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Abstract. Models of complex biological systems can be built using different types of Petri nets. Qualitative nets, for example, can be 
successfully used to obtain a model of such a system and on its basis a structure-based analysis can be performed. Time is an important 
factor influencing a whole biological system behaviour and in many cases it should be considered during building a model of such a system. 
In this paper various types of time Petri nets have been described and methods for studying corresponding models have been discussed. In 
particular, an algorithm using time parameters to enhance t-invariants based analysis is proposed. This algorithm allows for calculation of 
the minimal and maximal numbers of tokens (respectively, for an optimistic and pessimistic case) in particular places necessary to assure 
that all transitions from a given t-invariant support will be able to fire. Additionally, to address the problem of the proper assignment of 
time values to transitions, the known methods for calculation and evaluation of such time parameters based on the net structure have also 
been discussed.
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analysis of biological systems but they have a certain specificity 
which causes that direct applications of methods developed to 
the analysis of systems of other types may be insufficient. In 
other words, often it is necessary to adapt such methods to 
the specificity of biological systems or even to develop new 
methods. This is an area of a relatively new branch of sciences 
called systems biology, which aims at analyzing biological phe-
nomena as complex systems [3].

Such an analysis is based on a formal model of the system. 
The model can be expressed in a language of some branch of 
mathematics; usually, differential equations are used for this 
purpose. Despite their great expressive power, they also have 
limitations in the context of modeling of biological systems. 
They follow from the necessity of determining exact values of 
some parameters which correspond to some quantitative prop-
erties of the modeled system. In practice, determining these 
values is usually very difficult or even impossible. Hence, some 
other methods of building models of biological systems are 
looked for. The ones based on graph theory or mathematical 
objects similar to graphs seem to be especially promising. One 
of the reasons for this is the fact that graphs are well suited to 
describe a structure of dependencies among the building blocks 
of the biological system and their intuitive graphical represen-
tation is very helpful in understanding the structure of these 
dependencies. Moreover, there are various methods for formal 
analysis of graph-based models.

Despite that Petri nets are not graphs, they have a structure 
of a directed bipartite graph [4]. Hence, models of biological 
systems expressed in the language of Petri net theory have 
many advantages of graph-based models and, in addition, they 

1. Introduction

Rapid development of biological sciences, which can be ob-
served since 1990s, and an enormous increase of an amount of 
biological data of various types caused a growing belief that in 
order to fully understand the nature and functionality of living 
organisms, a new approach in research is needed. According to 
the standard approach, some basic building blocks of the organ-
isms are analyzed in great detail but much less attention is paid 
to interactions among them. Yet during the last two decades it 
has seemed more and more evident that these interactions play 
crucial roles. Moreover, the basic building blocks are connected 
by a very dense and complex network of such interactions and 
the structure of this net determines many fundamental proper-
ties of an organism (or its functional blocks like organs, tissues, 
cells etc.). Despite that the standard approach resulted in many 
spectacular discoveries in all areas of biological sciences, it 
seems to have serious limitations and it is not well suited to the 
analysis of the already mentioned interaction networks.

Since living organisms and their functional blocks are com-
plex systems of interacting basic elements they should be ana-
lyzed using methods appropriate for such systems [1, 2]. In gen-
eral, such methods are developed in the area of system sciences. 
However, many of those methods have been constructed in the 
context of technical systems. Often, they can be applied to the 
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allow to model and analyze a dynamics of these systems. It is 
possible thanks to flows of tokens which correspond to flows 
of substances, information etc. through the modeled system. 
Hence, these nets are recently considered as a very promising 
mathematical tool for systems biology [5, 6]. One of the exam-
ples can be the analysis of metabolic pathways by using Petri 
net (cf. [7–10]).

Models based on classical Petri nets are qualitative, which 
means that primarily they describe a structure of the modeled 
system. It could be seen as a serious limitation but in the case 
of biological systems their structure is usually crucial for their 
functionality. It means that based on qualitative models it is 
often possible to discover some important properties of a system 
of this type. Such properties usually follow from interactions 
between subprocesses in the modeled system. These interac-
tions can be found by analyzing of the structure of the net (the 
subprocesses correspond to t-invariants). Moreover, there is 
a number of extensions of classical Petri nets which allow to 
include in models based on them qualitative information of 
various types. Using such extensions, it is possible to increase 
precision of models and as a consequence, it allows a more pre-
cise analysis of the modeled system [11].

Among these extensions there are time Petri nets (in fact, 
several types of them) [12–14]. Such nets allow for describing 
durations of processes occurring in the modeled system as well 
as time dependencies between them. It is a very important fea-
ture since time is a crucial component of every physical system 
and it can considerably influence its behavior. Hence, time Petri 
nets greatly increase the expressive power of models based on 
them in comparison to those expressed in the language of clas-
sical Petri net theory. As a consequence, they significantly in-
crease the usefulness of Petri nets in the area of modeling and 
analysis of biological systems. Literature references where Petri 
nets with time have been used include [15–18].

In this paper there will be briefly described various types of 
time Petri nets and selected methods of analysis of biological 
systems’ models based on them. The structure of the paper is as 
follows. In Section 2, basic notions of classical Petri net theory 
are presented and definitions of time Petri nets are formulated. 
In Section 3, methods of analysis of time Petri nets based on 
t-invariants are discussed. In Section 4 an algorithm for calcu-
lation of a number of tokens necessary for transition firing is 
proposed. In Section 5 methods of estimation and modification 
of time parameters are presented. The paper ends with conclu-
sions given in Section 6.

2. Classical and time Petri nets

Before definitions for Petri nets with time will be given and 
explained, we will formally define a classical Petri net (PN) as 
a base for further extensions. Definitions concerning analysis 
of such a net will be kept at minimum, as they can be found, 
e.g., in [4].

2.1. Classical Petri net. Classical Petri net can be described 
by Definition 1.

Definition 1. Petri net [19].
Petri net is set N = {P, T, f, m0}, where:
P and T are finite, non-empty and disjoint sets, respectively of 
places and transitions,
f  : ((P£T) [ (T£P)) ! 

J. Olszak, M. Radom, and P. Formanowicz

for their functionality. It means that on the basis of qualitative
models it is often possible to discover some important proper-
ties of a system of this type. Such properties usually follows
from interactions between subprocesses in the modeled sys-
tem. These interactions can be found on the basis of the anal-
ysis of the structure of the net (the subprocesses correspond
to t-invariants). Moreover, there is a number of extensions of
classical Petri nets which allow to include in models based on
them qualitative information of various types. Using such ex-
tensions it is possible to increase precision of the build models
and as a consequence it allows a more precise analysis of the
modeled system [11].

Among these extensions there are time Petri nets (in fact,
several types of them) [12, 13, 14]. Such nets allow for de-
scription of durations of processes occurring in the modeled
system as well as time dependencies between them. It is very
important feature since time is a crucial component of every
physical system and it can considerably influence its behavior.
Hence, time Petri nets greatly increase an expressive power of
models based on them in comparison to those expressed in the
language of classical Petri net theory. As a consequence, they
significantly increase the usefulness of Petri nets in the area of
modeling and analysis of biological systems. Literature refer-
ences where Petri nets with time have been used include among
others [15, 16, 17, 18].

In this paper there will be briefly described various types of
time Petri nets and selected methods of analysis of biological
systems’ models based on them. The structure of the paper
is as follows. In section 2 there are presented basic notions
of classical Petri net theory and definitions of time Petri nets
are formulated. In section 3 there are discussed methods of
analysis of time Petri nets based on t-invariants. In section 4 an
algorithm for calculation of a number of tokens necessary for
transition firing is proposed. In section 5 methods of estimation
and modification of time parameters are presented. The paper
ends with conclusions given in section 6.

2. Classical and time Petri nets
Before definitions for Petri nets with time will be given and
explained, we will formally define a classical Petri net (PN) as
a base for further extensions. Definitions concerning analysis
of such a net will be kept at minimum, as they can be found,
e.g., in [4].

2.1. Classical Petri net Classical Petri net can be described
by Definition 1.

Definition 1. Petri net [19]
Petri net is set N = {P,T, f ,m0}, where:
P and T are finite, non-empty and disjoint sets, respectively of
places and transitions,
f : ((P×T )∪ (T ×P))→ N defines a set of arcs with weights
being non negative integer values,
m0 : P → N is an initial marking for a net.

A structure of a Petri net is a bipartite directed graph, with
vertices divided into two disjoint sets P and T , respectively

called places and transitions, connected together by arcs. In
places reside objects called tokens. In biological models places
often represent passive components of the system, e.g., sub-
strates or products of chemical reactions. Transitions represent
some elementary subprocesses, e.g., chemical reactions. The
number of tokens represent the amount of a passive compo-
nent in the system a given place represents. A marking of a
net is a vector which describes an exact number of tokens in
each place at a given moment. It corresponds to a state of the
modeled system.

When talking about a Petri net structure it is convenient to
define post- and pre-places and transitions. A place pi with an
arc directed into transition t j is a pre-place of t j, while on the
other hand, t j can be considered as a post-transition of pi. On
the opposite, transition t j with an arc directed into place pi is a
pre-transition of pi, while pi can be considered as a post-place
of transition t j. Sets of pre-places and post-places of transition
t j will be denoted as •t j and t j

• respectively, while sets of pre-
transitions and post-transitions of place pi as •pi and pi

•.
The number of tokens can change due to a firing of an en-

abled transition. A transition t j is enabled, if for every place
belonging to •t j there are at least as many tokens as the value
of a weight of the arc connecting such place with t j. In a clas-
sical Petri net an enabled transition can fire, but not necessarily
has to. The firing of transition t j consumes the tokens from its
pre-places and produces them in all its post-places. The num-
ber of tokens consumed and produced for any such a place is
always equal to the weight of an arc connecting a given place
with t j [4]. For example, if transition t j have two pre-places
with weights 4 and 2 respectively and one post-place with a
weight equal to 3, when it fires it will take four tokens from its
first pre-place, two tokens from the second one (assuming of
course there are at least as many tokens present in them) and
then instantly t j will produce three tokens in its post-place.

Formally, the transition firing can be presented as a firing
rule in the following Definition 2:

Definition 2. Firing rule [20].
Let N = {P,T, f ,m0} be a Petri net:

• Transition is enabled in marking m, written as m[t〉, if
∀ pi ∈ •t j : m(pi)≥ f (pi, t j), else disabled.

• Transition t j, which is enabled in m, may fire.
• When t j in m fires, new marking m′ is reached, with
∀ pi ∈ P : m′(pi) = m(pi)− f (pi, t j)+ f (t j, pi).

• The firing happens instantaneously and does not consume
any time.

The initial marking of a net is a vector which determines
the starting numbers of tokens in all places before firing of any
transition. Such firing will of course change the state of the
net. A state space is a set of all states of the net that can be
achieved due to the firings of any transition sequence, starting
from the initial marking. Such a space or its fragment can be
represented in a form of, e.g., a state graph, where vertices rep-
resent the markings (state vectors) and arcs represent changes
of tokens distributions due to transition firings. Studying the
state space can provide detailed knowledge about the behavior
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for their functionality. It means that on the basis of qualitative
models it is often possible to discover some important proper-
ties of a system of this type. Such properties usually follows
from interactions between subprocesses in the modeled sys-
tem. These interactions can be found on the basis of the anal-
ysis of the structure of the net (the subprocesses correspond
to t-invariants). Moreover, there is a number of extensions of
classical Petri nets which allow to include in models based on
them qualitative information of various types. Using such ex-
tensions it is possible to increase precision of the build models
and as a consequence it allows a more precise analysis of the
modeled system [11].

Among these extensions there are time Petri nets (in fact,
several types of them) [12, 13, 14]. Such nets allow for de-
scription of durations of processes occurring in the modeled
system as well as time dependencies between them. It is very
important feature since time is a crucial component of every
physical system and it can considerably influence its behavior.
Hence, time Petri nets greatly increase an expressive power of
models based on them in comparison to those expressed in the
language of classical Petri net theory. As a consequence, they
significantly increase the usefulness of Petri nets in the area of
modeling and analysis of biological systems. Literature refer-
ences where Petri nets with time have been used include among
others [15, 16, 17, 18].

In this paper there will be briefly described various types of
time Petri nets and selected methods of analysis of biological
systems’ models based on them. The structure of the paper
is as follows. In section 2 there are presented basic notions
of classical Petri net theory and definitions of time Petri nets
are formulated. In section 3 there are discussed methods of
analysis of time Petri nets based on t-invariants. In section 4 an
algorithm for calculation of a number of tokens necessary for
transition firing is proposed. In section 5 methods of estimation
and modification of time parameters are presented. The paper
ends with conclusions given in section 6.

2. Classical and time Petri nets
Before definitions for Petri nets with time will be given and
explained, we will formally define a classical Petri net (PN) as
a base for further extensions. Definitions concerning analysis
of such a net will be kept at minimum, as they can be found,
e.g., in [4].

2.1. Classical Petri net Classical Petri net can be described
by Definition 1.

Definition 1. Petri net [19]
Petri net is set N = {P,T, f ,m0}, where:
P and T are finite, non-empty and disjoint sets, respectively of
places and transitions,
f : ((P×T )∪ (T ×P))→ N defines a set of arcs with weights
being non negative integer values,
m0 : P → N is an initial marking for a net.

A structure of a Petri net is a bipartite directed graph, with
vertices divided into two disjoint sets P and T , respectively

called places and transitions, connected together by arcs. In
places reside objects called tokens. In biological models places
often represent passive components of the system, e.g., sub-
strates or products of chemical reactions. Transitions represent
some elementary subprocesses, e.g., chemical reactions. The
number of tokens represent the amount of a passive compo-
nent in the system a given place represents. A marking of a
net is a vector which describes an exact number of tokens in
each place at a given moment. It corresponds to a state of the
modeled system.

When talking about a Petri net structure it is convenient to
define post- and pre-places and transitions. A place pi with an
arc directed into transition t j is a pre-place of t j, while on the
other hand, t j can be considered as a post-transition of pi. On
the opposite, transition t j with an arc directed into place pi is a
pre-transition of pi, while pi can be considered as a post-place
of transition t j. Sets of pre-places and post-places of transition
t j will be denoted as •t j and t j

• respectively, while sets of pre-
transitions and post-transitions of place pi as •pi and pi

•.
The number of tokens can change due to a firing of an en-

abled transition. A transition t j is enabled, if for every place
belonging to •t j there are at least as many tokens as the value
of a weight of the arc connecting such place with t j. In a clas-
sical Petri net an enabled transition can fire, but not necessarily
has to. The firing of transition t j consumes the tokens from its
pre-places and produces them in all its post-places. The num-
ber of tokens consumed and produced for any such a place is
always equal to the weight of an arc connecting a given place
with t j [4]. For example, if transition t j have two pre-places
with weights 4 and 2 respectively and one post-place with a
weight equal to 3, when it fires it will take four tokens from its
first pre-place, two tokens from the second one (assuming of
course there are at least as many tokens present in them) and
then instantly t j will produce three tokens in its post-place.

Formally, the transition firing can be presented as a firing
rule in the following Definition 2:

Definition 2. Firing rule [20].
Let N = {P,T, f ,m0} be a Petri net:

• Transition is enabled in marking m, written as m[t〉, if
∀ pi ∈ •t j : m(pi)≥ f (pi, t j), else disabled.

• Transition t j, which is enabled in m, may fire.
• When t j in m fires, new marking m′ is reached, with
∀ pi ∈ P : m′(pi) = m(pi)− f (pi, t j)+ f (t j, pi).

• The firing happens instantaneously and does not consume
any time.

The initial marking of a net is a vector which determines
the starting numbers of tokens in all places before firing of any
transition. Such firing will of course change the state of the
net. A state space is a set of all states of the net that can be
achieved due to the firings of any transition sequence, starting
from the initial marking. Such a space or its fragment can be
represented in a form of, e.g., a state graph, where vertices rep-
resent the markings (state vectors) and arcs represent changes
of tokens distributions due to transition firings. Studying the
state space can provide detailed knowledge about the behavior
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 is an initial marking for a net.

The structure of a Petri net is a bipartite directed graph, with 
vertices divided into two disjoint sets P and T, respectively 
called places and transitions, connected together by arcs. In 
places reside objects called tokens. In biological models places 
often represent passive components of the system, e.g., sub-
strates or products of chemical reactions. Transitions represent 
some elementary subprocesses, e.g., chemical reactions. The 
number of tokens represent the amount of a passive component 
in the system a given place represents. A marking of a net is 
a vector which describes an exact number of tokens in each 
place at a given moment. It corresponds to a state of the mod-
eled system.

When talking about a Petri net structure it is convenient to 
define post- and pre-places and transitions. A place pi with an 
arc directed into transition tj is a pre-place of tj, while on the 
other hand, tj can be considered as a post-transition of pi. On 
the opposite, transition tj with an arc directed into place pi is 
a pre-transition of pi, while pi can be considered as a post-place 
of transition tj. Sets of pre-places and post-places of transition tj 
will be denoted as •tj and tj• respectively, while sets of pre-tran-
sitions and post-transitions of place pi as •pi and pi

•.
The number of tokens can change due to a firing of an 

enabled transition. A transition tj is enabled, if for every 
place belonging to •tj there are at least as many tokens as 
the value of a weight of the arc connecting such place with 
tj. In a classical Petri net an enabled transition can fire, but 
not necessarily has to. The firing of transition tj consumes 
the tokens from its pre-places and produces them in all its 
post-places. The number of tokens consumed and produced 
for any such a place is always equal to the weight of an arc 
connecting a given place with tj [4]. For example, if transition 
tj have two pre-places with weights 4 and 2 respectively and 
one post-place with a weight equal to 3, when it fires it will 
take four tokens from its first pre-place, two tokens from the 
second one (assuming of course there are at least as many 
tokens present in them) and then instantly tj will produce three 
tokens in its post-place.

Formally, the transition firing can be presented as a firing 
rule in Definition 2:

Definition 2. Firing rule [20].
Let N = {P, T, f, m0} be a Petri net:

● Transition is enabled in marking m, written as m[ti, if 
8pi 2 •tj : m(pi) ¸  f (pi, tj), else disabled.

● Transition tj, which is enabled in m, may fire.
● When tj in m fires, new marking m′ is reached, with  
8pi 2 P : m′(pi) = m(pi) ¡  f (pi, tj) +  f (tj, pi).

● The firing happens instantaneously and does not consume 
any time.
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The initial marking of a net is a vector which determines 
the starting numbers of tokens in all places before firing of any 
transition. Such firing will of course change the state of the net. 
A state space is a set of all states of the net that can be achieved 
due to the firings of any transition sequence, starting from the 
initial marking. Such a space or its fragment can be represented 
in a form of, e.g., a state graph, where vertices represent the 
markings (state vectors) and arcs represent changes of tokens 
distributions due to transition firings. Studying the state space 
can provide detailed knowledge about the behavior of the 
system model which the net represents. However, if the search 
space is too large or even infinite, its realistic analysis can only 
be performed using approximate methods.

A Petri net can be represented as an incidence matrix. In 
such a matrix A = [aij]n×m for a Petri net having n places and m 
transitions, every entry ai, j contains an integer number being 
a difference between the numbers of tokens residing in place 
pi before and after firing transition tj. t-invariant is a vector 
x 2 
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for their functionality. It means that on the basis of qualitative
models it is often possible to discover some important proper-
ties of a system of this type. Such properties usually follows
from interactions between subprocesses in the modeled sys-
tem. These interactions can be found on the basis of the anal-
ysis of the structure of the net (the subprocesses correspond
to t-invariants). Moreover, there is a number of extensions of
classical Petri nets which allow to include in models based on
them qualitative information of various types. Using such ex-
tensions it is possible to increase precision of the build models
and as a consequence it allows a more precise analysis of the
modeled system [11].

Among these extensions there are time Petri nets (in fact,
several types of them) [12, 13, 14]. Such nets allow for de-
scription of durations of processes occurring in the modeled
system as well as time dependencies between them. It is very
important feature since time is a crucial component of every
physical system and it can considerably influence its behavior.
Hence, time Petri nets greatly increase an expressive power of
models based on them in comparison to those expressed in the
language of classical Petri net theory. As a consequence, they
significantly increase the usefulness of Petri nets in the area of
modeling and analysis of biological systems. Literature refer-
ences where Petri nets with time have been used include among
others [15, 16, 17, 18].

In this paper there will be briefly described various types of
time Petri nets and selected methods of analysis of biological
systems’ models based on them. The structure of the paper
is as follows. In section 2 there are presented basic notions
of classical Petri net theory and definitions of time Petri nets
are formulated. In section 3 there are discussed methods of
analysis of time Petri nets based on t-invariants. In section 4 an
algorithm for calculation of a number of tokens necessary for
transition firing is proposed. In section 5 methods of estimation
and modification of time parameters are presented. The paper
ends with conclusions given in section 6.

2. Classical and time Petri nets
Before definitions for Petri nets with time will be given and
explained, we will formally define a classical Petri net (PN) as
a base for further extensions. Definitions concerning analysis
of such a net will be kept at minimum, as they can be found,
e.g., in [4].

2.1. Classical Petri net Classical Petri net can be described
by Definition 1.

Definition 1. Petri net [19]
Petri net is set N = {P,T, f ,m0}, where:
P and T are finite, non-empty and disjoint sets, respectively of
places and transitions,
f : ((P×T )∪ (T ×P))→ N defines a set of arcs with weights
being non negative integer values,
m0 : P → N is an initial marking for a net.

A structure of a Petri net is a bipartite directed graph, with
vertices divided into two disjoint sets P and T , respectively

called places and transitions, connected together by arcs. In
places reside objects called tokens. In biological models places
often represent passive components of the system, e.g., sub-
strates or products of chemical reactions. Transitions represent
some elementary subprocesses, e.g., chemical reactions. The
number of tokens represent the amount of a passive compo-
nent in the system a given place represents. A marking of a
net is a vector which describes an exact number of tokens in
each place at a given moment. It corresponds to a state of the
modeled system.

When talking about a Petri net structure it is convenient to
define post- and pre-places and transitions. A place pi with an
arc directed into transition t j is a pre-place of t j, while on the
other hand, t j can be considered as a post-transition of pi. On
the opposite, transition t j with an arc directed into place pi is a
pre-transition of pi, while pi can be considered as a post-place
of transition t j. Sets of pre-places and post-places of transition
t j will be denoted as •t j and t j

• respectively, while sets of pre-
transitions and post-transitions of place pi as •pi and pi

•.
The number of tokens can change due to a firing of an en-

abled transition. A transition t j is enabled, if for every place
belonging to •t j there are at least as many tokens as the value
of a weight of the arc connecting such place with t j. In a clas-
sical Petri net an enabled transition can fire, but not necessarily
has to. The firing of transition t j consumes the tokens from its
pre-places and produces them in all its post-places. The num-
ber of tokens consumed and produced for any such a place is
always equal to the weight of an arc connecting a given place
with t j [4]. For example, if transition t j have two pre-places
with weights 4 and 2 respectively and one post-place with a
weight equal to 3, when it fires it will take four tokens from its
first pre-place, two tokens from the second one (assuming of
course there are at least as many tokens present in them) and
then instantly t j will produce three tokens in its post-place.

Formally, the transition firing can be presented as a firing
rule in the following Definition 2:

Definition 2. Firing rule [20].
Let N = {P,T, f ,m0} be a Petri net:

• Transition is enabled in marking m, written as m[t〉, if
∀ pi ∈ •t j : m(pi)≥ f (pi, t j), else disabled.

• Transition t j, which is enabled in m, may fire.
• When t j in m fires, new marking m′ is reached, with
∀ pi ∈ P : m′(pi) = m(pi)− f (pi, t j)+ f (t j, pi).

• The firing happens instantaneously and does not consume
any time.

The initial marking of a net is a vector which determines
the starting numbers of tokens in all places before firing of any
transition. Such firing will of course change the state of the
net. A state space is a set of all states of the net that can be
achieved due to the firings of any transition sequence, starting
from the initial marking. Such a space or its fragment can be
represented in a form of, e.g., a state graph, where vertices rep-
resent the markings (state vectors) and arcs represent changes
of tokens distributions due to transition firings. Studying the
state space can provide detailed knowledge about the behavior
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m such that A ¢ x = 0. A support of t-invariant x is set s(x) 
of transitions which correspond to positive entries of x, i.e., 
s(x) = {tj : xj > 0; j = 1, 2, …, m}. Firing all the transitions 
from s(x) a proper number of times (defined by the non-zero 
entries of x) does non change the marking of the net. The net 
is covered by t-invariants if every transition belongs to a sup-
port of at least one t-invariant. In the case of a Petri net being 
a model of a biological system t-invariants correspond to more 
complex subprocesses occurring in the system which do not 
change its state. t-invariants are very useful for an analysis of 
Petri net based models of biological systems (cf. [8, 9, 21]). 
At the end of this section, elementary flux modes in metabolic 
network analysis should be mentioned [22]. Elementary flux 
modes represent minimal sets of enzymes which can operate 
at steady state. Also, no other flux modes at a steady state are 
proper subsets of elementary flux modes. Minimal t-invariants 
in Petri nets are elementary flux modes counterparts, however, 
the latter are more general because reversible reactions are 
allowed [23]. Other relevant information can be found in, e.g., 
[6, 24].

2.2. Petri nets with time. Extensions of Petri nets where time 
is taken into account can be defined in many different ways. 
The two most popular ones are time Petri nets (TPN) and time 
Petri nets (DPN). Below, in Definition 3 time Petri net is pre-
sented.

Definition 3. Time Petri net TPN [14]
Time Petri net is a set NTPN = {N, I}, where:
N = {P, T, f, m0} is a classical Petri net,
I : T ! 
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of the system model which the net represents. However, if the
search space is too large or even infinite, its realistic analysis
can only be performed using approximate methods.

A Petri net can be represented as an incidence matrix. In
such a matrix A = [ai j]n×m for a Petri net having n places and
m transitions, every entry ai, j contains an integer number being
a difference between the numbers of tokens residing in place
pi before and after firing transition t j. t-invariant is a vector
x ∈Nm such that A ·x = 0. A support of t-invariant x is set s(x)
of transitions which correspond to positive entries of x, i.e.,
s(x) = {t j : x j > 0; j = 1,2, ...,m}. Firing all the transitions
from s(x) a proper number of times (defined by the non-zero
entries of x) does non change the marking of the net. The net
is covered by t-invariants if every transition belongs to a sup-
port of at least one t-invariant. In the case of a Petri net being
a model of a biological system t-invariants correspond to more
complex subprocesses occurring in the system which do not
change its state. t-invariants are very useful for an analysis of
Petri net based models of biological systems (cf. [8, 9, 21]).
At the end of this section, elementary flux modes in metabolic
network analysis should be mentioned [22]. Elementary flux
modes represent minimal sets of enzymes which can operate
at steady state. Also, no other flux modes at a steady state are
proper subsets of elementary flux modes. Minimal t-invariants
in Petri nets are elementary flux modes counterparts, however,
the latter are more general because reversible reactions are al-
lowed [23]. Other relevant information can be found in, e.g.,
[6, 24].

2.2. Petri nets with time Extensions of Petri nets where time
is taken into account can be defined in many different ways.
The two most popular ones are Time Petri nets (TPN) and
Timed Petri nets (DPN). Below, in Definition 3 Time Petri net
is presented.

Definition 3. Time Petri net TPN [14]
Time Petri net is a set NT PN = {N, I}, where:
N = {P,T, f ,m0} is a classical Petri net,
I : T →Q+∪{0}×Q+∪{0}∪{∞}, where for every transition
t ∈ T , with I(t) = [I1(t), I2(t)], it holds that I1(t)≤ I2(t).

In this definition I is called a time function for N, where I1(t)
denotes the earliest firing time for transition t, I2(t) denotes the
latest firing time for t. Time counting for every transition be-
gins when it becomes enabled. Transition will fire after time
z: I1(t) ≤ z ≤ I2(t), i.e., transition may fire no sooner than at
I1(t) and it must fire no later than at I2(t) time. If at any time
before firing transition stops being enabled, after it becomes
enabled again the counting of its firing time must start from
0. The firing event is instantaneous, i.e., production and con-
sumption of tokens takes no time. It should be noted that time
values are not restricted to integers, they are in fact rational
numbers. This allows more flexibility when modeling a bio-
logical system where times of processes occurring in such sys-
tem can differ by orders of magnitude. A more complex time
scales (e.g., a logarithmic ones) can be used in the models.
Analytical techniques available for time Petri nets are not re-
stricted by this fact, due to the possibility of full transformation

of rational-value times into integer ones [14]. More complex
problems, e.g., time-scale decomposition, are often discussed
for stochastic Petri nets, which are mathematically similar to
the discussed type of Petri nets with time [25].

A state of a time Petri net is more complex than in a classical
net because it must also contain data about transitions’ timers
counting towards z value. For TPN its state is given as pair
z = (m,h), where m : P → N and h : T → Q+∪{0}∪{#}. To
fully describe a given state of TPN, a distribution of tokens in
places must be stored in the same way as it is for the classical
Petri net (function m). Additionally, a state of TPN must also
contain the value of every transition internal counter (function
h). h assigns values from interval [0,z], if the transition is en-
abled and symbol # otherwise [14]. It must be noted that states
of TPN change not only when a transition fires (and therefore
changes the numbers of tokens in places), but also when time
elapses.

3. Time Petri net analysis
It should be noted that the approaches basing on, e.g., t-
invariant analysis of a classical Petri net based models can still
be used with time Petri nets described in this paper. It is pos-
sible because the structure of a Petri net with time remains the
same as in the classical one. Such a structure is often called a
net skeleton [14] and it is equivalent to the classical Petri net
from Definition 1. The additional time data about subprocesses
delay or duration allows a creation of more precise models of
a studied biological system [15], for which a new analytical
approaches explained further become available.

3.1. t-invariant analysis The verification of the possibility to
execute all transitions from a given t-invariant support is one of
the relevant problems in time Petri nets analysis. Calculating
t-invariants is performed in the same way as in the case of clas-
sical Petri nets. However, checking whether transitions within
a support may run a specific number of times is difficult due
to time limits I1(t) and I2(t). Additionally, it is important that
the given verification should be available for unbounded time
Petri nets or in general without the necessity to analyze state
space of such a net, due to the fact that most of time Petri nets
constructed to model biological systems are unbounded [14].

In the literature it can be found a mathematical approach for
solving this problem based on a set of inequalities gathered
from time functions I(t) [14]. During our analysis a simple
TPN will be presented (Fig. 1) and verified using described so-
lution. As a next step, the expanded net (Fig. 2) with additional
transitions will be analyzed. Based on this TPN, an example
will be given, to confirm that a more complex verification is
required. To fully determine whether selected transitions may
be executed, an alternative method for solving the analogous
problem will be presented.

A special notation required for further analysis is introduced
in the aforementioned literature. Let σ = t j1 , ..., t jw be se-
quence of transitions and let zi ∈ Q+ with i = 1, ...,w− 1 be
the time which elapsed between the firing of transitions t ji and
t ji+1 . Then z0 denotes the time from the activation of transition
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of the system model which the net represents. However, if the
search space is too large or even infinite, its realistic analysis
can only be performed using approximate methods.

A Petri net can be represented as an incidence matrix. In
such a matrix A = [ai j]n×m for a Petri net having n places and
m transitions, every entry ai, j contains an integer number being
a difference between the numbers of tokens residing in place
pi before and after firing transition t j. t-invariant is a vector
x ∈Nm such that A ·x = 0. A support of t-invariant x is set s(x)
of transitions which correspond to positive entries of x, i.e.,
s(x) = {t j : x j > 0; j = 1,2, ...,m}. Firing all the transitions
from s(x) a proper number of times (defined by the non-zero
entries of x) does non change the marking of the net. The net
is covered by t-invariants if every transition belongs to a sup-
port of at least one t-invariant. In the case of a Petri net being
a model of a biological system t-invariants correspond to more
complex subprocesses occurring in the system which do not
change its state. t-invariants are very useful for an analysis of
Petri net based models of biological systems (cf. [8, 9, 21]).
At the end of this section, elementary flux modes in metabolic
network analysis should be mentioned [22]. Elementary flux
modes represent minimal sets of enzymes which can operate
at steady state. Also, no other flux modes at a steady state are
proper subsets of elementary flux modes. Minimal t-invariants
in Petri nets are elementary flux modes counterparts, however,
the latter are more general because reversible reactions are al-
lowed [23]. Other relevant information can be found in, e.g.,
[6, 24].

2.2. Petri nets with time Extensions of Petri nets where time
is taken into account can be defined in many different ways.
The two most popular ones are Time Petri nets (TPN) and
Timed Petri nets (DPN). Below, in Definition 3 Time Petri net
is presented.

Definition 3. Time Petri net TPN [14]
Time Petri net is a set NT PN = {N, I}, where:
N = {P,T, f ,m0} is a classical Petri net,
I : T →Q+∪{0}×Q+∪{0}∪{∞}, where for every transition
t ∈ T , with I(t) = [I1(t), I2(t)], it holds that I1(t)≤ I2(t).

In this definition I is called a time function for N, where I1(t)
denotes the earliest firing time for transition t, I2(t) denotes the
latest firing time for t. Time counting for every transition be-
gins when it becomes enabled. Transition will fire after time
z: I1(t) ≤ z ≤ I2(t), i.e., transition may fire no sooner than at
I1(t) and it must fire no later than at I2(t) time. If at any time
before firing transition stops being enabled, after it becomes
enabled again the counting of its firing time must start from
0. The firing event is instantaneous, i.e., production and con-
sumption of tokens takes no time. It should be noted that time
values are not restricted to integers, they are in fact rational
numbers. This allows more flexibility when modeling a bio-
logical system where times of processes occurring in such sys-
tem can differ by orders of magnitude. A more complex time
scales (e.g., a logarithmic ones) can be used in the models.
Analytical techniques available for time Petri nets are not re-
stricted by this fact, due to the possibility of full transformation

of rational-value times into integer ones [14]. More complex
problems, e.g., time-scale decomposition, are often discussed
for stochastic Petri nets, which are mathematically similar to
the discussed type of Petri nets with time [25].

A state of a time Petri net is more complex than in a classical
net because it must also contain data about transitions’ timers
counting towards z value. For TPN its state is given as pair
z = (m,h), where m : P → N and h : T → Q+∪{0}∪{#}. To
fully describe a given state of TPN, a distribution of tokens in
places must be stored in the same way as it is for the classical
Petri net (function m). Additionally, a state of TPN must also
contain the value of every transition internal counter (function
h). h assigns values from interval [0,z], if the transition is en-
abled and symbol # otherwise [14]. It must be noted that states
of TPN change not only when a transition fires (and therefore
changes the numbers of tokens in places), but also when time
elapses.

3. Time Petri net analysis
It should be noted that the approaches basing on, e.g., t-
invariant analysis of a classical Petri net based models can still
be used with time Petri nets described in this paper. It is pos-
sible because the structure of a Petri net with time remains the
same as in the classical one. Such a structure is often called a
net skeleton [14] and it is equivalent to the classical Petri net
from Definition 1. The additional time data about subprocesses
delay or duration allows a creation of more precise models of
a studied biological system [15], for which a new analytical
approaches explained further become available.

3.1. t-invariant analysis The verification of the possibility to
execute all transitions from a given t-invariant support is one of
the relevant problems in time Petri nets analysis. Calculating
t-invariants is performed in the same way as in the case of clas-
sical Petri nets. However, checking whether transitions within
a support may run a specific number of times is difficult due
to time limits I1(t) and I2(t). Additionally, it is important that
the given verification should be available for unbounded time
Petri nets or in general without the necessity to analyze state
space of such a net, due to the fact that most of time Petri nets
constructed to model biological systems are unbounded [14].

In the literature it can be found a mathematical approach for
solving this problem based on a set of inequalities gathered
from time functions I(t) [14]. During our analysis a simple
TPN will be presented (Fig. 1) and verified using described so-
lution. As a next step, the expanded net (Fig. 2) with additional
transitions will be analyzed. Based on this TPN, an example
will be given, to confirm that a more complex verification is
required. To fully determine whether selected transitions may
be executed, an alternative method for solving the analogous
problem will be presented.

A special notation required for further analysis is introduced
in the aforementioned literature. Let σ = t j1 , ..., t jw be se-
quence of transitions and let zi ∈ Q+ with i = 1, ...,w− 1 be
the time which elapsed between the firing of transitions t ji and
t ji+1 . Then z0 denotes the time from the activation of transition
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+ [ {0} [ {1}, where for every transition 
t 2 T, with I(t) = [I1(t), I2(t)], it holds that I1(t) ∙ I2(t).

In this definition I is called a time function for N, where 
I1(t) denotes the earliest firing time for transition t, I2(t) denotes 
the latest firing time for t. Time counting for every transition 
begins when it becomes enabled. Transition will fire after time 
z: I1(t) ∙ z ∙ I2(t), i.e., transition may fire no sooner than at I2(t) 
and it must fire no later than at I2(t) time. If at any time before 

firing transition stops being enabled, after it becomes enabled 
again the counting of its firing time must start from 0. The 
firing event is instantaneous, i.e., production and consumption 
of tokens takes no time. It should be noted that time values 
are not restricted to integers, they are in fact rational numbers. 
This allows more flexibility when modeling a biological system 
where times of processes occurring in such system can differ by 
orders of magnitude. A more complex time scales (e.g., a loga-
rithmic ones) can be used in the models. Analytical techniques 
available for time Petri nets are not restricted by this fact, due 
to the possibility of full transformation of rational-value times 
into integer ones [14]. More complex problems, e.g., time-scale 
decomposition, are often discussed for stochastic Petri nets, 
which are mathematically similar to the discussed type of Petri 
nets with time [25].

A state of a time Petri net is more complex than in a clas-
sical net because it must also contain data about transitions’ 
timers counting towards z value. For TPN its state is given as 
pair z = (m, h), where m : P ! 
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for their functionality. It means that on the basis of qualitative
models it is often possible to discover some important proper-
ties of a system of this type. Such properties usually follows
from interactions between subprocesses in the modeled sys-
tem. These interactions can be found on the basis of the anal-
ysis of the structure of the net (the subprocesses correspond
to t-invariants). Moreover, there is a number of extensions of
classical Petri nets which allow to include in models based on
them qualitative information of various types. Using such ex-
tensions it is possible to increase precision of the build models
and as a consequence it allows a more precise analysis of the
modeled system [11].

Among these extensions there are time Petri nets (in fact,
several types of them) [12, 13, 14]. Such nets allow for de-
scription of durations of processes occurring in the modeled
system as well as time dependencies between them. It is very
important feature since time is a crucial component of every
physical system and it can considerably influence its behavior.
Hence, time Petri nets greatly increase an expressive power of
models based on them in comparison to those expressed in the
language of classical Petri net theory. As a consequence, they
significantly increase the usefulness of Petri nets in the area of
modeling and analysis of biological systems. Literature refer-
ences where Petri nets with time have been used include among
others [15, 16, 17, 18].

In this paper there will be briefly described various types of
time Petri nets and selected methods of analysis of biological
systems’ models based on them. The structure of the paper
is as follows. In section 2 there are presented basic notions
of classical Petri net theory and definitions of time Petri nets
are formulated. In section 3 there are discussed methods of
analysis of time Petri nets based on t-invariants. In section 4 an
algorithm for calculation of a number of tokens necessary for
transition firing is proposed. In section 5 methods of estimation
and modification of time parameters are presented. The paper
ends with conclusions given in section 6.

2. Classical and time Petri nets
Before definitions for Petri nets with time will be given and
explained, we will formally define a classical Petri net (PN) as
a base for further extensions. Definitions concerning analysis
of such a net will be kept at minimum, as they can be found,
e.g., in [4].

2.1. Classical Petri net Classical Petri net can be described
by Definition 1.

Definition 1. Petri net [19]
Petri net is set N = {P,T, f ,m0}, where:
P and T are finite, non-empty and disjoint sets, respectively of
places and transitions,
f : ((P×T )∪ (T ×P))→ N defines a set of arcs with weights
being non negative integer values,
m0 : P → N is an initial marking for a net.

A structure of a Petri net is a bipartite directed graph, with
vertices divided into two disjoint sets P and T , respectively

called places and transitions, connected together by arcs. In
places reside objects called tokens. In biological models places
often represent passive components of the system, e.g., sub-
strates or products of chemical reactions. Transitions represent
some elementary subprocesses, e.g., chemical reactions. The
number of tokens represent the amount of a passive compo-
nent in the system a given place represents. A marking of a
net is a vector which describes an exact number of tokens in
each place at a given moment. It corresponds to a state of the
modeled system.

When talking about a Petri net structure it is convenient to
define post- and pre-places and transitions. A place pi with an
arc directed into transition t j is a pre-place of t j, while on the
other hand, t j can be considered as a post-transition of pi. On
the opposite, transition t j with an arc directed into place pi is a
pre-transition of pi, while pi can be considered as a post-place
of transition t j. Sets of pre-places and post-places of transition
t j will be denoted as •t j and t j

• respectively, while sets of pre-
transitions and post-transitions of place pi as •pi and pi

•.
The number of tokens can change due to a firing of an en-

abled transition. A transition t j is enabled, if for every place
belonging to •t j there are at least as many tokens as the value
of a weight of the arc connecting such place with t j. In a clas-
sical Petri net an enabled transition can fire, but not necessarily
has to. The firing of transition t j consumes the tokens from its
pre-places and produces them in all its post-places. The num-
ber of tokens consumed and produced for any such a place is
always equal to the weight of an arc connecting a given place
with t j [4]. For example, if transition t j have two pre-places
with weights 4 and 2 respectively and one post-place with a
weight equal to 3, when it fires it will take four tokens from its
first pre-place, two tokens from the second one (assuming of
course there are at least as many tokens present in them) and
then instantly t j will produce three tokens in its post-place.

Formally, the transition firing can be presented as a firing
rule in the following Definition 2:

Definition 2. Firing rule [20].
Let N = {P,T, f ,m0} be a Petri net:

• Transition is enabled in marking m, written as m[t〉, if
∀ pi ∈ •t j : m(pi)≥ f (pi, t j), else disabled.

• Transition t j, which is enabled in m, may fire.
• When t j in m fires, new marking m′ is reached, with
∀ pi ∈ P : m′(pi) = m(pi)− f (pi, t j)+ f (t j, pi).

• The firing happens instantaneously and does not consume
any time.

The initial marking of a net is a vector which determines
the starting numbers of tokens in all places before firing of any
transition. Such firing will of course change the state of the
net. A state space is a set of all states of the net that can be
achieved due to the firings of any transition sequence, starting
from the initial marking. Such a space or its fragment can be
represented in a form of, e.g., a state graph, where vertices rep-
resent the markings (state vectors) and arcs represent changes
of tokens distributions due to transition firings. Studying the
state space can provide detailed knowledge about the behavior
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of the system model which the net represents. However, if the
search space is too large or even infinite, its realistic analysis
can only be performed using approximate methods.

A Petri net can be represented as an incidence matrix. In
such a matrix A = [ai j]n×m for a Petri net having n places and
m transitions, every entry ai, j contains an integer number being
a difference between the numbers of tokens residing in place
pi before and after firing transition t j. t-invariant is a vector
x ∈Nm such that A ·x = 0. A support of t-invariant x is set s(x)
of transitions which correspond to positive entries of x, i.e.,
s(x) = {t j : x j > 0; j = 1,2, ...,m}. Firing all the transitions
from s(x) a proper number of times (defined by the non-zero
entries of x) does non change the marking of the net. The net
is covered by t-invariants if every transition belongs to a sup-
port of at least one t-invariant. In the case of a Petri net being
a model of a biological system t-invariants correspond to more
complex subprocesses occurring in the system which do not
change its state. t-invariants are very useful for an analysis of
Petri net based models of biological systems (cf. [8, 9, 21]).
At the end of this section, elementary flux modes in metabolic
network analysis should be mentioned [22]. Elementary flux
modes represent minimal sets of enzymes which can operate
at steady state. Also, no other flux modes at a steady state are
proper subsets of elementary flux modes. Minimal t-invariants
in Petri nets are elementary flux modes counterparts, however,
the latter are more general because reversible reactions are al-
lowed [23]. Other relevant information can be found in, e.g.,
[6, 24].

2.2. Petri nets with time Extensions of Petri nets where time
is taken into account can be defined in many different ways.
The two most popular ones are Time Petri nets (TPN) and
Timed Petri nets (DPN). Below, in Definition 3 Time Petri net
is presented.

Definition 3. Time Petri net TPN [14]
Time Petri net is a set NT PN = {N, I}, where:
N = {P,T, f ,m0} is a classical Petri net,
I : T →Q+∪{0}×Q+∪{0}∪{∞}, where for every transition
t ∈ T , with I(t) = [I1(t), I2(t)], it holds that I1(t)≤ I2(t).

In this definition I is called a time function for N, where I1(t)
denotes the earliest firing time for transition t, I2(t) denotes the
latest firing time for t. Time counting for every transition be-
gins when it becomes enabled. Transition will fire after time
z: I1(t) ≤ z ≤ I2(t), i.e., transition may fire no sooner than at
I1(t) and it must fire no later than at I2(t) time. If at any time
before firing transition stops being enabled, after it becomes
enabled again the counting of its firing time must start from
0. The firing event is instantaneous, i.e., production and con-
sumption of tokens takes no time. It should be noted that time
values are not restricted to integers, they are in fact rational
numbers. This allows more flexibility when modeling a bio-
logical system where times of processes occurring in such sys-
tem can differ by orders of magnitude. A more complex time
scales (e.g., a logarithmic ones) can be used in the models.
Analytical techniques available for time Petri nets are not re-
stricted by this fact, due to the possibility of full transformation

of rational-value times into integer ones [14]. More complex
problems, e.g., time-scale decomposition, are often discussed
for stochastic Petri nets, which are mathematically similar to
the discussed type of Petri nets with time [25].

A state of a time Petri net is more complex than in a classical
net because it must also contain data about transitions’ timers
counting towards z value. For TPN its state is given as pair
z = (m,h), where m : P → N and h : T → Q+∪{0}∪{#}. To
fully describe a given state of TPN, a distribution of tokens in
places must be stored in the same way as it is for the classical
Petri net (function m). Additionally, a state of TPN must also
contain the value of every transition internal counter (function
h). h assigns values from interval [0,z], if the transition is en-
abled and symbol # otherwise [14]. It must be noted that states
of TPN change not only when a transition fires (and therefore
changes the numbers of tokens in places), but also when time
elapses.

3. Time Petri net analysis
It should be noted that the approaches basing on, e.g., t-
invariant analysis of a classical Petri net based models can still
be used with time Petri nets described in this paper. It is pos-
sible because the structure of a Petri net with time remains the
same as in the classical one. Such a structure is often called a
net skeleton [14] and it is equivalent to the classical Petri net
from Definition 1. The additional time data about subprocesses
delay or duration allows a creation of more precise models of
a studied biological system [15], for which a new analytical
approaches explained further become available.

3.1. t-invariant analysis The verification of the possibility to
execute all transitions from a given t-invariant support is one of
the relevant problems in time Petri nets analysis. Calculating
t-invariants is performed in the same way as in the case of clas-
sical Petri nets. However, checking whether transitions within
a support may run a specific number of times is difficult due
to time limits I1(t) and I2(t). Additionally, it is important that
the given verification should be available for unbounded time
Petri nets or in general without the necessity to analyze state
space of such a net, due to the fact that most of time Petri nets
constructed to model biological systems are unbounded [14].

In the literature it can be found a mathematical approach for
solving this problem based on a set of inequalities gathered
from time functions I(t) [14]. During our analysis a simple
TPN will be presented (Fig. 1) and verified using described so-
lution. As a next step, the expanded net (Fig. 2) with additional
transitions will be analyzed. Based on this TPN, an example
will be given, to confirm that a more complex verification is
required. To fully determine whether selected transitions may
be executed, an alternative method for solving the analogous
problem will be presented.

A special notation required for further analysis is introduced
in the aforementioned literature. Let σ = t j1 , ..., t jw be se-
quence of transitions and let zi ∈ Q+ with i = 1, ...,w− 1 be
the time which elapsed between the firing of transitions t ji and
t ji+1 . Then z0 denotes the time from the activation of transition
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To fully describe a given state of TPN, a distribution of to-
kens in places must be stored in the same way as it is for the 
classical Petri net (function m). Additionally, a state of TPN 
must also contain the value of every transition internal counter 
(function h). h assigns values from interval [0, z], if the transi-
tion is enabled and symbol # otherwise [14]. It must be noted 
that states of TPN change not only when a transition fires (and 
therefore changes the numbers of tokens in places), but also 
when time elapses.

3. Time Petri net analysis

It should be noted that the approaches basing on, e.g., t-in-
variant analysis of a classical Petri net based models can still 
be used with time Petri nets described in this paper. It is pos-
sible because the structure of a Petri net with time remains the 
same as in the classical one. Such a structure is often called 
a net skeleton [14] and it is equivalent to the classical Petri net 
from Definition 1. The additional time data about subprocesses 
delay or duration allows a creation of more precise models of 
a studied biological system [15], for which a new analytical 
approaches explained further become available.

3.1. t-invariant analysis. The verification of the possibility to 
execute all transitions from a given t-invariant support is one 
of the relevant problems in time Petri nets analysis. Calculating 
t-invariants is performed in the same way as in the case of clas-
sical Petri nets. However, checking whether transitions within 
a support may run a specific number of times is difficult due 
to time limits I1(t) and I2(t). Additionally, it is important that 
the given verification should be available for unbounded time 
Petri nets or in general without the necessity to analyze state 
space of such a net, due to the fact that most of time Petri nets 
constructed to model biological systems are unbounded [14].

In the literature it can be found a mathematical approach 
for solving this problem based on a set of inequalities gathered 
from time functions I(t) [14]. During our analysis a simple TPN 
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after the last transition execution. The sequence of w transitions 
executed in time z = z0 + z1 + … + zw is called a run of σ: 
σ(z) = z0tj1z1…zw ¡ 1tjw zw [14]. Additionally, for each sequence 
there is defined a set of conditions Bσ(z) containing inequalities 
which describe the constraints for each variable zi(i = 0, …, w) 
in σ(z). This constraints are build upon time functions I(tj) 
(Def. 3), associated with each transition in TPN. In this paper 
we consider transition sequences which are build from t-invari-
ants supports. The possibility of their execution may be verified 
by solving the set of inequalities Bσ(z). The main objective of 
this analysis is a verification whether a given transition se-
quence σ may be executed before execution of any other en-
abled transitions outside the sequence.

Fig. 2. Time Petri net with three t-invariants
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Fig. 1. Time Petri net with two t-invariants
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will be presented (Fig. 1) and verified using described solu-
tion. As a next step, the expanded net (Fig. 2) with additional 
transitions will be analyzed. Based on this TPN, an example 
will be given, to confirm that a more complex verification is 
required. To fully determine whether selected transitions may 
be executed, an alternative method for solving the analogous 
problem will be presented.

A special notation required for further analysis is introduced 
in the aforementioned literature. Let σ = tj1, …, tjw be sequence 
of transitions and let zi 2 
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of the system model which the net represents. However, if the
search space is too large or even infinite, its realistic analysis
can only be performed using approximate methods.

A Petri net can be represented as an incidence matrix. In
such a matrix A = [ai j]n×m for a Petri net having n places and
m transitions, every entry ai, j contains an integer number being
a difference between the numbers of tokens residing in place
pi before and after firing transition t j. t-invariant is a vector
x ∈Nm such that A ·x = 0. A support of t-invariant x is set s(x)
of transitions which correspond to positive entries of x, i.e.,
s(x) = {t j : x j > 0; j = 1,2, ...,m}. Firing all the transitions
from s(x) a proper number of times (defined by the non-zero
entries of x) does non change the marking of the net. The net
is covered by t-invariants if every transition belongs to a sup-
port of at least one t-invariant. In the case of a Petri net being
a model of a biological system t-invariants correspond to more
complex subprocesses occurring in the system which do not
change its state. t-invariants are very useful for an analysis of
Petri net based models of biological systems (cf. [8, 9, 21]).
At the end of this section, elementary flux modes in metabolic
network analysis should be mentioned [22]. Elementary flux
modes represent minimal sets of enzymes which can operate
at steady state. Also, no other flux modes at a steady state are
proper subsets of elementary flux modes. Minimal t-invariants
in Petri nets are elementary flux modes counterparts, however,
the latter are more general because reversible reactions are al-
lowed [23]. Other relevant information can be found in, e.g.,
[6, 24].

2.2. Petri nets with time Extensions of Petri nets where time
is taken into account can be defined in many different ways.
The two most popular ones are Time Petri nets (TPN) and
Timed Petri nets (DPN). Below, in Definition 3 Time Petri net
is presented.

Definition 3. Time Petri net TPN [14]
Time Petri net is a set NT PN = {N, I}, where:
N = {P,T, f ,m0} is a classical Petri net,
I : T →Q+∪{0}×Q+∪{0}∪{∞}, where for every transition
t ∈ T , with I(t) = [I1(t), I2(t)], it holds that I1(t)≤ I2(t).

In this definition I is called a time function for N, where I1(t)
denotes the earliest firing time for transition t, I2(t) denotes the
latest firing time for t. Time counting for every transition be-
gins when it becomes enabled. Transition will fire after time
z: I1(t) ≤ z ≤ I2(t), i.e., transition may fire no sooner than at
I1(t) and it must fire no later than at I2(t) time. If at any time
before firing transition stops being enabled, after it becomes
enabled again the counting of its firing time must start from
0. The firing event is instantaneous, i.e., production and con-
sumption of tokens takes no time. It should be noted that time
values are not restricted to integers, they are in fact rational
numbers. This allows more flexibility when modeling a bio-
logical system where times of processes occurring in such sys-
tem can differ by orders of magnitude. A more complex time
scales (e.g., a logarithmic ones) can be used in the models.
Analytical techniques available for time Petri nets are not re-
stricted by this fact, due to the possibility of full transformation

of rational-value times into integer ones [14]. More complex
problems, e.g., time-scale decomposition, are often discussed
for stochastic Petri nets, which are mathematically similar to
the discussed type of Petri nets with time [25].

A state of a time Petri net is more complex than in a classical
net because it must also contain data about transitions’ timers
counting towards z value. For TPN its state is given as pair
z = (m,h), where m : P → N and h : T → Q+∪{0}∪{#}. To
fully describe a given state of TPN, a distribution of tokens in
places must be stored in the same way as it is for the classical
Petri net (function m). Additionally, a state of TPN must also
contain the value of every transition internal counter (function
h). h assigns values from interval [0,z], if the transition is en-
abled and symbol # otherwise [14]. It must be noted that states
of TPN change not only when a transition fires (and therefore
changes the numbers of tokens in places), but also when time
elapses.

3. Time Petri net analysis
It should be noted that the approaches basing on, e.g., t-
invariant analysis of a classical Petri net based models can still
be used with time Petri nets described in this paper. It is pos-
sible because the structure of a Petri net with time remains the
same as in the classical one. Such a structure is often called a
net skeleton [14] and it is equivalent to the classical Petri net
from Definition 1. The additional time data about subprocesses
delay or duration allows a creation of more precise models of
a studied biological system [15], for which a new analytical
approaches explained further become available.

3.1. t-invariant analysis The verification of the possibility to
execute all transitions from a given t-invariant support is one of
the relevant problems in time Petri nets analysis. Calculating
t-invariants is performed in the same way as in the case of clas-
sical Petri nets. However, checking whether transitions within
a support may run a specific number of times is difficult due
to time limits I1(t) and I2(t). Additionally, it is important that
the given verification should be available for unbounded time
Petri nets or in general without the necessity to analyze state
space of such a net, due to the fact that most of time Petri nets
constructed to model biological systems are unbounded [14].

In the literature it can be found a mathematical approach for
solving this problem based on a set of inequalities gathered
from time functions I(t) [14]. During our analysis a simple
TPN will be presented (Fig. 1) and verified using described so-
lution. As a next step, the expanded net (Fig. 2) with additional
transitions will be analyzed. Based on this TPN, an example
will be given, to confirm that a more complex verification is
required. To fully determine whether selected transitions may
be executed, an alternative method for solving the analogous
problem will be presented.

A special notation required for further analysis is introduced
in the aforementioned literature. Let σ = t j1 , ..., t jw be se-
quence of transitions and let zi ∈ Q+ with i = 1, ...,w− 1 be
the time which elapsed between the firing of transitions t ji and
t ji+1 . Then z0 denotes the time from the activation of transition
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+ with i = 1, …, w ¡ 1 be the time 
which elapsed between the firing of transitions tji and tji+1

. Then 
z0 denotes the time from the activation of transition tj1 to its 
execution and zw denotes the possible time which may elapse 
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In the following analysis this notation will be slightly modi-
fied. The finishing time zw after the last transition execution will 
be ignored, because it is not affecting the verification process.

To visualize the described approach an analysis of the TPN 
presented in Fig. 1 will be given (cf. [26]). This network con-
tains two t-invariants:

x1 = (1, 0, 0, 1, 0, 1) with support s(x1) = {t0, t3, t5}
x2 = (0, 1, 1, 0, 0, 0) with support s(x2) = {t1, t2}

(t-invariants can be calculated using various tools, among others 
INA – Integrated Net Analyzer [27]).

Based on the supports of t-invariants x1 and x2 two transition 
sequences are created, which may be executed in time z:

σ1(z) = (z0, t0, z1, t3, z2, t5)
σ2(z) = (z0, t2, z1, t1)

Based on an initial marking of the network, in the second se-
quence transition t2 is placed before t1. For the sequence σ1(z), 
the following set of conditions is obtained:

Bσ1(z) = 

(
0 ∙ z0 ∙ 2, z0 + z1 ∙ 4,
0 ∙ z1 ∙ 1, z0 + z1 + z2 ∙ 4,
0 ∙ z2 ∙ 1

)

It is easy to show that there exists a solution to the above 
set of inequalities in the set of rational numbers. Constraints 
presented in the inequalities are narrowed to ∙ 4, because of the 
latest firing time for transition t2. This transition is not present 
in the sequence σ1, but because of the token in place p3 it is 
enabled. As a result it has to be taken into consideration, be-
cause its execution would change the state of the network. The 
aforementioned analysis confirms the possibility of execution 
of transitions from the first t-invariant support.

For sequence σ2, it is easy to confirm that for the given net 
state it is not executable. The set of constraints is as follows:

Bσ2(z) = 
(

2 ∙ z0 ∙ 4, z0 + z1 ∙ 2,
2 ∙ z1 ∙ 4

)

There is no solution in 
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of the system model which the net represents. However, if the
search space is too large or even infinite, its realistic analysis
can only be performed using approximate methods.

A Petri net can be represented as an incidence matrix. In
such a matrix A = [ai j]n×m for a Petri net having n places and
m transitions, every entry ai, j contains an integer number being
a difference between the numbers of tokens residing in place
pi before and after firing transition t j. t-invariant is a vector
x ∈Nm such that A ·x = 0. A support of t-invariant x is set s(x)
of transitions which correspond to positive entries of x, i.e.,
s(x) = {t j : x j > 0; j = 1,2, ...,m}. Firing all the transitions
from s(x) a proper number of times (defined by the non-zero
entries of x) does non change the marking of the net. The net
is covered by t-invariants if every transition belongs to a sup-
port of at least one t-invariant. In the case of a Petri net being
a model of a biological system t-invariants correspond to more
complex subprocesses occurring in the system which do not
change its state. t-invariants are very useful for an analysis of
Petri net based models of biological systems (cf. [8, 9, 21]).
At the end of this section, elementary flux modes in metabolic
network analysis should be mentioned [22]. Elementary flux
modes represent minimal sets of enzymes which can operate
at steady state. Also, no other flux modes at a steady state are
proper subsets of elementary flux modes. Minimal t-invariants
in Petri nets are elementary flux modes counterparts, however,
the latter are more general because reversible reactions are al-
lowed [23]. Other relevant information can be found in, e.g.,
[6, 24].

2.2. Petri nets with time Extensions of Petri nets where time
is taken into account can be defined in many different ways.
The two most popular ones are Time Petri nets (TPN) and
Timed Petri nets (DPN). Below, in Definition 3 Time Petri net
is presented.

Definition 3. Time Petri net TPN [14]
Time Petri net is a set NT PN = {N, I}, where:
N = {P,T, f ,m0} is a classical Petri net,
I : T →Q+∪{0}×Q+∪{0}∪{∞}, where for every transition
t ∈ T , with I(t) = [I1(t), I2(t)], it holds that I1(t)≤ I2(t).

In this definition I is called a time function for N, where I1(t)
denotes the earliest firing time for transition t, I2(t) denotes the
latest firing time for t. Time counting for every transition be-
gins when it becomes enabled. Transition will fire after time
z: I1(t) ≤ z ≤ I2(t), i.e., transition may fire no sooner than at
I1(t) and it must fire no later than at I2(t) time. If at any time
before firing transition stops being enabled, after it becomes
enabled again the counting of its firing time must start from
0. The firing event is instantaneous, i.e., production and con-
sumption of tokens takes no time. It should be noted that time
values are not restricted to integers, they are in fact rational
numbers. This allows more flexibility when modeling a bio-
logical system where times of processes occurring in such sys-
tem can differ by orders of magnitude. A more complex time
scales (e.g., a logarithmic ones) can be used in the models.
Analytical techniques available for time Petri nets are not re-
stricted by this fact, due to the possibility of full transformation

of rational-value times into integer ones [14]. More complex
problems, e.g., time-scale decomposition, are often discussed
for stochastic Petri nets, which are mathematically similar to
the discussed type of Petri nets with time [25].

A state of a time Petri net is more complex than in a classical
net because it must also contain data about transitions’ timers
counting towards z value. For TPN its state is given as pair
z = (m,h), where m : P → N and h : T → Q+∪{0}∪{#}. To
fully describe a given state of TPN, a distribution of tokens in
places must be stored in the same way as it is for the classical
Petri net (function m). Additionally, a state of TPN must also
contain the value of every transition internal counter (function
h). h assigns values from interval [0,z], if the transition is en-
abled and symbol # otherwise [14]. It must be noted that states
of TPN change not only when a transition fires (and therefore
changes the numbers of tokens in places), but also when time
elapses.

3. Time Petri net analysis
It should be noted that the approaches basing on, e.g., t-
invariant analysis of a classical Petri net based models can still
be used with time Petri nets described in this paper. It is pos-
sible because the structure of a Petri net with time remains the
same as in the classical one. Such a structure is often called a
net skeleton [14] and it is equivalent to the classical Petri net
from Definition 1. The additional time data about subprocesses
delay or duration allows a creation of more precise models of
a studied biological system [15], for which a new analytical
approaches explained further become available.

3.1. t-invariant analysis The verification of the possibility to
execute all transitions from a given t-invariant support is one of
the relevant problems in time Petri nets analysis. Calculating
t-invariants is performed in the same way as in the case of clas-
sical Petri nets. However, checking whether transitions within
a support may run a specific number of times is difficult due
to time limits I1(t) and I2(t). Additionally, it is important that
the given verification should be available for unbounded time
Petri nets or in general without the necessity to analyze state
space of such a net, due to the fact that most of time Petri nets
constructed to model biological systems are unbounded [14].

In the literature it can be found a mathematical approach for
solving this problem based on a set of inequalities gathered
from time functions I(t) [14]. During our analysis a simple
TPN will be presented (Fig. 1) and verified using described so-
lution. As a next step, the expanded net (Fig. 2) with additional
transitions will be analyzed. Based on this TPN, an example
will be given, to confirm that a more complex verification is
required. To fully determine whether selected transitions may
be executed, an alternative method for solving the analogous
problem will be presented.

A special notation required for further analysis is introduced
in the aforementioned literature. Let σ = t j1 , ..., t jw be se-
quence of transitions and let zi ∈ Q+ with i = 1, ...,w− 1 be
the time which elapsed between the firing of transitions t ji and
t ji+1 . Then z0 denotes the time from the activation of transition
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+ for this set of inequalities. This is 
because transition t0 which is not in sequence σ2 is enabled and 
will be executed in time I2(t0) ∙ 2.

In fact, execution of the transition outside the sequence does 
not mean that transitions from the sequence cannot be executed. 
Moreover, it may cause that another concurrent transition will 
stop being enabled. To show the complexity of the problem, the 
presented TPN has been modified by adding extra transitions 
t6 and t7 (Fig. 2) (cf. [26]). During the structural analysis, three 
t-invariants were found:

x1 = (1, 0, 0, 1, 0, 1, 0, 0)
x2 = (0, 1, 1, 0, 0, 0, 0, 0)
x3 = (0, 0, 0, 0, 0, 0, 1, 1)

The first and the second ones have the same supports like x1 
and x2 for the TPN from Fig. 1. Additionally, there is a com-
pletely new t-invariant x3 with support s(x3) = {t6, t7}. It may 
be observed that after an execution of transition t0, there is 
an additional enabled transition t6. An execution of this new 

transition, causes that transition t3 is no longer enabled (when 
place p1 contains no tokens). It directly affects the possibility of 
execution of the transitions from sequence run σ2(z). Because 
of competing transitions t3 and t6, it is possible that transition 
t6 will use the token from place p1. This way transition t3 will 
stop being enabled. The token will be used by transition t7 and 
will return to place p1. It is possible that, the time passed during 
execution of transitions t6 and t7 will be long enough to make 
transition t1 enabled and to use a token from place p2 before 
transition t3 will be executed.

According to this, to verify every run of a sequence, it is 
necessary to construct a set of inequalities for every state of the 
analyzed network. If all constraints within this set of inequali-
ties for a given run of a sequence has a solution in 
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of the system model which the net represents. However, if the
search space is too large or even infinite, its realistic analysis
can only be performed using approximate methods.

A Petri net can be represented as an incidence matrix. In
such a matrix A = [ai j]n×m for a Petri net having n places and
m transitions, every entry ai, j contains an integer number being
a difference between the numbers of tokens residing in place
pi before and after firing transition t j. t-invariant is a vector
x ∈Nm such that A ·x = 0. A support of t-invariant x is set s(x)
of transitions which correspond to positive entries of x, i.e.,
s(x) = {t j : x j > 0; j = 1,2, ...,m}. Firing all the transitions
from s(x) a proper number of times (defined by the non-zero
entries of x) does non change the marking of the net. The net
is covered by t-invariants if every transition belongs to a sup-
port of at least one t-invariant. In the case of a Petri net being
a model of a biological system t-invariants correspond to more
complex subprocesses occurring in the system which do not
change its state. t-invariants are very useful for an analysis of
Petri net based models of biological systems (cf. [8, 9, 21]).
At the end of this section, elementary flux modes in metabolic
network analysis should be mentioned [22]. Elementary flux
modes represent minimal sets of enzymes which can operate
at steady state. Also, no other flux modes at a steady state are
proper subsets of elementary flux modes. Minimal t-invariants
in Petri nets are elementary flux modes counterparts, however,
the latter are more general because reversible reactions are al-
lowed [23]. Other relevant information can be found in, e.g.,
[6, 24].

2.2. Petri nets with time Extensions of Petri nets where time
is taken into account can be defined in many different ways.
The two most popular ones are Time Petri nets (TPN) and
Timed Petri nets (DPN). Below, in Definition 3 Time Petri net
is presented.

Definition 3. Time Petri net TPN [14]
Time Petri net is a set NT PN = {N, I}, where:
N = {P,T, f ,m0} is a classical Petri net,
I : T →Q+∪{0}×Q+∪{0}∪{∞}, where for every transition
t ∈ T , with I(t) = [I1(t), I2(t)], it holds that I1(t)≤ I2(t).

In this definition I is called a time function for N, where I1(t)
denotes the earliest firing time for transition t, I2(t) denotes the
latest firing time for t. Time counting for every transition be-
gins when it becomes enabled. Transition will fire after time
z: I1(t) ≤ z ≤ I2(t), i.e., transition may fire no sooner than at
I1(t) and it must fire no later than at I2(t) time. If at any time
before firing transition stops being enabled, after it becomes
enabled again the counting of its firing time must start from
0. The firing event is instantaneous, i.e., production and con-
sumption of tokens takes no time. It should be noted that time
values are not restricted to integers, they are in fact rational
numbers. This allows more flexibility when modeling a bio-
logical system where times of processes occurring in such sys-
tem can differ by orders of magnitude. A more complex time
scales (e.g., a logarithmic ones) can be used in the models.
Analytical techniques available for time Petri nets are not re-
stricted by this fact, due to the possibility of full transformation

of rational-value times into integer ones [14]. More complex
problems, e.g., time-scale decomposition, are often discussed
for stochastic Petri nets, which are mathematically similar to
the discussed type of Petri nets with time [25].

A state of a time Petri net is more complex than in a classical
net because it must also contain data about transitions’ timers
counting towards z value. For TPN its state is given as pair
z = (m,h), where m : P → N and h : T → Q+∪{0}∪{#}. To
fully describe a given state of TPN, a distribution of tokens in
places must be stored in the same way as it is for the classical
Petri net (function m). Additionally, a state of TPN must also
contain the value of every transition internal counter (function
h). h assigns values from interval [0,z], if the transition is en-
abled and symbol # otherwise [14]. It must be noted that states
of TPN change not only when a transition fires (and therefore
changes the numbers of tokens in places), but also when time
elapses.

3. Time Petri net analysis
It should be noted that the approaches basing on, e.g., t-
invariant analysis of a classical Petri net based models can still
be used with time Petri nets described in this paper. It is pos-
sible because the structure of a Petri net with time remains the
same as in the classical one. Such a structure is often called a
net skeleton [14] and it is equivalent to the classical Petri net
from Definition 1. The additional time data about subprocesses
delay or duration allows a creation of more precise models of
a studied biological system [15], for which a new analytical
approaches explained further become available.

3.1. t-invariant analysis The verification of the possibility to
execute all transitions from a given t-invariant support is one of
the relevant problems in time Petri nets analysis. Calculating
t-invariants is performed in the same way as in the case of clas-
sical Petri nets. However, checking whether transitions within
a support may run a specific number of times is difficult due
to time limits I1(t) and I2(t). Additionally, it is important that
the given verification should be available for unbounded time
Petri nets or in general without the necessity to analyze state
space of such a net, due to the fact that most of time Petri nets
constructed to model biological systems are unbounded [14].

In the literature it can be found a mathematical approach for
solving this problem based on a set of inequalities gathered
from time functions I(t) [14]. During our analysis a simple
TPN will be presented (Fig. 1) and verified using described so-
lution. As a next step, the expanded net (Fig. 2) with additional
transitions will be analyzed. Based on this TPN, an example
will be given, to confirm that a more complex verification is
required. To fully determine whether selected transitions may
be executed, an alternative method for solving the analogous
problem will be presented.

A special notation required for further analysis is introduced
in the aforementioned literature. Let σ = t j1 , ..., t jw be se-
quence of transitions and let zi ∈ Q+ with i = 1, ...,w− 1 be
the time which elapsed between the firing of transitions t ji and
t ji+1 . Then z0 denotes the time from the activation of transition
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+, then for 
sure all transitions from this sequence may be executed. Oth-
erwise, according to the example above, it cannot be excluded.

3.2. Minimum and maximum run of sequence. Because 
of such restrictive approach proposed in the aforementioned 
literature, the above analysis has a minor usability for longer 
t-invariants. According to this, additional verification method 
is proposed [26] based on the following definitions:

Definition 4. Feasible run [14]
Run σ(z) is called feasible from state z in NTPN, if there is state 
z0 such that σ(z) can fire from z into z0.

Definition 5. Firing sequence [14]
Transition sequence σ is a firing transition sequence in the TPN 
if there is a feasible run σ(z) in NTPN.

Definition 6. Length of a run [14]
For given TPN and a feasible run σ(z) of firing sequence σ in 
NTPN . The length of time l(σ(z)) of σ(z) is the sum of all times 
elapsing over the course of the firing of σ(z).

Definition 7. Minimum run [14]
Feasible run σ(z) of σ has minimum length of time, if there is 
no feasible run of σ with length of time shorter than l(σ(z)).

The notation of maximum run may be defined analogous, if 
the set of all lengths of feasible runs of σ has an upper bound 
[14]. For the current analysis minimum and maximum length 
of run are calculated. As an example, two competing transi-
tions t3 and t1 are selected from the second TPN (Fig. 2). The 
last common transition which precedes both of them is t0. In 
Table 1, there are generated possible transition sequences, 
which are started from transition t0 and stopped at t3 or t1. Under 

Table 1 
Minimum and maximum length of run  
for the analyzed transition sequences

σ t0, t1 t0, t3 t0, t6, t7, t3

min l(σ(z)) 2 0 0

max l(σ(z)) 6 3 6
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Algorithm 1

 1: RES := 0/
 2: for all tj 2 s(x) do {
 3: for all pi 2• tj do {
 4: if jpi

•j > 1 then {
 5: S := pi

•  {tj};
 6: for all tc 2 S do {
 7: if I1(tc) ¸ I2(tj) AND m(pi) ¸ wpi!tc then {
 8: checkPreconditions(S);

 9: kmin := 
c=1

jSj∑ wpi! tc 
 I1(tj) ¡ ε

I2(tc) 
 + wpi! tj ;

 10: kmax := 
c=1

jSj∑ wpi! tc 
 I2(tj)
I1(tc) 

 + wpi! tj ;

 11: RES := RES [ {(pi, [kmin, kmax])};
 12: break ;
 13: }
 14: }
 15: }
 16: }
 17: }

every transition sequence minimum and maximum lengths of 
their run are calculated.

The minimum length of run for sequence t0, t1 equals to 2, 
when the maximum length of run for sequence t0, t6, t7, t3 is 
greater and equals to 6. According to this analysis, it is possible 
to execute transition t1, before transition t3. Based on that kind 
of comparison it is possible to check whether any transition 
may be executed before other concurrent transitions. Analogous 
analysis will be used in an extension of algorithm 1.

4. Calculating the number of tokens required 
for transition firing

In order to investigate the possibility of firing of all transitions 
from a t-invariant support, the following algorithm (Alg. 1) 
has been proposed. As an initial parameter there is an empty 
result set RES declared. Further notation contains t-invariant 
support s(x) selected for further analysis. The weight of an arc 
from place pi to transition tj is denoted by wpi!tj. Addition-
ally, symbol ε will be used to denote arbitrarily small posi-
tive number. The result of the algorithm is a set of places with 
minimal and maximal numbers of tokens required for selected 
transitions execution.

step 4 tells us whether transitions belonging to a t-invariant 
support are competing for tokens with another transition 
from this t-invariant support or from any other part of the net.

● Set S contains all transitions which are competing with tj 
(without transitions connected by a read arc, because they 
do not consume tokens). For each of them there is a condi-
tion to check that their earlies firing time is not smaller than 
the latest firing time of selected transition tj. Additionally, 
there is a condition to check that place pi contains enough 
tokens to activate concurrent transitions.

● When the conditions are met, place pi must contain an ap-
propriate number of tokens to execute transition tj. This 
number is calculated as an interval:
– in the most optimistic case, the minimal number of tokens 

kmin is equal to a sum of the earliest firing time of tran-
sition tj divided by the latest firing time of each com-
peting transition, multiplied by the weights of arcs from 
pi to tc plus the weight of the arc from pi to tj. If 
I1(tj) = I2(tc) then considering the most optimistic sce-
nario transition tj fires before tc, that is why an ε is sub-
tracted from I1(tj).

– in the most pessimistic case, the maximal number of to-
kens kmax is equal to a sum of the latest firing time of 
transition tj divided by the earliest firing time of each 
competing transition plus the weight of the arc from pi 
to tj. Again, the quotient values are multiplied by the 
weights of the corresponding arcs.

● In order to avoid dividing by zero a dedicated procedure 
checkPreconditions(S) has been proposed with the fol-
lowing conditions:
– if there exists concurrent transition with I2(tc) = 0 and 

I1(tj)  6= 0, then kmin = 1 and transition tj cannot be fired 
until j•tcj = 1

– if there exists concurrent transition with I1(tc) = 0 and 
I2(tj)  6= 0, then kmax = 1

– if I1(tj) = 0 then kmin = 1
– if I2(tj) = 0 then kmax = 1

● Obtained interval [kmin, kmax] for place pi means that verified 
transition tj from the t-invariant support:
– surely will be executed, if there is at least kmax tokens 

in place pi. That is because kmax denotes a number of 
tokens required to run all competing transitions in their 
earliest firing time with the assumption that tj is fired in 
the latest firing time.

– may be executed, if there is at least kmin tokens in place pi.
– cannot be executed, if there is less than kmin tokens in 

place pi and additional pre-places of competing transi-
tions do not exist in the TPN. That is because kmin denotes 
a number of tokens required to run tj in its earliest firing 
time with the assumption that all the competing transi-
tions are fired in the latest firing time.

● All places with calculated interval [kmin, kmax] are added to 
the result set. If the algorithm finishes with an empty result 
set, it is a confirmation that all transitions from the verified 
t-invariant support will be executed. Otherwise, transitions 
are guaranteed to be executed when there are kmax tokens in 
every place from the result set.

The algorithm is finished when all transitions from a given 
t-invariant support will be verified (compared with concurrent 
transitions). Its complexity in the worst case is O(jT j2jPj).

Based on the presented algorithm, a verification of a possi-
bility of a t-invariant execution can be done as follows:
● For each transition tj belonging to transition sequence σ, ver-

ification is based on checking whether pre-places of tj have 
more than one post-transition. Validation of the condition in 
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4.1. An example without concurrent transitions. At the begin-
ning, proposed algorithm is adapted to verify a small time Petri 
net without concurrent transitions (Fig. 3). It may be observed 
that it contains two t-invariants:

x1 = (0, 1, 1, 0, 0) with support: s(x1) = {t1, t2} and
x2 = (0, 0, 0, 1, 1) with support: s(x2) = {t3, t4}.

In the third step of Algorithm 1 there is no place found with 
more than one post-transition. Because there are no competing 
transitions in this TPN, both transitions from both t-invariant 
supports may be executed without any additional constraints.

4.2. An example with concurrent transitions. In Fig. 4, a time 
Petri net with two t-invariants is shown.

x1 =  (0, 1, 1, 1, 0, 0, 0, 0, 1, 1) with support: 
s(x1) = {t1, t2, t3, t8, t9} and

x2 = (0, 0, 0, 0, 0, 0, 1, 1, 0, 0) with support: s(x2) = {t6, t7}.
In this respect, t-invariant support s(x2) will be considered. Ac-
cording to Algorithm 1, there is set of transitions S = {t4, t5, t8}, 
which are competing with transition t6 (from s(x2)) for tokens 
from place p3.

Comparing firing times of concurrent transitions, the con-
dition from step 7 is met with values I1(t4) = 3 and I2(t6) = 6. 
Because I1(t4) > I2(t6) there are additional tokens required in 
place p3 to execute transitions from s(x2):

kmin = 

 I1(t6) ¡ ε

I2(t4) 
 + 


 I1(t6) ¡ ε

I2(t5) 
 + 


 I1(t6) ¡ ε

I2(t8) 
 + 1

kmin = 

5 ¡ ε

4 
 + 


5 ¡ ε

7 
 + 


5 ¡ ε

2 
 + 1

kmin = 1 + 0 + 2 + 1 = 4

kmax = 

 I2(t6)

I1(t4) 
 + 


 I2(t6)

I1(t5) 
 + 


 I2(t6)

I1(t8) 
 + 1

kmax = 

6

3 
 + 


6

6 
 + 


6

1 
 + 1

kmax = 2 + 1 + 6 + 1 = 10

The resulted set produced by the algorithm contains one 
element: ( p3, [4, 10]). This means that transition t6 from the 
second t-invariant support:

– surely will be executed, when place p3 contains at least 
10 tokens,

– might be executed when there are at least 4 tokens in 
place p3.

Since competing transition t8 has more than one pre-place, we 
cannot say that it is impossible to execute t6, if there is less than 
4 tokens in place p3. This particular case will be presented in de-
tail in the next Section describing the extension of the algorithm.

Fig. 3. Time Petri net without concurrent transitions
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Fig. 4. Unbounded time Petri net with concurrent transitions for Algorithm 1 analysis
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4.3. Algorithm extension. If in set S there exists at least one 
transition tc with j•tcj > 1, then it is possible to apply an addi-
tional analysis based on the approach from the previous section. 
Analogous to Table 1, transition sequences with minimum and 
maximum length of run will be generated. As a result, a de-
creased number of required tokens (kmin) may be calculated.

According to the calculation prepared for Fig. 4, there is 
a competing transition t8 2 S with two pre-places p3 and p4. 
When there are no tokens in place p4, transition t8 is not enabled 
and will not fire before transition t6 from s(x2). It is possible to 
compare the maximum run for sequence σ1 = t3, t8 and the min-
imum run for sequence σ2 = t2, t6, because they have common 
initial transition t1:

max l(σ1(z)) = I2(t3) + I2(t8) = 9 + 2 = 11
min l(σ2(z)) = I1(t2) + I1(t6) = 0 + 5 = 5.

Based on this calculations, it may be observed that in the 
most optimistic case tokens may approach place p4 in time 
I2(t3) = 9. During this time, transition t8 may not be enabled and 
for that time may not actively compete with transition t6. For 
this particular situation it may be omitted from kmin calculations. 
Instead of that, lengths of run should be taken into account. The 
reduced minimal number of tokens required to execute t6 may 
be calculated in the following way:

kmin = 

 I1(t6)

I2(t4) 
 + 


 I1(t6)

I2(t5) 
 + 


min l(σ2(z))

max l(σ1(z)) 
 + 1

kmin = 

5

4 
 + 


5

7 
 + 


5
11 
 + 1

kmin = 1 + 0 + 0 + 1 = 2

It means that in the most optimistic case at least two tokens are 
required in place p3 to execute transition t6.

4.4. An example of virus infection TPN based model. To 
visualize the biological relevance of the proposed algorithm 
an additional Petri net has been proposed (Fig. 5). The model 
shows an infection of uninfected cells by virus and an immune 
system response. Time ranges adapted to this model are esti-
mated to represent the real life biological behaviour. When the 
external infection occurs and the virus enters the cell, the repli-
cation of the virus starts. When the immune system responds to 
infection, cells are producing interferon and the immune system 
is producing immunoglobulin G (IgG). This production and 
accumulation is the long term response of the body, but finally 
it protects from infection (cf. [28]).

For the proposed model (Fig. 5), there are computed the 
following t-invariants:

x1 = (1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
x2 = (0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 3, 0, 2, 0, 0)
x3 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1)
x4 = (0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0)
x5 = (0, 1, 1, 6, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
x6 = (0, 3, 3, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 1, 0)
x7 = (0, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 1, 0)
x8 = (0, 0, 0, 0, 0, 0, 1, 3, 0, 0, 0, 0, 1, 1, 0)
x9 = (0, 6, 6, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 2, 3)
x10 = (0, 7, 7, 0, 1, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0)
x11 = (0, 7, 7, 0, 1, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0)
x12 = (0, 1, 1, 0, 1, 0, 2, 6, 0, 0, 0, 0, 2, 0, 0)
x13 = (0, 7, 7, 0, 1, 0, 0, 0, 6, 0, 0, 0, 0, 0, 3)

with supports:
s(x1) = {T0_Cell_death, T1_Cell_growth}
s(x2) = {T6_Immune_system_response,

T10_IgM_degradation, T12_IgG_degradation}

Fig. 5. Unbounded time Petri net based model of virus infection and an immune system response
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s(x3) = {T9_Interferon_degradation,
T14_ICell_interferon_signal}

s(x4) = {T3_Virus_degradation, T13_External_infection}
s(x5) = {T1_Cell_growth, T2_Cell_infection,

T3_Virus_degradation, T4_Virus_release}
s(x6) = {T1_Cell_growth, T2_Cell_infection,

T5_InfCell_death, T13_External_infection}
s(x7) = {T1_Cell_growth, T2_Cell_infection,

T11_Acquired_immunity, T13_External_infection}
s(x8) = {T6_Immune_system_response,

T7_IgM_virus_suppression, T12_IgG_degradation,
T13_External_infection}

s(x9) = {T1_Cell_growth, T2_Cell_infection,
T8_ICell_interferon_defense, T13_External_infection,
T14_ICell_interferon_signal}

s(x10) = {T1_Cell_growth, T2_Cell_infection,
T4_Virus_release, T5_InfCell_death}

s(x11) = {T1_Cell_growth, T2_Cell_infection,
T4_Virus_release, T11_Acquired_immunity}

s(x12) = {T1_Cell_growth, T2_Cell_infection,
T4_Virus_release, T6_Immune_system_response,
T7_IgM_virus_suppression, T12_IgG_degradation}

s(x13) = {T1_Cell_growth, T2_Cell_infection,
T4_Virus_release, T8_ICell_interferon_defense,
T14_ICell_interferon_signal}

In order to present the Algorithm 1 behaviour, an anal-
ysis of the first three t-invariants will be presented. For all of 
them the algorithm generates non-empty result set. For t-in-
variant x1 and support s(x1) there is set S with one transition, 
i.e., S = {T2_Cell_infection}, which competes with transition  
T0_Cell_death (from s(x1)) for tokens from place Uninfected_cells.  
It may be confirmed that in the most optimistic case only one 
token will be enough to execute transition t2:

kmin = 

 I1(t0) ¡ ε

I2(t2) 
 + 1 = 


2 ¡ ε

6 
 + 1 = 1

kmax = 

 I2(t0)

I1(t2) 
 + 1 = 


6

2 
 + 1 = 4

For t-invariant x2 with support s(x2) there is set S with one 
transition, i.e., S = {T7_IgM_virus_suppression}, which com-
petes with transition T10_IgM_degradation (from s(x2)) for 
tokens from place IgM_ proteins. Comparing firing times of 
the concurrent transitions, the condition from step 7 is met with 
values I2(t10) = 11 and I1(t7) = 2. Additionally, weight of the arc 
from place IgM_ proteins to concurrent transition t7 is equal 
to 1 and this place will be supplied with 3 tokens. Because 
I2(t10) > I1(t7) there are additional tokens required in place 
IgM_ proteins to execute transitions from s(x2):

kmin = 

 I1(T10) ¡ ε

I2(T7) 
 + 2 = 


5 ¡ ε

4 
 + 2 = 3

kmax = 

I2(T10)

I1(T7) 
 + 2 = 


11

2 
 + 2 = 7

The result set RES produced by the algorithm contains one 
element: (IgM_proteins, [3, 7]). This means that transition 
T10_IgM_degradation from the second t-invariant support:

– surely will be executed, when place IgM_ proteins contains 
at least 7 tokens,

– might be executed when there are at least 3 tokens in place 
IgM_ proteins.

Because transition T6_Immune_system_response generates 3 
tokens for place IgM_ proteins, execution of T10_IgM_degra-
dation is always possible.

Analogously, for t-invariant x3 support s(x3) is verified. 
Set S contains one transition T8_ICell_interferon_defense, 
which competes with T9_Interferon_degradation for tokens 
from place Interferon. Because the condition from step 7 is 
met (I2(t9) > I1(t8)), there are additional tokens required for 
that place:

kmin = 

 I1(T9) ¡ ε

I2(T8) 
 + 2 = 


5 ¡ ε

4 
 + 2 = 3

kmax = 

 I2(T9)

I1(T8) 
 + 2 = 


14

1 
 + 2 = 16

For t-invariant x3, the algorithm produced set RES with one 
element: (Interferon, [3, 16]). This means that transition T9_In-
terferon_degradation:
– surely will be executed, when place Interferon contains at 

least 16 tokens,
– might be executed when there are at least 3 tokens in place 

IgM_ proteins.
– cannot be executed, if there is less then 3 tokens in that place.

The proposed algorithm adapted to the time Petri net based 
model of virus infection, may return all places which require an 
additional number of tokens. Based on these values, it is pos-
sible to identify transitions from selected t-invariant supports 
in which execution will be delayed or less realistic. This gives 
a strong biological relevance in further model analysis.

5. Preparation and verification of time parameters

During the creation of a time Petri net based model of some 
complex biological system, one may encounter a problem of 
a selection of the proper time values for transitions. Such pa-
rameters should assure that the net will behave in accordance 
with the current knowledge about the modeled biological 
system. While searching for this knowledge in the literature, 
there is a possibility that the times describing the analyzed re-
actions are given imprecisely, or for some parts of the biological 
system they are not given at all. For models of some biological 
systems, such data can be obtained using analytical methods 
taking into account the structure of the net as well as some 
characteristics of the modeled system.

A method for establishing time parameters that follows 
from the net structure has been proposed in [16] for signaling 
pathways modeled using timed Petri net (DPN). Such a net is 
defined as follows:

Definition 8. Timed Petri net (DPN) [14]
Timed Petri net is a set NDPN = {N, D}, where:
N = {P, T, f, m0} is a classical Petri net,
D : T ! 

Modeling biological systems using time Petri nets

of the system model which the net represents. However, if the
search space is too large or even infinite, its realistic analysis
can only be performed using approximate methods.

A Petri net can be represented as an incidence matrix. In
such a matrix A = [ai j]n×m for a Petri net having n places and
m transitions, every entry ai, j contains an integer number being
a difference between the numbers of tokens residing in place
pi before and after firing transition t j. t-invariant is a vector
x ∈Nm such that A ·x = 0. A support of t-invariant x is set s(x)
of transitions which correspond to positive entries of x, i.e.,
s(x) = {t j : x j > 0; j = 1,2, ...,m}. Firing all the transitions
from s(x) a proper number of times (defined by the non-zero
entries of x) does non change the marking of the net. The net
is covered by t-invariants if every transition belongs to a sup-
port of at least one t-invariant. In the case of a Petri net being
a model of a biological system t-invariants correspond to more
complex subprocesses occurring in the system which do not
change its state. t-invariants are very useful for an analysis of
Petri net based models of biological systems (cf. [8, 9, 21]).
At the end of this section, elementary flux modes in metabolic
network analysis should be mentioned [22]. Elementary flux
modes represent minimal sets of enzymes which can operate
at steady state. Also, no other flux modes at a steady state are
proper subsets of elementary flux modes. Minimal t-invariants
in Petri nets are elementary flux modes counterparts, however,
the latter are more general because reversible reactions are al-
lowed [23]. Other relevant information can be found in, e.g.,
[6, 24].

2.2. Petri nets with time Extensions of Petri nets where time
is taken into account can be defined in many different ways.
The two most popular ones are Time Petri nets (TPN) and
Timed Petri nets (DPN). Below, in Definition 3 Time Petri net
is presented.

Definition 3. Time Petri net TPN [14]
Time Petri net is a set NT PN = {N, I}, where:
N = {P,T, f ,m0} is a classical Petri net,
I : T →Q+∪{0}×Q+∪{0}∪{∞}, where for every transition
t ∈ T , with I(t) = [I1(t), I2(t)], it holds that I1(t)≤ I2(t).

In this definition I is called a time function for N, where I1(t)
denotes the earliest firing time for transition t, I2(t) denotes the
latest firing time for t. Time counting for every transition be-
gins when it becomes enabled. Transition will fire after time
z: I1(t) ≤ z ≤ I2(t), i.e., transition may fire no sooner than at
I1(t) and it must fire no later than at I2(t) time. If at any time
before firing transition stops being enabled, after it becomes
enabled again the counting of its firing time must start from
0. The firing event is instantaneous, i.e., production and con-
sumption of tokens takes no time. It should be noted that time
values are not restricted to integers, they are in fact rational
numbers. This allows more flexibility when modeling a bio-
logical system where times of processes occurring in such sys-
tem can differ by orders of magnitude. A more complex time
scales (e.g., a logarithmic ones) can be used in the models.
Analytical techniques available for time Petri nets are not re-
stricted by this fact, due to the possibility of full transformation

of rational-value times into integer ones [14]. More complex
problems, e.g., time-scale decomposition, are often discussed
for stochastic Petri nets, which are mathematically similar to
the discussed type of Petri nets with time [25].

A state of a time Petri net is more complex than in a classical
net because it must also contain data about transitions’ timers
counting towards z value. For TPN its state is given as pair
z = (m,h), where m : P → N and h : T → Q+∪{0}∪{#}. To
fully describe a given state of TPN, a distribution of tokens in
places must be stored in the same way as it is for the classical
Petri net (function m). Additionally, a state of TPN must also
contain the value of every transition internal counter (function
h). h assigns values from interval [0,z], if the transition is en-
abled and symbol # otherwise [14]. It must be noted that states
of TPN change not only when a transition fires (and therefore
changes the numbers of tokens in places), but also when time
elapses.

3. Time Petri net analysis
It should be noted that the approaches basing on, e.g., t-
invariant analysis of a classical Petri net based models can still
be used with time Petri nets described in this paper. It is pos-
sible because the structure of a Petri net with time remains the
same as in the classical one. Such a structure is often called a
net skeleton [14] and it is equivalent to the classical Petri net
from Definition 1. The additional time data about subprocesses
delay or duration allows a creation of more precise models of
a studied biological system [15], for which a new analytical
approaches explained further become available.

3.1. t-invariant analysis The verification of the possibility to
execute all transitions from a given t-invariant support is one of
the relevant problems in time Petri nets analysis. Calculating
t-invariants is performed in the same way as in the case of clas-
sical Petri nets. However, checking whether transitions within
a support may run a specific number of times is difficult due
to time limits I1(t) and I2(t). Additionally, it is important that
the given verification should be available for unbounded time
Petri nets or in general without the necessity to analyze state
space of such a net, due to the fact that most of time Petri nets
constructed to model biological systems are unbounded [14].

In the literature it can be found a mathematical approach for
solving this problem based on a set of inequalities gathered
from time functions I(t) [14]. During our analysis a simple
TPN will be presented (Fig. 1) and verified using described so-
lution. As a next step, the expanded net (Fig. 2) with additional
transitions will be analyzed. Based on this TPN, an example
will be given, to confirm that a more complex verification is
required. To fully determine whether selected transitions may
be executed, an alternative method for solving the analogous
problem will be presented.

A special notation required for further analysis is introduced
in the aforementioned literature. Let σ = t j1 , ..., t jw be se-
quence of transitions and let zi ∈ Q+ with i = 1, ...,w− 1 be
the time which elapsed between the firing of transitions t ji and
t ji+1 . Then z0 denotes the time from the activation of transition
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D is a function that assigns to every transition tj delay value 
dj being a positive rational number. In such a net it is always 
assumed that an enabled transition has to fire immediately. In 
contrast to other nets, only the consumption of tokens from 
pre-places of a transition is an instantaneous action. When it 
happens, the transition starts counting time from 0 to di. When 
the transition internal counter reaches time dj, then the transition 
produces tokens in its post-places. An enabled transition that 
started counting time towards dj will always produce tokens 
(after time dj), no matter if it is still enabled or not after it 
(immediately) consumed tokens from pre-places.

In the methodology for establishing time parameters (i.e., 
delays in the aforementioned timed Petri net) described in [16] 
one feature of a system modeled is especially important, i.e., 
a lack of cycles. This approach is based on a system of equa-
tions and inequalities, using the so called firing frequencies for 
transitions. As it is stated in [16], in a timed Petri net a firing 
frequency fj of a transition tj is constrained by its delay time dj 
and the maximum of firing frequency is the reciprocal of dj. 
A firing frequency is a value which tells how many number 
of times a given transition fire in some pre-established time 
unit. Here we will use the notation where fOa

 and fIb
 describe 

respectively the firing frequency of some post-transition (ta) 
and pre-transition (tb) of place pi. Indexes a and b will be used 
to help in distinguishing between post- and pre-transitions of pi.

The whole approach is based on an assumption that for 
every substance represented by places, its total production (by 
transition firing) is equal to its consumption in a given time unit. 
Therefore, for every place pi the following equation must hold:

 
a = 1

ma

∑ KOa = 
b = 1

mb

∑ KIb. (1)

In equation (1), value ma = jpi
•j and mb = j•pij. KOa

 denotes 
a number of tokens taken from pi in an established time unit 
by a transition ta 2 pi

•, while KIb
 denotes a number of tokens 

produced in place pi in the same time unit by some transition 
tb 2 •pi. This equation has to hold for the maximal firing fre-
quencies of transitions. It can be achieved in a timed Petri net, 
where all enabled transitions must fire immediately. Because 
firing frequency fj is a reciprocal of delay value dj, the latter 
one can be established on the basis of fj.

There are two mathematical rules to determine the speed 
of a transition firing. Firstly, for every place pi with only one 
post-transition tO and with at least one pre-transition tIb

, the 
maximum firing frequency fj must satisfy the following equa-
tion:

 
b = 1

mb

∑ βb ¢ fIb = α ¢ fO. (2)

In the above equation mb = j•pij, while α and βb are weights 
of arcs (pi, tO) and (tIb

, pi) respectively. fIb
 and fO denote the 

maximal firing frequencies for the mb pre-transitions and for 
the one post-transition tO respectively.

The second rule applies to any place pi for which there is 
a conflict of post-transitions. In such a case the transitions must 
have firing frequencies f  for which:

 
(

a=1
ma∑  αa ¢ fOa = 

b=1
mb∑ βb ¢ fIb

2 ¢  fOma

αma
 ¸  fO1

α1
 ¸  fO2

α2
 ¸ … ¸  fOma

αma
.
 (3)

where αa and βb describe the weights of arcs (pi, tOa) and (tIb
, pi) 

respectively and αa satisfies α1 ¸ α2 … ¸ αma
. fOa

 and fIb
 are 

the maximum firing frequencies of post- and pre-transitions 
respectively.

The presented approach can help in establishing delays for 
a timed Petri net. The drawback of the this approach is that the 
delays computed in such a way for the conflicted transitions 
will always be the same with respect to the values of weights 
of the given arcs, i.e., different delays for such transitions are 
possible only if there are different αj values (i.e., the weights). 
Therefore, two transitions in conflict, representing hypotheti-
cally very different reactions, will have the same delays if the 
weights of their arcs are equal. This is obviously an issue when 
modeling biological systems.

For this reason in [29] an extension of the method has been 
proposed, allowing the assignment of different delays for the 
conflicted transitions. Another important addition to the de-
scribed approach is that one can assign a time range for the re-
actions, allowing one to use time Petri net (TPN) based models. 
Because of the rather complex nature of such addition, only 
the very basis of it will be presented in this section. The new 
approach is based on the so called retention-free net, in which 
the flow of tokens in every pre-established time unit for a given 
place px is governed by the following inequality:

 
b = 1

mb

∑ KIb ∙ 
a = 1

ma

∑ KOa. (4)

Variables in the above inequality are the same as for the 
already described equation (1), and the difference between the 
two is quite obvious. For a net where the following inequity 
holds (i.e., retention-free net introduced [29]) in a given time 
unit for every place pi the number of tokens produced in pi by its 
pre-transitions is never greater than the number of tokens taken 
from pi by its post-transition in the same time unit. In other 
words, the net designed using this methodology in all its places 
produces no more tokens than can be consumed at a given time.

Both methods offer new possibilities. In a case when one 
lacks the data about the reaction times, they can be drawn 
directly from the net structure, assuming there exist some equi-
librium in the biological system that can be represented by 
the balance of the flow of tokens in the net. In [16] and [29] 
the authors proved the usability of their methods for signal 
transduction in apoptotic pathway and the signaling pathway 
for interleukin-1, respectively. The calculated times and delays 
allows the steady flow of tokens resulting in keeping the whole 
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system balanced. However, the problem with cycles within the 
net making the calculation of the exact time values impossible 
remains. The authors acknowledge the existence of such an 
issue [29], studying of which can further extend the whole 
proposed methodology.

6. Other types of time Petri nets

Theoretically one can try to combine (to some extent) both 
types of Petri nets with time (TPN and DPN) into a net where 
firing a transition is defined by a range (I from Definition 3), 
but when a transition fires it only consumes tokens and starts 
counting from 0 to di. Such a net behaves similar to DPN de-
scribed in Definition 8, except the fact that enabled transition 
will not fire immediately, but after time z in range I.

In the nets discussed so far time is a parameter assigned to 
the transitions. There is however another type of Petri net with 
time, where the time is assigned to places. In [17] a determin-
istic interval timed places Petri net (DITPPN) has been given. 
Definition 9 describes such a net:

Definition 9. Deterministic interval timed places Petri net 
(DITPPN)
Such a net is a set NDITPPN = {N, F}, where:
N = {P, T, f, m0} is a classical Petri net,
F : P ! [
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of the system model which the net represents. However, if the
search space is too large or even infinite, its realistic analysis
can only be performed using approximate methods.

A Petri net can be represented as an incidence matrix. In
such a matrix A = [ai j]n×m for a Petri net having n places and
m transitions, every entry ai, j contains an integer number being
a difference between the numbers of tokens residing in place
pi before and after firing transition t j. t-invariant is a vector
x ∈Nm such that A ·x = 0. A support of t-invariant x is set s(x)
of transitions which correspond to positive entries of x, i.e.,
s(x) = {t j : x j > 0; j = 1,2, ...,m}. Firing all the transitions
from s(x) a proper number of times (defined by the non-zero
entries of x) does non change the marking of the net. The net
is covered by t-invariants if every transition belongs to a sup-
port of at least one t-invariant. In the case of a Petri net being
a model of a biological system t-invariants correspond to more
complex subprocesses occurring in the system which do not
change its state. t-invariants are very useful for an analysis of
Petri net based models of biological systems (cf. [8, 9, 21]).
At the end of this section, elementary flux modes in metabolic
network analysis should be mentioned [22]. Elementary flux
modes represent minimal sets of enzymes which can operate
at steady state. Also, no other flux modes at a steady state are
proper subsets of elementary flux modes. Minimal t-invariants
in Petri nets are elementary flux modes counterparts, however,
the latter are more general because reversible reactions are al-
lowed [23]. Other relevant information can be found in, e.g.,
[6, 24].

2.2. Petri nets with time Extensions of Petri nets where time
is taken into account can be defined in many different ways.
The two most popular ones are Time Petri nets (TPN) and
Timed Petri nets (DPN). Below, in Definition 3 Time Petri net
is presented.

Definition 3. Time Petri net TPN [14]
Time Petri net is a set NT PN = {N, I}, where:
N = {P,T, f ,m0} is a classical Petri net,
I : T →Q+∪{0}×Q+∪{0}∪{∞}, where for every transition
t ∈ T , with I(t) = [I1(t), I2(t)], it holds that I1(t)≤ I2(t).

In this definition I is called a time function for N, where I1(t)
denotes the earliest firing time for transition t, I2(t) denotes the
latest firing time for t. Time counting for every transition be-
gins when it becomes enabled. Transition will fire after time
z: I1(t) ≤ z ≤ I2(t), i.e., transition may fire no sooner than at
I1(t) and it must fire no later than at I2(t) time. If at any time
before firing transition stops being enabled, after it becomes
enabled again the counting of its firing time must start from
0. The firing event is instantaneous, i.e., production and con-
sumption of tokens takes no time. It should be noted that time
values are not restricted to integers, they are in fact rational
numbers. This allows more flexibility when modeling a bio-
logical system where times of processes occurring in such sys-
tem can differ by orders of magnitude. A more complex time
scales (e.g., a logarithmic ones) can be used in the models.
Analytical techniques available for time Petri nets are not re-
stricted by this fact, due to the possibility of full transformation

of rational-value times into integer ones [14]. More complex
problems, e.g., time-scale decomposition, are often discussed
for stochastic Petri nets, which are mathematically similar to
the discussed type of Petri nets with time [25].

A state of a time Petri net is more complex than in a classical
net because it must also contain data about transitions’ timers
counting towards z value. For TPN its state is given as pair
z = (m,h), where m : P → N and h : T → Q+∪{0}∪{#}. To
fully describe a given state of TPN, a distribution of tokens in
places must be stored in the same way as it is for the classical
Petri net (function m). Additionally, a state of TPN must also
contain the value of every transition internal counter (function
h). h assigns values from interval [0,z], if the transition is en-
abled and symbol # otherwise [14]. It must be noted that states
of TPN change not only when a transition fires (and therefore
changes the numbers of tokens in places), but also when time
elapses.

3. Time Petri net analysis
It should be noted that the approaches basing on, e.g., t-
invariant analysis of a classical Petri net based models can still
be used with time Petri nets described in this paper. It is pos-
sible because the structure of a Petri net with time remains the
same as in the classical one. Such a structure is often called a
net skeleton [14] and it is equivalent to the classical Petri net
from Definition 1. The additional time data about subprocesses
delay or duration allows a creation of more precise models of
a studied biological system [15], for which a new analytical
approaches explained further become available.

3.1. t-invariant analysis The verification of the possibility to
execute all transitions from a given t-invariant support is one of
the relevant problems in time Petri nets analysis. Calculating
t-invariants is performed in the same way as in the case of clas-
sical Petri nets. However, checking whether transitions within
a support may run a specific number of times is difficult due
to time limits I1(t) and I2(t). Additionally, it is important that
the given verification should be available for unbounded time
Petri nets or in general without the necessity to analyze state
space of such a net, due to the fact that most of time Petri nets
constructed to model biological systems are unbounded [14].

In the literature it can be found a mathematical approach for
solving this problem based on a set of inequalities gathered
from time functions I(t) [14]. During our analysis a simple
TPN will be presented (Fig. 1) and verified using described so-
lution. As a next step, the expanded net (Fig. 2) with additional
transitions will be analyzed. Based on this TPN, an example
will be given, to confirm that a more complex verification is
required. To fully determine whether selected transitions may
be executed, an alternative method for solving the analogous
problem will be presented.

A special notation required for further analysis is introduced
in the aforementioned literature. Let σ = t j1 , ..., t jw be se-
quence of transitions and let zi ∈ Q+ with i = 1, ...,w− 1 be
the time which elapsed between the firing of transitions t ji and
t ji+1 . Then z0 denotes the time from the activation of transition
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of the system model which the net represents. However, if the
search space is too large or even infinite, its realistic analysis
can only be performed using approximate methods.

A Petri net can be represented as an incidence matrix. In
such a matrix A = [ai j]n×m for a Petri net having n places and
m transitions, every entry ai, j contains an integer number being
a difference between the numbers of tokens residing in place
pi before and after firing transition t j. t-invariant is a vector
x ∈Nm such that A ·x = 0. A support of t-invariant x is set s(x)
of transitions which correspond to positive entries of x, i.e.,
s(x) = {t j : x j > 0; j = 1,2, ...,m}. Firing all the transitions
from s(x) a proper number of times (defined by the non-zero
entries of x) does non change the marking of the net. The net
is covered by t-invariants if every transition belongs to a sup-
port of at least one t-invariant. In the case of a Petri net being
a model of a biological system t-invariants correspond to more
complex subprocesses occurring in the system which do not
change its state. t-invariants are very useful for an analysis of
Petri net based models of biological systems (cf. [8, 9, 21]).
At the end of this section, elementary flux modes in metabolic
network analysis should be mentioned [22]. Elementary flux
modes represent minimal sets of enzymes which can operate
at steady state. Also, no other flux modes at a steady state are
proper subsets of elementary flux modes. Minimal t-invariants
in Petri nets are elementary flux modes counterparts, however,
the latter are more general because reversible reactions are al-
lowed [23]. Other relevant information can be found in, e.g.,
[6, 24].

2.2. Petri nets with time Extensions of Petri nets where time
is taken into account can be defined in many different ways.
The two most popular ones are Time Petri nets (TPN) and
Timed Petri nets (DPN). Below, in Definition 3 Time Petri net
is presented.

Definition 3. Time Petri net TPN [14]
Time Petri net is a set NT PN = {N, I}, where:
N = {P,T, f ,m0} is a classical Petri net,
I : T →Q+∪{0}×Q+∪{0}∪{∞}, where for every transition
t ∈ T , with I(t) = [I1(t), I2(t)], it holds that I1(t)≤ I2(t).

In this definition I is called a time function for N, where I1(t)
denotes the earliest firing time for transition t, I2(t) denotes the
latest firing time for t. Time counting for every transition be-
gins when it becomes enabled. Transition will fire after time
z: I1(t) ≤ z ≤ I2(t), i.e., transition may fire no sooner than at
I1(t) and it must fire no later than at I2(t) time. If at any time
before firing transition stops being enabled, after it becomes
enabled again the counting of its firing time must start from
0. The firing event is instantaneous, i.e., production and con-
sumption of tokens takes no time. It should be noted that time
values are not restricted to integers, they are in fact rational
numbers. This allows more flexibility when modeling a bio-
logical system where times of processes occurring in such sys-
tem can differ by orders of magnitude. A more complex time
scales (e.g., a logarithmic ones) can be used in the models.
Analytical techniques available for time Petri nets are not re-
stricted by this fact, due to the possibility of full transformation

of rational-value times into integer ones [14]. More complex
problems, e.g., time-scale decomposition, are often discussed
for stochastic Petri nets, which are mathematically similar to
the discussed type of Petri nets with time [25].

A state of a time Petri net is more complex than in a classical
net because it must also contain data about transitions’ timers
counting towards z value. For TPN its state is given as pair
z = (m,h), where m : P → N and h : T → Q+∪{0}∪{#}. To
fully describe a given state of TPN, a distribution of tokens in
places must be stored in the same way as it is for the classical
Petri net (function m). Additionally, a state of TPN must also
contain the value of every transition internal counter (function
h). h assigns values from interval [0,z], if the transition is en-
abled and symbol # otherwise [14]. It must be noted that states
of TPN change not only when a transition fires (and therefore
changes the numbers of tokens in places), but also when time
elapses.

3. Time Petri net analysis
It should be noted that the approaches basing on, e.g., t-
invariant analysis of a classical Petri net based models can still
be used with time Petri nets described in this paper. It is pos-
sible because the structure of a Petri net with time remains the
same as in the classical one. Such a structure is often called a
net skeleton [14] and it is equivalent to the classical Petri net
from Definition 1. The additional time data about subprocesses
delay or duration allows a creation of more precise models of
a studied biological system [15], for which a new analytical
approaches explained further become available.

3.1. t-invariant analysis The verification of the possibility to
execute all transitions from a given t-invariant support is one of
the relevant problems in time Petri nets analysis. Calculating
t-invariants is performed in the same way as in the case of clas-
sical Petri nets. However, checking whether transitions within
a support may run a specific number of times is difficult due
to time limits I1(t) and I2(t). Additionally, it is important that
the given verification should be available for unbounded time
Petri nets or in general without the necessity to analyze state
space of such a net, due to the fact that most of time Petri nets
constructed to model biological systems are unbounded [14].

In the literature it can be found a mathematical approach for
solving this problem based on a set of inequalities gathered
from time functions I(t) [14]. During our analysis a simple
TPN will be presented (Fig. 1) and verified using described so-
lution. As a next step, the expanded net (Fig. 2) with additional
transitions will be analyzed. Based on this TPN, an example
will be given, to confirm that a more complex verification is
required. To fully determine whether selected transitions may
be executed, an alternative method for solving the analogous
problem will be presented.

A special notation required for further analysis is introduced
in the aforementioned literature. Let σ = t j1 , ..., t jw be se-
quence of transitions and let zi ∈ Q+ with i = 1, ...,w− 1 be
the time which elapsed between the firing of transitions t ji and
t ji+1 . Then z0 denotes the time from the activation of transition

Bull. Pol. Ac.: Tech. XX(Y) 2017 3

+ [ {0}]

Transition firing remains the same as in the classical Petri 
nets. However, enabling transition is governed by different 
rules which must be explained. Function F assigns two time 
values to places. The first one denotes a minimum time for any 
token in a given place that has to pass, before that token can be 
considered when checking whether a post-transition is enabled 
or not. A transition is considered enabled if in all of its pre-
places there are enough tokens (i.e., their number is greater or 
equal to the arc weight) that have been present in these places 
for at least a minimum time given by F. On the other hand, 
a token cannot remain in a place for more time than given by 
the maximum value assigned by F. A concept of dead token is 
introduced, to denote tokens that cannot by used anymore to 
enable transition.

At the end of this Section a potential usage for the presented 
Petri nets with time parameters in the area of systems biology 
should be discussed. Using a net from Definition 3 can help in 
the modeling of system subprocesses, where reactions durations 
are neglected, but their occurrence is bounded by a minimal and 
maximal time, so it can be assigned to the transition as a range. 
On the other hand, if a precise duration of the reaction is known, 
a DPN time net (Definition 8) can be used. From the biological 
perspective, a net described in Definition 9 is a very precise tool 
to model such systems. Very often chemicals compound require 
some time to “grow up” in order to become functional. Also, 
biological compounds have a lifespan, which can be defined 
by the maximal time a token may reside in a place before it 
become unusable. In such a way a degradation of the biological 
compounds can be modeled.

7. Conclusions

The time of biological reactions has an a significant influence 
on the whole behaviour of the modeled system. Petri nets with 
time allow detailed and thorough modeling and analysis of the 
modeled system. There is more than one definition of such 
Petri nets, what gives researchers a possibility to choose 
a proper type of the net for the modeling of the studied bio-
logical system. The analysis of a Petri net often bases on a cal-
culated set of t-invariants and time parameters allow the en-
hancement of this approach. Such an analysis can be enhanced, 
e.g., by calculating minimal and maximal times necessary to 
fire all the transitions from a t-invariant support. Time con-
straints may require that transitions fire after some time, when 
they are enabled. This in turn, may lead to the situation, when 
some transitions will be unable to fire, because of the limited 
number of tokens in their pre-places and the fast-firing com-
peting transitions that will quickly deplete tokens from such 
places. The presented algorithm provides the ability to calcu-
late the necessary number of tokens for places, to ensure that 
all competing transitions will (or will not) have a chance to 
fire. From this, the possibility of t-invariant execution can be 
estimated. Another problem described in the paper is the as-
signment of time parameters, i.e., the data concerning basic 
components of the modeled system may be inadequate to fully 
and precisely assign time values to transitions. To solve this 
problem new methods from recent publications have been de-
scribed, which can be used to obtain time values from the net 
structure or to verify already assigned times resulting from 
experimental knowledge.
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