commission for cadastral applications and plan production
(Yakubu and Kumi-Boateng, 2015). This statement is also buttressed by a comparison
between the various transformation precisions (SD values) reported in (Ayer and Fosu,
2008) where 0.354, 0.446 and 0.387 m were achieved by the three-parameter, Bursa–
Wolf and Molodensky–Badekas models, respectively. It must be known here that the
results presented in (Ayer and Fosu, 2008) is the acceptable standard and applicable
transformation results by the Ghana Survey and Mapping Division. Hence, by com-
parison, the proposed ELM can perform coordinate transformations to cadastral survey
accuracies in Ghana. Therefore, the ELM can serve as a reasonable alternative technique
for coordinate transformation in the Ghana geodetic reference network.
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6. Concluding remarks

As a means to ensure proper surveying practices, coordinate transformation has regu-
larly been seen as a fundamental step for matching data related to different datums onto
a common reference surface. Moreover, it is highly essential in developing countries
like Ghana where no geocentric datum has been established and only relies on its astro-
geodetic datums for geospatial works. Due to the limitation of classical transformation
methods which require knowledge of the underlying mathematical function between the
co-located coordinates, field practitioners and decision makers must develop alternative
tools that can also produce realistic transformation results. Therefore, the main contribu-
tions of this study are to evaluate, compare and discuss the capability and applicability
of ELM for the first time in coordinate transformation. The obtained results have been
compared with the widely used BPNN, RBFNN, 2D affine, and 2D conformal tech-
niques. In conformance with the presented results in this study, it was concluded that the
proposed ELM could be used to establish coordinate transformation model that can give
satisfactory and reliable transformed coordinates results in the Ghana geodetic reference
network. Although comparable transformation results were achieved by the RBFNN,
BPNN and ELM in both training and testing stages, the developed ELM method re-
quires lesser computational time compared with the other techniques. Moreover, deter-
mining the network architecture of the ELM is simple and straightforward as compared
with the BPNN and RBFNN methods respectively. Hence, the proposed ELM is eas-
ily applicable. Furthermore, the analyses indicate that the ELM result is appropriate for
cadastral survey applications in Ghana. Therefore, the authors suggest that the proposed
ELM model can be adapted to perform coordinate transformation in the Ghana geodetic
reference network.
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