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Abstract

In empirical research on financial market microstructure and in testing some
predictions from the market microstructure literature, the behavior of some
characteristics of trading process can be very important and useful. Among
all characteristics associated with tick-by-tick data, the trading time and the
price seem the most important. The very first joint model for prices and
durations, the so-called UHF-GARCH, has been introduced by Engle (2000).
The main aim of this paper is to propose a simple, novel extension of Engle’s
specification based on trade-to-trade data and to develop and apply the Bayesian
approach to estimation of this model. The intraday dynamics of the return
volatility is modelled by an EGARCH-type specification adapted to irregularly
time-spaced data. In the analysis of price durations, the Box-Cox ACD model
with the generalized gamma distribution for the error term is considered. To
the best of our knowledge, the UHF-GARCH model with such a combination
of the EGARCH and the Box-Cox ACD structures has not been studied
in the literature so far. To estimate the model, the Bayesian approach is
adopted. Finally, the methodology developed in the paper is employed to
analyze transaction data from the Polish Stock Market.
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1 Introduction
The analysis of trade-to-trade data from financial markets has become one of the
most important areas of research in financial econometrics and empirical finance.
It has allowed researchers to get a better understanding of the dynamics of price
formation during a trading day. The availability of data on individual transactions
provides a deeper insight into the so-called market microstructure. The transaction
data contains information on the time of the trade of a given asset as well as some other
associated characteristics such as trading price and volume. Among all, the exact time
of the trade and the price with which the trade was made are crucial. The trading
time may convey information valuable to the market traders, therefore inducing and
influencing their particular actions. The analysis of time intervals between successive
events of the transaction process (durations) can provide one with information about
the microstructure of financial markets, thereby allowing for a more detailed insight
into the various types of dependencies prevailing on the market. Durations play an
important role in the market microstructure theory, where they are used as a proxy
variable indicative of new information arrivals on the market (see, for example, Easley
and O’Hara 1992).
The econometric modelling of financial durations has been a rapidly growing field
of research since the paper of Engle and Russell (1998), who introduced the
autoregressive conditional duration (ACD) model. Many extensions have been
suggested to improve upon the original Engle and Russell’s specification; see, e.g.,
Bauwens and Giot (2000), Lunde (1999), Hautsch (2002), Dufour and Engle (2000),
Fernandes and Grammig (2006), Hautsch (2004, 2012), Zhang, Russell and Tsay
(2001).
The very first joint model for returns and price durations has been introduced by
Engle (2000) and termed as the UHF-GARCH model. Engle (2000) puts the duration
framework of Engle and Russell (1998) into the volatility structure and measures the
impact of transaction duration on intraday price volatility. Ghysels and Jasiak (1998),
Grammig and Wellner (2002), and Liu and Maheu (2012) propose some other models
to investigate the relationships between price durations and return volatility, whereas
Manganelli (2005), Doman and Doman (2012), and Doman (2011, in Polish) model
durations, volumes and returns simultaneously.
The main objective of this paper is to propose a simple, novel extension of Engle’s
UHF-GARCH-type model and to develop and apply the Bayesian approach to
estimate it. In the case of the UHF-GARCH-type and ACD structures, the inference
about parameters is usually based on the Maximum Likelihood (ML) method. Due
to nonlinearities and still not so-well known properties of the maximum likelihood
estimators for the UHF-GARCH-type models and ACD specifications with conditional
distributions other than the exponential one, the Bayesian approach, relying on
the Monte Carlo methods, seems to provide a natural, theoretically consistent and
practically valid estimation method. Moreover, a practical use of this model in the
analysis of the intraday dynamics of volatility and price durations on the Polish stock
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exchange is presented, with the aim of studying the dependencies between volatility
and contemporaneous price durations on the Warsaw Stock Exchange (WSE) in
Poland.
The structure of the paper is as follows. In the following section we discuss at length
the basic definition of the ACD process, and present the Box-Cox ACD specification
as a particular extension of the basic ACD structure. In Section 3, we introduce
the BCACD-AR-EGARCH model – a joint structure for modelling intraday returns
and price durations simultaneously. Bayesian estimation of the model in question
is discussed in Section 4. In Section 5, the methodology developed in the paper is
illustrated with an empirical study, using tick-by-tick data of a company listed in the
WIG20 index of the Warsaw Stock Exchange. The final section contains concluding
remarks.

2 ACD models in duration analysis
Let us consider a sequence of moments t1, t2, . . . , ti, . . . in which events of the
transaction process occur. In the presented analysis, it represents a sequence of
consecutive moments of changes in the transaction prices. The time interval between
successive events (price changes) of the transaction process that occur at the moments
ti and ti−1 is denoted as xi = ti − ti−1, and is henceforth referred to as the duration.
Let Ψi represent the conditional expectation of the duration given the information
about the process available at time ti−1, i.e.:

Ψi = E (xi|=i−1) ,

where =i−1 denotes the set of information available prior to and including moment
ti−1. This set comprises past durations up to and including xi−1, and it may also
contain some pre-determined variables of the transaction process suggested by the
market microstructure literature.
The autoregressive conditional duration (ACD) models are one of the primary tools
used in modelling time intervals between events of the transaction process, analysing
trading intensity and examining the effects of financial market microstructure. The
ACD specification was proposed for modelling of the dynamics of financial durations
by Engle and Russell (1998), with the main idea behind it involving a dynamic
parameterisation of the conditional expected duration, Ψi:

Ψi = E (xi|=i−1) = E (xi|xi−1, . . . , x1) = Ψi (xi−1, . . . , x1; θ) , (1)

where θ denotes a certain vector of parameters.
In the ACD model, duration xi is expressed as the following product:

xi = Ψi · εi, (2)

where εi is an i.i.d. process defined over a positive support with density function
fε(εi) and expected value E(εi) = 1. The setup defined by Equations (1)-(2) is very
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general and allows for a variety of models. Different types of the ACD structure
may result either from various functional forms for the conditional mean function
Ψi, or the selection of different probability distributions for the random variable εi.
As far as the distribution of innovations εi in the ACD models is concerned, only
probability measures defined over the set of positive real numbers are allowed (cf.
Engle and Russell 1998, Lunde 1999, Grammig and Maurer 2000, Bauwens and Giot
2001, 2003, Hautsch 2002, Bauwens, Giot, Grammig and Veredas 2004, De Luca and
Gallo 2004, Fernandes and Grammig 2006, De Luca and Zuccolotto 2006, Allen, Chan,
McAleer and Peiris 2008). The most common and simplest distribution for εi is the
exponential one. Other choices include, e.g., the Weibull distribution, gamma and
generalized gamma distributions, and the Burr distributions.
According to the form of the conditional mean equation of the basic ACD specification,
proposed by Engle and Russell (1998), the model is based on a linear parameterisation
of the expected duration dynamics. The ACD(1,1) linear process is the lowest-order
ACD specification considered in empirical research, and is given by the equation:

Ψi = ω + α · xi−1 + β ·Ψi−1, (3)

where ω > 0, α ≥ 0, β ≥ 0, α + β < 1. These inequality restrictions are intended to
ensure positive conditional durations for all possible realizations. It is worth noting
that these constraints are sufficient, although not necessary, for the non-negativity of
the duration process.
With respect to the specification of the functional form of the conditional expected
duration Ψi, many extensions to the original linear ACD model have been proposed
in the literature, such as the logarithmic ACD models (cf. Bauwens and Giot 2000,
Lunde 1999), the Box-Cox ACD models (cf. Hautsch 2002), the exponential ACD
model (cf. Dufour and Engle 2000), the asymmetric logarithmic ACD model (cf.
Fernandes and Grammig 2006), the augmented Box-Cox ACD model (cf. Hautsch
2004, 2012), the augmented ACD model (cf. Fernandes and Grammig 2006), the
threshold ACD model (cf. Zhang, Russell and Tsay 2001) and many others.

2.1 The Box-Cox ACD model with the generalized gamma
distribution

The specification of the ACD model for duration process used in this research is of
the form:

xi = Ψi · εi,

Ψδ1
i = ω + α · εδ2

i−1 + β ·Ψδ1
i−1, (4)

where ω > 0, α > 0, 0 < β < 1, δ1 > 0, δ2 > 0. Moreover, we assume that εi follows
the generalized gamma distribution (under the assumption that E (εi) = 1) that is
εi ∼ GG(λ, γ, υ) with parameter λ =

(
Γ
(
υ
γ

)/
Γ
(

1+υ
γ

))γ
and with density function
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given by:

fε(εi) = γ

λ
υ
γ · Γ

(
υ
γ

) · ευ−1
i · exp

[
−ε

γ
i

λ

]
, εi > 0, λ > 0, γ > 0, υ > 0.

The ACD specification based on the Box and Cox power transformations of Ψi and
εi was proposed by Hautsch (2002) and it allows for concave and convex news impact
curves depending on the values of parameters δ2 and δ1. Moreover, it nests logarithmic
ACD specifications for δ1 → 0, δ2 → 0 and for δ1 → 0, δ2 = 1. For δ1 = δ2 = 1 we
obtain a special case of the linear ACD model. Also, for δ1 → 0 it coincides with the
Box-Cox ACD specification suggested by Dufour and Engle (2000). The generalized
gamma distribution for the innovation term in the context of ACD processes was
proposed by Lunde (1999) and further employed by Bauwens, Giot, Grammig and
Veredas (2004), who allow for a more flexible innovation distribution, as compared
with the basic choice of the exponential one.
Under the assumption that E(εi) = 1, the conditional density for price duration in
the case of an ACD model with the generalized gamma innovation distribution can
be written as:

f (xi|=i−1, θ) = 1
Ψi
· fε

(
xi
Ψi

)
=

= γ

xi · Γ
(
υ
γ

) ·
 xi

Ψi
·

Γ
(

1+υ
γ

)
Γ
(
υ
γ

)
υ

· exp

−
 xi

Ψi
·

Γ
(

1+υ
γ

)
Γ
(
υ
γ

)
γ (5)

with γ, υ > 0, whereas Ψi is determined by Equation (4), and fε (·) denotes the
density function of the generalized gamma distribution.

3 The BCACD-AR-EGARCH model
In the previous section we discussed an approach to modelling price durations. In
what follows, we focus solely on the Box-Cox ACD specification with the generalized
gamma distribution to model the price duration process. We proceed to specification
of the return dynamics, associated with the trades where there is a change in the
transaction price. Some approaches to modelling the returns in the case of irregularly
spaced tick-by-tick data were proposed by Engle (2000), Ghysels and Jasiak (1998)
and Grammig and Wellner (2002). A formal comparison of these models can be
found in Meddahi, Renault and Werker (2005), for example. In line with the papers
mentioned above, there is also the article by Liu and Maheu (2012). We follow Engle
(2000) and Liu and Maheu (2012) to formulate our model and present a simple, novel
generalization of their proposals.
Let us consider a sequence of moments t1, t2, . . . , ti, . . . in which the price changes,
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and a sequence of corresponding transaction prices p1, p2, . . . , pi, . . . . Percentage
logarithmic rates of return corresponding to the price changes are denoted by r̃i.
Engle (2000) argues that a suitable and natural measure of volatility is the variance
per unit of time. Therefore, we build our model based on the return per square root of
time, defined as ri = r̃i/

√
xi. In such a situation the data are just a sequence of joint

observations of the price duration and return given by {yi = (ri, xi), i = 1, . . . , T},
where T is the number of observations. Therefore, the joint density can be
written as the product of the marginal density of price durations, f (xi|=i−1; θ),
and the conditional density of the returns given the durations, f (ri|xi,=i−1; θ), all
conditioned upon the past of durations and returns:

f (ri, xi|=i−1; θ) = f (xi|=i−1; θ) · f (ri|xi,=i−1; θ) . (6)

Drawing on Engle’s (2000) model, we assume a simple AR(1) structure for the returns:

ri − δ = ρ · (ri−1 − δ) + ui (7)

where −1 < ρ < 1 and the innovation term ui is given by

ui = σi · ζi (8)

with ζi ∼ i.i.d t(0; 1; ν), ν > 2 and σ2
i is the variance of the return conditional

on the past volatility and duration information. By t(0; 1; ν) we denote Student’s
t distribution with zero mean, unit precision and an unknown number of degrees
of freedom ν > 2. Several specifications of the GARCH-type model to capture
the dynamics of conditional variance were suggested by Engle (2000). In contrast
to Engle’s (2000) approach, we propose an EGARCH(1,1)-type specification of the
conditional variance, the dynamics of which evolves according to the equation:

ln σ2
i = ωG + α1G · ζi−1 + α2G ·

(
|ζi−1| −

2Γ
(
ν+1

2
)

Γ
(
ν
2
)√

π(ν − 2)

)

+βG · ln σ2
i−1 + η1 ·

1
xi

+ η2 ·
xi
Ψi

+ η3 ·
1

Ψi

(9)

where βG < 1, and Ψi is determined by Equation (4). The impact of durations on
volatility is incorporated by means of three additional microstructure variables: the
reciprocal of the duration, x−1

i , the reciprocal of the expected duration, Ψ−1
i , and the

effect of surprise in duration, xi
Ψi (cf. Engle 2000).

This specification allows for an asymmetric response of σ2
i to volatility shocks in the

innovation term ζi−1 when parameter α1G differs from zero. The use of an EGARCH-
type model is also justified by the advantage of keeping the volatility component
positive regardless of the sign of the right-hand side components in the volatility
equation. The absence of non-negativity constraints on the parameters also facilitates
numerical estimation. Finally, as mentioned at the beginning of this section, the Box-
Cox ACD model is employed to model the price duration process.
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4 Bayesian estimation of the BCACD-AR-
EGARCH model

In the case of the UHF-GARCH-type and ACD models, inference about the
parameters is usually based on the Maximum Likelihood (ML) method. Due to
nonlinearities and still not so-well known properties of the ML estimators for the
UHF-GARCH-type structures and ACD models with conditional distributions other
than the exponential one, the Bayesian approach, relying on the Monte Carlo methods,
seems to provide a natural, valuable and theoretically consistent estimation method
(cf. Zellner 1971, Osiewalski 2001 in Polish). Therefore, it is employed in our study
and developed to estimate the proposed BCACD-AR-EGARCH structure. Within
the Bayesian paradigm, all unknown quantities are treated as random variables. Let
us remind that the sequence of joint observations of the price duration and return
is denoted by {yi = (ri, xi), i = 1, . . . , T}, whereas the model parameters – by θ.
The joint density of observations collected in y = (y1, . . . , yT )′ and the parameters,
determining the Bayesian model, can be factorized as follows:

p(y, θ|y(0)) = p(θ) · p(y|θ; y(0))

= p(θ) ·
T∏
i=1

f(ri, xi|=i−1, θ; y(0))

= p(θ) ·
T∏
i=1

f(xi|=i−1, θ; y(0)) · f(ri|xi,=i−1, θ; y(0))

(10)

where f(xi|=i−1, θ; y(0)) is given in Equation (5) and y(0) = (r0, x0,Ψ0) is the vector
of initial conditions which was hitherto omitted in the notation. The conditional
density of returns, f(ri|xi,=i−1, θ; y(0)), appearing in Equation (10), takes the form:

f(ri|xi,=i−1, θ; y(0)) = fu(ui|xi,=i−1, θ; y(0))

= fu(ri − δ − ρ · (ri−1 − δ)|xi,=i−1, θ; y(0))

=
Γ
(
ν+1

2
)

Γ
(
ν
2
) 1√

π(ν − 2)σ2
i

·
(

1 + (ri − δ − ρ · (ri−1 − δ))2

(ν − 2)σ2
i

)− 1
2 (ν+1)

,

(11)

where fu(·) refers to Student’s t density function for ui, and σ2
i is determined by

Equation (9).
In order to complete the Bayesian model, the prior distribution of parameters needs to
be specified. We assume a proper joint prior and subjectively set the marginal priors
of interest so as to reflect our vague knowledge about model parameters. Assuming
also prior independence among the parameters, the joint prior factorizes as:

p(θ) = p(ρ)p(δ)p(ωG)p(α1G)p(α2G)p(βG)p(η1)p(η2)p(η3)p(ν)·
·p(ω)p(α)p(β)p(δ1)p(δ2)p(γ)p(υ). (12)
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The details on each marginal prior specification are provided below:

p(ρ) = 1
21[−1; 1](ρ) – the uniform distribution over the interval [−1; 1],

p(δ) = fN (δ|µδ, σ2
δ ), µδ = 0, σδ = 5,

p(ωG) = fN (ωG|µωG , σ2
ωG), µωG = 0, σωG = 5,

p(α1G) = fN (α1G|µα1G , σ
2
α1G

), µα1G = 0, σα1G
= 5,

p(α2G) = fN (α2G|µα2G , σ
2
α2G

), µα2G = 0, σα2G = 5,

p(βG) ∝ fN (βG|µβG , σ2
βG

) · 1(−∞,1)(βG), µβG = 0, σβG = 5,

p(η1) = fN (η1|µη1 , σ
2
η1

), µη1 = 0, ση1 = 5,

p(η2) = fN (η2|µη2 , σ
2
η2

), µη2 = 0, ση2 = 5,

p(η3) = fN (η3|µη3 , σ
2
η3

), µη3 = 0, ση3 = 5,

p(ν) = 0.01 · 1[2; 102](ν) – the uniform distribution over the interval [2; 102],

p(ω) ∝ fN (ω|µω, σ2
ω) · 1(0,∞)(ω), µω = 0, σω = 5,

p(α) ∝ fN (α|µα, σ2
α) · 1(0,∞)(α), µα = 0, σα = 5,

p(β) ∝ fN (β|µβ , σ2
β) · 1(0,1)(β), µβ = 0, σβ = 5,

p(δ1) ∝ fN (δ1|µδ1 , σ
2
δ1

) · 1(0,∞)(δ1), µδ1 = 0, σδ1 = 5,

p(δ2) ∝ fN (δ2|µδ2 , σ
2
δ2

) · 1(0,∞)(δ2), µδ2 = 0, σδ2 = 5,

p(γ) ∝ fN (γ|µγ , σ2
γ) · 1(0,∞)(γ), µγ = 0, σγ = 5,

p(υ) ∝ fN (υ|µυ, σ2
υ) · 1(0,∞)(υ), µυ = 0, συ = 10,

where fN (·|µ0, σ
2
0) denotes the density of the normal distribution with mean µ0 and

variance of σ2
0 . We now can write the joint density function that represents our

Bayesian BCACD(1,1)-AR(1)-EGARCH(1,1) model as:

p(y, θ|y(0)) = p(ρ)p(δ)p(ωG)p(α1G)p(α2G)p(βG)p(η1)p(η2)p(η3)p(ν)·

·p(ω)p(α)p(β)p(δ1)p(δ2)p(γ)p(υ)·

·
∏T
i=1 f(xi|=i−1, θ; y(0)) · f(ri|xi,=i−1, θ; y(0)),

where f(xi|=i−1, θ; y(0)) and f(ri|xi,=i−1, θ; y(0)) are determined by Equations (5)
and (11), respectively.
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5 Empirical study
5.1 Description of the data set
In the empirical study to follow we use data from the Warsaw Stock Exchange, which
is currently a market with the highest capitalization in Eastern and Central Europe.
Thus, it is noticed as one of the most important and the best developed market in that
region. However, the literature on the ACD models, the UHF-GARCH-type models
and their empirical applications to Polish stock data is only limited; see e.g. Bień
(2004, 2006, 2006a, in Polish), Doman (2005), Doman (2008), Doman and Doman
(2010), Doman (2011, in Polish), Bień-Barkowska (2011, 2012, 2014, 2014a), and
Huptas (2014). This study attempts to fill that gap to some extent. Moreover, it also
contributes to the existing knowledge about the Polish stock market microstructure.
The empirical analysis is based on the transaction data of the Polish
Telecommunications (TPSA, currently Orange Polska S.A.) company listed in the
WIG 20 Index, quoted at the Warsaw Stock Exchange. The data comprise tick-by-
tick observations between 23 March 2009 and 19 June 2009, and have been obtained
from the website of stooq.pl. The transaction data sheets contain information on the
transaction closing price and volume along with the date and time of each transaction
with the accuracy of one second.
The data are partially aggregated. The details of the data preparations are as
follows. The analysis covers only transactions carried out in the continuous trading
phase, which in the case of the Warsaw Stock Exchange falls on between 10:00 and
16:10. Following the most prevalent approach adopted in the literature, the time
intervals between the closure of the session and the beginning of the next day’s session
are removed. Price durations are measured with the accuracy of one second. All
transactions occurring at the same time but with different prices are integrated into a
single transaction with the price of transaction calculated as an average weighted by
volume. The volumes of transactions made at the same price are summed up. Table
1 displays the reduction in the number of observations after data filtering.

Table 1: Data filtering – the number of observations before and after data aggregation

The number of data points
The number of the tick-by-tick observations 121782

(100%)
The number of the returns corresponding to the price durations 29842

(24.5%)(the number of observations with price change)

The basic descriptive statistics of price durations and returns corresponding to the
price durations for the company surveyed are shown in Table 2. The dynamics of price
durations and corresponding returns can be seen in Figure 1. We can observe some
important features of the empirical distributions of price durations and corresponding
returns. Analysis of the descriptive statistics of price durations distribution reveals
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its overdispersion, i.e., the standard deviation exceeds the mean (the coefficient of
variation is very high reaching the level of 1.59). In addition, the upper plot in
Figure 1 clearly indicates clustering of short and long price durations. This suggests
the presence of a strong positive autocorrelation in the duration series. The intraday
returns seem to oscillate around zero, featuring noticeable outliers and time-variable
volatility. We can also observe very high kurtosis of returns (see Table 2) and the
volatility clustering phenomenon (see Figure 1).

Figure 1: Plots of price durations and corresponding returns for TPSA
Price durations – Polish Telecommunications (TPSA)
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Table 2: Descriptive statistics of price durations and returns for TPSA

Price durations Returns
The number of observations 29842 29842

Mean 50.61 -0.0004
Standard deviation (SD) 80.78 0.064
Coefficient of variation 1.59 –(=SD/Mean)

Kurtosis – 29.94
Minimum 1 -1.09
Maximum 1791 1.07
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It is well documented in the financial literature that there exists a clear intraday
seasonal (periodic or diurnal) pattern over the trading day (cf. Engle and Russell
1998, Engle 2000). We estimate the intraday seasonality pattern for price durations
using the Nadaraya-Watson kernel estimator of regression of the duration on the time
of the day (cf. Bauwens and Veredas 2004, Huptas 2009). In the same way we regress
the absolute returns on the time of the day. We illustrate the time-of-day functions
in Figure 2. It must be stressed that intraday seasonality patterns are consistent with
daily information flow. Price durations are shorter just after the opening and just
before the closure of the market, indicating more transactions at these times of the
day. On the other hand, the durations are much longer around the lunch time. This
results in an inverted U-shaped pattern. Absolute returns corresponding to the price
durations are higher at the beginning of the day and then the diurnal pattern is rather
flat during the rest of the day until it increases a little again before the market closure.
Therefore, an L-shaped or perhaps even U-shaped seasonality pattern for the absolute
returns is observed. High trading activities after the market opening are explained
by the fact that traders try to incorporate information flowed over night. Then the
market activity steadily declines. After the lunch time many investors tend to adjust
their positions before the market closes, so the trading activity increases. Following
financial literature on the subject (cf. Engle and Russell 1998), after estimating the
diurnal factor we have to eliminate seasonality from the data. We remove it by
dividing plain price durations by their corresponding estimated diurnal component.
In turn, diurnally adjusted returns are obtained by taking the ratios of the returns
and their corresponding diurnal factor.

Figure 2: Intraday seasonality patterns for the analysed data
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5.2 Bayesian estimation results
Below we present the results of Bayesian estimation of the proposed BCACD-AR-
EGARCH model. The joint posterior is too complicated to obtain any analytical
results. In such a situation, we resort to well-known MCMC techniques in order to
generate a pseudo-random sample from the posterior distribution. Since the joint
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and conditional posteriors do not belong to any familiar family of distributions, the
Gibbs sampler cannot be used, and the Metropolis-Hastings (MH) algorithm must
be adopted instead (see Hastings 1970). In our study, we employ the Metropolis and
Hastings algorithm with a symmetric proposal density. As the candidate generating
distribution we use the multivariate t distribution with three degrees of freedom,
the expected value set to equal the previous state of the Markov chain, and the
covariance matrix obtained from initial cycles, which were performed to calibrate the
sampling mechanism. Our results are based on 1 million states of the Markov chain,
generated after 200,000 burnt-in draws. To assess the convergence of the Metropolis
and Hastings algorithm we use standardised CUMSUM plots (cf. Yu and Mykland
1994). All presented results are obtained using author’s own codes implemented in
the GAUSS 13.0 Mathematical and Statistical System.
Bayesian estimation results, including marginal posterior means and standard
deviations (in parentheses), are reported in Table 3. Figures 3 and 4 depict the
marginal posterior distributions of model parameters. It is seen that the posterior
marginals are affected predominantly by the information contained in the data. For
all the parameters, the posterior densities are sharply distinguishable from their prior
counterparts, providing evidence of a strong data contribution to the inference. As
compared with the priors, the posterior distributions are characterised by a different
location and a markedly smaller dispersion.
Looking at the results for the return equation parameters, we note that the posterior
mean of the autoregressive coefficient (ρ) is negative and equal to −0.1791. Moreover,
the posterior distribution of ρ is well-separated from zero and features relatively
little dispersion (as indicated by the standard deviation of about 0.0043). This
slightly negative autocorrelation indicates the existence of the bid-ask bounce effect
in the returns and is consistent with the presence of market microstructure dynamics
(see Roll 1984). Moreover, as implied by the marginal posterior for the degrees of
freedom, the conditional normality of the returns is strongly overridden by the data.
The posterior mean and standard deviation of ν equal about 4.5179 and 0.1024,
respectively. Therefore, our results confirm that allowing for fat tails of the conditional
distribution may be crucial for empirically adequate statistical modelling with the use
of UHF-GARCH-type processes.
Now let us focus on the parameters of the Box-Cox ACD equation. The marginal
posteriors of the conditional generalized gamma distribution’s parameters clearly
indicate that the data disqualify the conditional exponential distribution of price
durations (the latter results from the conditional generalized gamma collapses under
γ = 1 and υ = 1). It is worth noting that the results also exclude conditional
Weibull distribution, the latter being a special case of the conditional generalized
gamma distribution under equality constraint γ = υ. The posterior distribution of γ
is located on the far left of the value γ = 1 and reveals a fairly small dispersion. The
posterior distribution of υ, however, is well-separated from the value υ = 1, with the
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Figure 3: Marginal posterior distributions (bars) and priors (solid lines) of parameters
of the return and volatility equations within the BCACD-AR-EGARCH model
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Figure 4: Marginal posterior distributions (bars) and priors (solid lines) of parameters
of the Box-Cox-ACD equation within the BCACD-AR-EGARCH model
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posterior mean equal to about 2.23 and a relatively small standard deviation of ca. 0.1
(see Table 3). The above-mentioned features of the pertaining marginal posteriors are
also seen in the histograms presented in Figure 4.
The results clearly indicate that the effect of constant conditional price durations
(taking place under α = 0 and β = 0) is strongly rejected by the modelled data.
The posterior marginal distributions of α or β are well-separated from zero. In
order to fully describe the dynamics of the analysed price durations, the properties
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Table 3: Posterior means and standard deviations (in parentheses) of parameters in
the BCACD-AR-EGARCH model with t distribution – TPSA company

The return equation
δ 0.0010

(0.0027)
ρ −0.1791

(0.0043)
The volatility equation

ωG −0.2538
(0.0327)

α1G −0.0169
(0.0109)

α2G 0.6713
(0.0157)

βG 0.2091
(0.0102)

η1 0.0709
(0.0012)

η2 −0.4958
(0.0094)

η3 0.2168
(0.0239)

ν 4.5179
(0.1042)

The Box-Cox-ACD equation
ω 0.0019

(0.0017)
α 0.0461

(0.0047)
β 0.9592

(0.0036)
δ1 0.2677

(0.0304)
δ2 0.5145

(0.0368)
γ 0.2591

(0.0126)
υ 2.2314

(0.1024)

of conditional duration distribution alone are not enough. The obtained results
indicate that the expected price duration is characterized by a relatively strong
persistence. The posterior mean of β stands at about 0.9592. At the same time
posterior distribution p(β|y, y(0)) exhibits a very small dispersion, as evidenced by
the standard deviation of 0.0036.
We notice that the posterior distribution of parameter δ1 in the Box and Cox
transformation is located to the right of 0 and to the left of 1. The posterior mean
and standard deviation of δ1 stand at ca. 0.2677 and 0.0304, respectively. Therefore,
the location and dispersion of p(δ1|y, y(0)) indicate that the data reject definitely the
linear and logarithmic specifications. Next, the concavity of the shock impact curve
seems to be a characteristic feature of price durations. The posterior distribution of
parameter δ2 in the Box and Cox transformation is located between 0 and 1, with the
posterior mean and standard deviation equal to 0.5145 and 0.0368, correspondingly.
As far as the variance equation is concerned, we note that the posterior results for
parameter βG imply volatility persistence, though only a fairly weak one (the posterior
mean of βG stands at 0.2091). The asymmetry effect is slightly negative, but it seems
to be statistically insignificant. The posterior mean of α1G is equal to -0.0169 and
is accompanied by a relatively large standard deviation of 0.0109. Looking at the
posterior distribution of the parameter in question (see Figure 3), one can see that it
contains 0 in the 95% HPD interval.
Finally, we analyse the estimation results for parameters η1, η2 and η3, pertaining
to the effects of duration on conditional variance. The posterior distributions of
all three parameters η1, η2 and η3 are well-separated from zero (see Figure 3),
indicating statistical significance of all contemporaneous duration variables. The
posterior mean of η1 (related to the inverse of the duration, 1

xi
) is slightly positive

and equal to 0.0709, suggesting that a longer contemporaneous duration is associated
with a lower volatility. It remains in agreement with predictions gathered from the
theoretical microstructure model of Easley and O’Hara (1992), in which “no trade
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means no news”, and short waiting times between transactions are associated with
high volatility and high returns. Simultaneously, no trade (long price duration) is
interpreted as no information so that volatility decreases. These empirical results
obtained for the Polish data are in line with the ones presented by Engle (2000)
for IBM Company, and Liu and Maheu (2012) for IBM and all Chinese stocks. Let
us recall that the contemporaneous price duration divided by the expected price
duration, i.e. xi

Ψi , is interpreted as the surprise in durations. The posterior mean
of η2 (related to the duration surprise) is negative, amounting to about −0.4958.
The posterior distribution of the parameter under consideration reveals a very small
dispersion (as implied by the standard deviation of about 0.0094). It follows that when
the actual price duration is longer than the expected one, the volatility decreases.
Conceivably, according to this observation, it would appear that the uninformed
traders on the Warsaw Stock Exchange are mostly risk averse. Such a result stands in
contrast to the findings presented by Liu and Maheu (2012) for IBM and all Chinese
stocks, but, on the other hand, is in line with the results obtained by these same
Authors for Exxon Mobile Corporation and Pfizer companies, which are heavily traded
stocks. The posterior mean of parameter η3 (related to the inverse of the expected
price duration 1

Ψi ) is positive and stands at about 0.2168. According to this, a higher
expected transaction rate (i.e. shorter price durations) leads to higher volatility.

6 Concluding remarks
The main aim of this paper was to present a new specification of Engle’s (2000)
joint model to analyse the dynamics of intraday volatility and price durations and
to develop and apply the Bayesian approach to estimate it. Our proposal is a
novel, simple generalization of Engle’s model. Specifically, we combine an EGARCH
structure with duration variables for the volatility, and a Box-Cox ACD model
with the generalized gamma distribution for the error term in the price duration
equation. Our specification is treated within the Bayesian methodology, exploiting
MCMC simulation methods to generate a pseudo-random sample from the posterior
distribution.
The main finding arising from the empirical part of our research is that the proposed
model provides an adequate description of the intraday volatility dynamics and price
durations. However, a formal Bayesian comparison with other model specifications
of the sort is required in order to examine the relative explanatory power of our
proposal. Based on our results we can conclude that the Bayesian estimation approach
provides a universal and convenient inference tool, especially since the properties of
the maximum likelihood estimators for the UHF-GARCH-type and ACD models with
conditional distributions other than the exponential one are still not well-known in
the literature.
Moreover, the conditional normality of the returns is strongly rejected by the data.
The volatility persistence is not strong and the asymmetry effect in volatility seems
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to be insignificant. In our empirical study the contemporaneous duration and
expected duration terms emerge as relevant factors in modelling conditional variance.
Longer price durations and longer expected price durations are associated with lower
volatility, which is consistent with Easley and O’Hara’s (1992) theoretical model.
Furthermore, our research provided evidence that the generalized gamma distribution
is much more appropriate in modelling price durations than the exponential one. The
data also strongly reject the hypothesis of constant conditional price durations. It
must be stressed that our analysis was limited to one stock only, so it would be of
great interest to examine in further research more assets so as to better understand
the differences across various stocks and market structures. Also, regarding other
possible directions for future endeavours, an interesting strand of research would be
Bayesian estimation of the ACD-GARCH-type models with market microstructure
variables other than the ones considered in our study.
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