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Abstract

The model considered in the paper is defined as VAR with the prior
distribution for parameters generated by the dynamic stochastic general
equilibrium (DSGE) model. The degree of economic restrictions in the DSGE-
VAR model is controlled by the weighting parameter. In the paper there is
investigated the impact of the weighting parameter prior specifications for the
posterior shape of impulse response functions (IRFs). In case of conditional
models the paths of IRFs highly depend on the value of the weighting parameter
that is set arbitrary. When considering full estimation with different prior types,
means and gradual change in the dispersion the posterior time paths of IRFs
are similar in models with high values of the marginal data density.
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1 Introduction
The main purpose of the paper is to illustrate changes in time paths of impulse
response functions (IRFs) in the dynamic stochastic general equilibrium and vector
autoregression (DSGE-VAR) model. The model was proposed by Del Negro, et al.
(2002), (2004a) and further developed by Del Negro, et al. (2007). The DSGE-VAR
is an identified VAR with the prior distribution for parameters constructed with the
information from DSGE model. The amount of the prior information is controlled
by the weighting parameter that can be set arbitrary or estimated depending on
the considered approach. In the paper there is investigated the impact of the prior
specification for the weighting parameter on the posterior shape of IRFs. There are
two main approaches present in the empirical research: the first one is to consider
series of conditional models, in which the weighting parameter is treated as a constant
with arbitrary chosen values, while the second approach is to fully estimate it. The
estimation approach enables to obtain marginal posterior distribution of the optimal
weight of the information from the DSGE model in the VAR and, as a consequence,
the assessment optimal degree of economic restrictions. The posterior estimate of the
weighting parameter indicates how strictly economic restrictions agree with the data
and consequently indicate what is the shape of IRFs. The conditional model can be
used to illustrate the systematic change of IRFs paths as a consequence of the gradual
release of economic restrictions imposed by the DSGE model.
The DSGE-VAR model can be seen as one of the method of IRFs identification
in VARs. Other methods including basic techniques such as sign restrictions were
broadly discussed in the literature, see among others: Uhlig (2005), Dedola et al.
(2006), for theoretical aspects: Mittnik et al. (1993), Baumeister et al. (2014).
The identification procedures on the Bayesian ground through so called generalised
impulse response functions, also adequate for non-linear models, were proposed by
Koop (1996) and Koop et al. (1996). Uncertainty measures of IRFs were discussed by
Sims et al. (1999). It is worth mentioning works of Rubio-Ramirez et al. (2010) and
Liu et al. (2010) in the context of relation between the VAR and general equilibrium
models. The method of estimation by minimising distance between IRFs from VAR
and DSGE models were discussed by Ravenna (2006). Conditions were such IRFs are
similar can be found in Fernández-Villaverde et al. (2007). Identification when there
are more structural shocks in a model than endogenous variables were considered by
Fukač (2007).
The contribution of the paper is as follows. First, for the considered set of assumptions
the DSGE-VAR model was estimated conditionally to arbitrary chosen values of the
weighting parameter in order to investigate the IRFs potential change. The analysis
extends the original paper by Del Negro et al. (2002), (2004a), where IRFs were
computed for three different values of the weighting (tightness) parameter for a
simple monetary DSGE model. Such conditional approach was also considered by
Del Negro et al. (2006) where the marginal likelihood was calculated for nine values
of the weighting parameter for three competing DSGE specifications based on the
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work Del Negro et al. (2004b)). The same nine values were considered by Del
Negro et al. (2007) for the graphic IRFs presentation, see also Christiano (2007).
Adolfson et al. (2008) considered twelve values of the weighting parameter for the
Laplace approximation of the log marginal likelihood for the open economy DSGE
model. Watanabe (2007) calculated marginal likelihood of the Christiano et al. (2005)
model for nine arbitrary chosen values of the weighting parameter. Lee et al. (2007)
considered twelve values for the weighting parameter and Ghent (2008) used seven
values. None of the aforementioned papers include presentation of the step by step
IRFs paths changes as a result of gradual release of DSGE restrictions. They also
used a different set of DSGE assumptions.
Second, there is considered the full estimation approach where the weighting
parameter is estimated after assuming different priors. Since the conditional approach
is dominant in the empirical literature there are not many cases where the weighting
parameter was estimated within DSGE-VAR framework. Adjemian et al. (2008)
assumed a uniform prior, over the interval from 0 to 10, for the weighting parameter as
a consequence of lack of prior beliefs about the optimal degree of economic restrictions
in the DSGE-VAR model. The same idea was followed by Kolasa et al. (2012). The
research below starts with the uniform marginal prior distribution for the weighting
parameter defined over the range of gradually changed intervals. Then other types
of priors are considered such as moved gamma, truncated normal and modified beta
distributions. For each of them the gradual change of prior means and dispersions was
considered to assess the impact on posterior IRFs shapes. At the end of the article
the misspecification analysis of the assumed DSGE model is presented.
The rest of the paper is organised as follows: part 2 outlines the methodological
concept of the DSGE-VAR with details of the prior distribution, the posterior
and IRFs identification. Part 3 summarises equations of the DSGE model used
to construct the prior distribution for VAR. Part 4 contains results obtained for
the conditional approach, that is the general assessment of IRFs and their shape
adjustment when gradually changing the amount of the prior information from the
DSGE model. The last part of section 4 presents the misspecification analysis.
In part 5 there are presented results of the empirical research for the case of full
estimation of the weighting parameter, that is the situation when the amount of the
prior information from the DSGE model is estimated not set arbitrary. The following
work continues three articles: Wróbel-Rotter (2013c), (2013b), (2013a) on DSGE-
VAR approach and constitute a part of the wider work partly summarised in the
monograph Wróbel-Rotter (2015).

2 Model construction
The unrestricted VAR model of order p for n observed variables at the moment t has
the form:

Yt = Φ0 + Φ1Yt−1 + Φ2Yt−2 + . . .ΦpYt−p + ut, (1)
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which can be interpreted as the reduced form of the structural model:

B0Yt = Bc + B1Yt−1 + B2Yt−2 + · · ·+ BpYt−p + εt, (2)

under condition that: Φi = B−1
0 Bi for i = c, 1, . . . , p, and ut = B−1

0 εt;
εt ∼ N (n)(0, In), where In is the identity matrix of degree n, Yt depicts column
(n × 1) of the observed variables, matrices Φi for i = 1, . . . , p, of dimension (n × n)
contain parameters, Φ0 is a vector (n × 1) of constants, ut ∼ N (n)(0,Σu) is (n × 1)
vector of random errors of the reduced form, N (n)(0,Σu) means n-dimensional normal
distribution, with mean equal to zero vector, E(ut) = 0, and the (n × n) covariance
matrix E(utu′t) = Σu, Ut and Xt are assumed to be independent, E(utu′t−j) = 0. In
a matrix notation it is written:

Y = XΦ + U, (3)

where Y is (T × n) matrix build of rows Y ′t , X is (T × (1 + np)) matrix with rows
X ′t = [1 Y ′t−1 Y

′
t−2 . . . Y ′t−p], U is (T × n) matrix with rows u′t, Φ = [Φ′0 Φ′1 . . . Φ′p]′

is ((1 + np)× n) matrix of coefficients.
The linear solution of the DSGE model is written in the state space representation:

st+1 = Ast +Bεt and Yt = Cst +Dεt, (4)

where st is the state vector, elements of matrices A and B are nonlinear functions of
structural parameters θ, εt depicts vector of innovations, εt ∼ N (n)(0,Σε), elements of
matrices C and D are functions of structural parameters (see: Fernández-Villaverde
et al. (2007)).
The prior distribution of all parameters has a hierarchical form:

p(Φ,Σu, θ, λ) = p (Φ,Σu| θ, λ) p(θ)p(λ), (5)

where the weighting parameter λ defines the amount of the prior information
from DSGE in the DSGE-VAR model, p(θ) and p(λ) are independent. The joint
distribution of the parameters and the data is defined by:

p(Y,Φ,Σu, θ, λ) = p (Y |Φ,Σu ) p(Φ,Σu, θ, λ). (6)

The posterior distribution is of the form:

p (Φ,Σu, θ, λ |Y ) = ` (Φ,Σu|Y ) p (Φ,Σu |θ, λ ) p(θ)p(λ)
p(Y ) , (7)

where p(Y ) denotes the marginal data density.
The prior distribution p(Φ,Σu| θ, λ) of parameters Φ and Σu, conditional to θ and λ,
is specified through the formal inference in the auxiliary VAR model:

Ỹ = X̃Φ̃ + Ũ , (8)
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written for the one vector observation in the form:

Ỹt = Φ̃0 +
p∑
i=1

Φ̃iỸt−i + ũt = Φ̃′X̃t + ũt, (9)

where Ỹt is (n × 1) vector containing endogenous variables that correspond
to observed variables, appearing in the observation equation of the state space
representationof theDSGEmodel, Ỹ(λT×n) consists of rows Ỹ ′t , Φ̃′ = [Φ̃′0 Φ̃′1 . . . Φ̃′p], Φ̃
is ((1 + np)× n) matrix of the coefficients, X̃ is (λT × (1 + np)) matrix with
rows X̃ ′t = [1 Ỹ ′t−1 Ỹ

′
t−2 . . . Ỹ ′t−p ], X̃t has dimensions ((1 + np)× 1), Ũ is (λT × n)

matrix consisting of rows ũ′t, ũt ∼ iidN (n)(0, Σ̃u), t = 1, . . . , λT . The auxiliary VAR
approximates the linear solution of the DSGE model by projecting parameters θ onto
the matrix of coefficients Φ̃ and the covariance Σ̃u. The posterior distribution in the
auxiliary model (8), after assuming noninformative prior: p(Φ̃, Σ̃u) ∝ det(Σ̃u)−n+1

2 ,
is of the form:

p
(

Φ̃, Σ̃u
∣∣ θ, λ) ∝ det

(
Σ̃u
)−λT+n+1

2

exp
{
−1

2 tr
[
λT Σ̃−1

u

(
Γ∗yy(θ)− Φ̃′Γ∗xy(θ)− Γ∗yx(θ)Φ̃ + Φ̃′Γ∗xx(θ)Φ̃

)]}
,

(10)

where: Γ∗xx(θ) = Eθ(X̃tX̃
′
t), Γ∗xy(θ) = Eθ(X̃tỸ

′
t ), Γ∗yy(θ) = Eθ(ỸtỸ ′t )

and Γ∗yx(θ) = Γ∗xy ′(θ) are expected values Eθ(.), with respect to the probability
distribution of θ.
The marginal posterior distribution of the covariance matrix Σ̃u, given θ, has the form
of inverted Wishart, IW (.), Zellner (1971):

p
(

Σ̃u
∣∣ θ, λ) = IW

(
λT ˆ̃Σu (θ) , λT − (1 + np), n

)
, (11)

while conditionally to Σ̃u, θ and λ, the posterior distribution of coefficients Φ̃ is of
the form of the matrix normal, MN(.), Poirier (1995):

p
(

Φ̃
∣∣ Σ̃u, θ, λ) = MN(1+np)×n

( ˆ̃Φ(θ), T̃Γ∗xx(θ), Σ̃−1
u

)
, (12)

where: ˆ̃Φ(θ) = [Γ∗xx(θ)]−1Γ∗xy(θ) and ˆ̃Σu(θ) = Γ∗yy(θ)− Γ∗yx(θ)[Γ∗xx(θ)]−1Γ∗xy(θ).
Assuming in the place of the prior p(Φ,Σu| θ, λ) the posterior distribution in the
auxiliary VAR (10), the final form of the posterior distribution (7) is obtained. It
can be decomposed as:

p (Φ,Σu, θ, λ |Y ) = p (Φ,Σu |Y, θ, λ ) p (θ, λ|Y ) (13)

where p(θ, λ|Y ) is of the nonstandard form and p(Φ,Σu |Y, θ, λ ) is the matrix normal
– inverted Wishart (see: Adjemian et al. (2008)):
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p (Φ,Σu|Y, θ, λ) ∝ det (Σu)−
(1+λ)T+n+1

2 exp
{
−0.5tr

{
Σ−1
u [(Y −XΦ)′(Y −XΦ)

+λT
(
Γ∗yy(θ)− Φ′Γ∗xy(θ)− Γ∗yx(θ)Φ + Φ′Γ∗xx(θ)Φ

)]}}
(14)

and leads to the conditional posterior distributions:

p (Σu|Y, θ, λ) = IW
(

(λ+ 1)T Σ̂mu (θ), (1 + λ)T − (1 + np), n
)
, (15)

p (Φ|Y,Σu, θ, λ) = MN(1+np)×n

(
Φ̂m(θ), (λTΓ∗xx(θ) +X ′X) ,Σ−1

u

)
, (16)

where:
Φ̂m(θ) = (λTΓ∗xx(θ) +X ′X)−1 (

λTΓ∗xy(θ) +X ′Y
)
, (17)

Σ̂mu (θ) = [(λ+ 1)T ]−1
[(
λTΓ∗yy(θ) + Y ′Y

)
−
(
λTΓ∗yx(θ) + Y ′X

)
Φ̂m(θ)

]
. (18)

The weighting parameter λ expresses the degree of strictness of economic restrictions
introduced to the DSGE-VAR model via the prior p(Φ,Σu| θ, λ). The optimal value
of the weighting parameter λ is the one that leads to maximum value of the marginal
likelihood. When the parameter λ is estimated the mean of its marginal posterior
distribution is a point estimate and the standard deviation is taken as an uncertainty
measure. In case of the conditional models the optimal value of λ is typically chosen
from the set λ ∈ Λ = {λ1, . . . , λq}, in such a way that: λ̂ = arg max

λ>0
p(Y |λ), given

that λi > λmin = (n+ k∗)/T , where k∗ is the rank of X̃.
The identification of the vector of structural shocks in the DSGE-VAR model is as
follows, (for details see Del Negro et al. (2007)). The partial effect of a shock on
endogenous variables in the VAR model is defined by the (n × n) matrix of partial
derivatives:

∂Yt
∂ε′t

= B−1
0 = ΣtrΩ (19)

assuming that elements of the vector εt are orthogonal. The identification of vector
autoregression shocks (19) is obtained by application of QR decomposition to B−1

0
and exchanging the orthonormal matrix Ω in equation (19) with the matrix Ω∗(θ)
from the equation (20), assuming that lower triangular matrix Σtr is the Cholesky
decomposition of covariance matrix Σu. The DSGE model is identified in the sense
that for each value of parameter vector θ there exists a unique matrix D(θ), derived
from the state space representation of the structural model (4), which consists of
effects of structural shocks on the endogenous variables:

∂Yt
∂ε′t

= D(θ) = Σ∗tr(θ)Ω∗(θ), (20)

where the QR decomposition of D(θ) leads to lower triangular matrix Σ∗tr(θ)
and orthonormal Ω∗(θ). The matrix Σ∗tr(θ) is approximated by the Cholesky
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decomposition of the restrictions functions: Σ∗u(θ) = Γ∗yy(θ) − Γ∗yx(θ)Φ̂∗(θ), where
Φ∗(θ) = [Γ∗xx(θ)]−1Γ∗xy(θ), see Del Negro et al. (2004a). The identification procedure
implies that IRFs are a priori centred round their DSGE counterparts even for small
values of λ. The identified vector autoregression approximation of the linear solution
of the DSGE model is given by the triple Φ∗(θ), Σ∗u(θ) and Ω∗(θ). The matrix Ω can
be treated as an additional parameter to be estimated what leads to the hierarchical
prior:

p (Φ,Σu, θ, λ,Ω) = p (Φ,Σu| θ, λ) p(θ)p(λ)p(Ω) (21)
where p(θ), p(λ) and p(Ω) are independent. The joint distribution of the data,
structural parameters and the weighting parameter takes the form:

p (Y,Φ,Σu, θ, λ,Ω) = p (Y |Φ,Σu ) p (Φ,Σu, θ, λ,Ω) (22)

The posterior distribution:

p (Φ,Σu, θ, λ,Ω |Y ) = ` (Φ,Σu|Y ) p (Φ,Σu |θ, λ ) p(θ)p(λ)p(Ω)
p(Y ) , (23)

can be decomposed as:

p (Φ,Σu, θ, λ,Ω |Y ) = p (Φ,Σu |Y, θ, λ ) p (Ω | θ) p (θ, λ|Y ) , (24)

where p(Ω | θ, Y, λ) = p(Ω | θ) what indicates that the matrix Ω depends only on the
structural parameters of the DSGE model. The marginal posterior distribution of Ω
is updated indirectly through updating θ, which changes with parameters Φ and Σu.
The inference about θ is conditional with respect to the weighting parameter λ:

p (θ, λ |Y ) = p (θ |λ , Y ) p(λ), (25)

The conditional posterior distribution of the vector autoregression parameters Φ and
Σu do not depend on Ω:

p (Φ,Σu |Y, θ, λ,Ω) = p (Φ,Σu |Y, θ, λ ) . (26)

3 The general equilibrium model
The prior specification for the DSGE-VAR in the following analysis is based on the
fundamental New-Keynesian model with the wage mechanism proposed by Erceg et
al. (2000), which was later used to illustrate the econometric issues by Rabanal et
al. (2005b), (2005a). From now on denoted as EHL. The model was also treated as
a starting point for building more complicated systems, for instance: Christiano et
al. (2005). The derivation of equations and discussion of microeconomic optimisation
problems of the chosen model were presented by: Wróbel-Rotter (2011a), (2011b),
(2012b).
The DSGE structural equations, written in a form of percentage deviations from
steady state, consists of the following equations:
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1. The consumption Euler equation:

yt = Etyt+1 − σ (rt − Etπt+1 + Etgt+1 − gt) (27)

where: yt denotes output, rt is the nominal interest rate, gt is the preference
shifter shock, πt is inflation, σ is the elasticity of intertemporal substitution, Et
is the conditional expectation operator with information up to time t.

2. The production function and the real marginal cost function:

yt = at + (1− δ)nt and mct = wrt + nt − yt, (28)

where: nt is the amount of hours worked, at is a technology shock, mct is real
marginal cost, wrt is real wage, δ is capital share of output.

3. The marginal rate of substitution between consumption and working hours:

mrst = σ−1 yt + γ nt − gt, (29)

where: γ is the inverse elasticity of labour supply with respect to real wages.

4. The price inflation assuming the mechanism proposed by Calvo (1983):

πt = βEt (πt+1) + (1− α)(1− θβ)(1− θ)
θ (1 + α(ε̄− 1)) (mct + επt ) (30)

where: ε̄ is the steady state value of elasticity of substitution between different
categories of goods, επt is the price markup shock, θ is the probability of the
price non-optimisation and β discount factor.

5. The wage inflation assuming the mechanism proposed by Calvo (1983):

πwt = βEtπ
w
t+1 + (1− βθw)(1− θw)

θw(1 + γεw) (mrst − wrt ) (31)

where: θw is the Calvo probability of wage nonoptimisation, εw is the elasticity
of substitution of different between different kinds of labour.

6. The Taylor rule:

rt = ρrrt−1 + (1− ρr)(γππ̂t + γyyt) + εrt (32)

where γπ and γy are the long-run responses of the monetary authority to
deviations of inflation and output from their steady-state values, and εrt is the
monetary shock, ρr is an interest rate smoothing parameter.

7. The equation that relates real wage growth, nominal wage growth and price
inflation:

wrt = wrt−1 + πwt − πt. (33)
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8. The stochastic processes for the technology change and preferences:

at = ρaat−1 + εat and gt = ρggt−1 + εgt (34)

where: εat and εgt denote innovations.

The equations constitute the linear rational expectation system with four innovations:
ε∗t = [εat εgt ε

r
t ε

π
t ]′, where each of them follows a normal distribution with mean

equal to zero and standard deviations: σa, σg, σr and σπ respectively. The vector
θ = [α σ β γ ε θ ρr γπ γy ρa ρg θw εw]′ contains all structural parameters of the
DSGE model. The data contain 74 observations on price inflation, real wages, interest
rates and output for the United States at a quarterly frequency, and were originally
prepared for the work: Rabanal et al. (2005b). The original source is the Bureau of
Labour Statistics and the Federal Reserve System. The numerical approximation of
marginal posterior distributions is done by the Metropolis - Hastings algorithm, the
marginal likelihood is the modified harmonic mean proposed by Geweke (1999). The
estimation was accomplished by Dynare package (see: Adjemian et al. (2011)), which
is the standard tool to estimation and verification of rational expectation models. All
considered models were verified to assure numerical stability. For each of all considered
models there was run 250000 iteration of Metropolis-Hastings with burn-in 20% of
the first passes. Total number of iterations was divided to five parallel chains, where
starting points were obtained after independent drawing from the normal distribution,
whose mode and covariance matrix approximate numerically the central tendency
and the covariance matrix of the posterior distribution. More empirical issues related
to numerical side of the considered DSGE model were discussed by Wróbel-Rotter
(2012a).

4 Conditional models
The conditional models were estimated for two competing sets of values for the
weighting parameter λ: the first one contains ten dispersed numbers from the set:
Λ1 = {0.3, 0.43, 0.67, 1, 1.5, 2.33, 4, 9, 19, 1000}, while the second set is specified
to estimate precisely the marginal data density in regions of its high value:

Λ2 = {0.32, 0.35, 0.39, 0.43, 0.47, 0.52, 0.56, 0.61, 0.67, 0.72,
0.79, 0.85, 0.92, 1, 1.08, 1.17, 1.27, 1.38, 1.5, 1.63 }

The first set of values for λ corresponds with ten different values of the optimal
weight Wi = λi/(1 + λi) of the DSGE model in the DSGE-VAR, approximately from
0.1 to 1 with step 0.1. The second set contains values of λ which indicate weights W
form 0.24 to 0.62, with step 0.02. Lower bound for the possible values of λ, which
guaranties existence of the posterior distribution, is equal to λmin = 0.183 for lag
p = 2. The maximum value of the logarithm of the marginal data density in the
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first set is obtained for λ = 0.679 for p = 2, what indicates the optimal weight of
the DSGE model equal to 0.4. The logarithm of marginal likelihood reveals tendency
to increase at first, as values of λ increase, and after obtaining the maximum value,
become to decrease. That behaviour indicates that there exists optimal value of the
degree of economic restrictions in the DSGE-VAR, which corresponds in that case
with λ = 0.79, precisely estimated from the set Λ2. Similar behaviour is observed
for other lags of VAR which was considered from one to twelve by Wróbel-Rotter
(2013b). As the lag increases, and consequently the number of free parameters, the
optimal quantity of prior information from the DSGE model also increases. Obtained
results indicate that stylised DSGE model is too tightening and is not completely
approved by the data. The logarithm of marginal data density for EHL is equal to
1180. However the level of marginal likelihood of the unrestricted VAR is even lower
clearly indicating that there are advantages of incorporating prior information into
VAR and considering the DSGE-VAR model. Such specification delivers a tool to
flexibly adjust the optimal amount of information from the prior distribution leading
to higher marginal likelihood than the separate approaches, as DSGE model is usually
misspecified and VAR is typically too flexible in the data fit. All IRFs in the paper
are calculated as means of their posterior distributions generated after drawing values
of the structural parameters from the posterior distribution.

4.1 General assessment

As a starting point to deeper analysis of IRFs their time paths are presented for
the DSGE-VAR obtained for λ = 0.79 in the conditional approach, which leads to
maximum value of marginal likelihood, see graph 1. Dotted lines indicate time paths
and 90% high posterior density (HPD) intervals for IRFs estimated within the DSGE-
VAR while solid lines indicate values and 90% HPDs of IRFs obtained from DSGE
model, estimated within the DSGE-VAR model. Notation: εa → π, εa → r, εa → y
and εa → w depicts respectively: impact of technology shock on inflation, interest
rate, production and real wage. Analogously: εg → π, εg → r, εg → y and εg → w
indicate the impact of the preference shock on respective endogenous variables, εr →
π, εr → r, εr → y and εr → w describe effects of the monetary policy shock and
επ → π, επ → r, επ → y and επ → w illustrate influence of the price shock. The
general tendency in shape of IRFs in both models is preserved only in a few cases
what means that the shape of responses and their economic interpretation depend on
which model, VAR or DSGE, we choose. The uncertainty of the estimation of IRFs in
the DSGE-VAR model is quite strong in comparison with the ones obtained from the
DSGE model, estimated within the DSGE-VAR model and individually. The overall
empirical results concerning the shape and posterior uncertainty are similar to that
published by Adjemian et al. (2008).
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Figure 1: IRFs based on VAR and DSGE model
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Dotted lines indicate time paths and 90% high posterior density (HPD) intervals for IRFs estimated
within the DSGE-VAR. Solid lines indicate values and 90% HPDs of IRFs obtained from DSGE model.

4.2 Changing value of the weighting parameter

The gradual change in values of the weighting parameter λ, interpreted as step by step
release of strong economic assumptions of the DSGE specification, leads to systematic
change in shapes of IRFs, what illustrates graph 2 for the impact of an interest rate
shock on inflation (εr → π) and graph 3 for the rest of shocks and variables for λ ∈ Λ1.
The systematic change in shape of IRFs is strongly visible for the weighting parameter
from the set Λ1, as it covers wide range of values, comprising almost unrestricted VAR
from one side and practically DSGE model from the other side. For the relatively
narrow range of the weighting parameter values taken from the set Λ2 the shape of
IRFs is quite similar as conditional models for λ ∈ Λ2 lead to relatively high values of
the marginal data density. The systematic shape change for λ ∈ Λ1 mimics gradual
reduction of the strictness of the prior coming from the DSGE model what can be
seen as slow reduction of potentially misspecified economic restrictions. The reaction
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of inflation to stochastic shock for low values of the weighting parameter λ is stronger
that for the high values and for λ → ∞ is almost flat the same as for the DSGE
model estimated individually. Such regularity is also visible for the rest of responses
to shocks, especially for the influence of price and monetary shocks to production and
inflation (επ → y, εr → y and επ → r, εr → r). In the rest of the cases the path is
independent of the value of λ (graph 3). Such independence especially concerns the
change of inflation and real wage after the price shock (επ → π and επ → w), and the
adjustment of production to households’ preference shock (εg → y). The observed
behaviour is also present for other lags of the DSGE-VAR. The analysis suggests
that restrictions on the parameter space coming from the DSGE model, exactly:
from the solution of the linearised set of first order conditions and other constraints,
derived from the microeconomic optimisation problems of households and producers,
are strict and they are not entirely approved by the observed data, but also they are
not completely rejected. The DSGE-VAR model could better fit the data as it is
elastic in deciding of the correct degree of economic restrictions.

Figure 2: Impact of the interest rate shock on inflation (εr → π)
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The value of the weighting parameter has influence on high posterior probability
intervals for impulse responses. In case of low values of λ their borders are quite away
indicating low precision of inference, which has tendency to rise as the value of λ
increases, leading to the narrowest intervals for the case of λ→∞. That means that
increasing the amount of prior information from the DSGE model and increasing the
strength of economic restrictions lead to better precision of the posterior inference.
The highest uncertainty, in the conditional models for low λ, is present in case of
influence of all shocks on interest rates while the highest precision of HPD is observed
for impact of the price shock on inflation and real wage. The observed behaviour of
IRFs is also visible for other lags of VAR assuming that we take into account models
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Figure 3: IRFs from DSGE-VAR estimated for values of weighting parameter from
the set Λ1
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Notation: εa → π, εa → r, εa → y and εa → w depicts respectively: impact of technology shock on
inflation, interest rate, production and real wage. Analogously: εg → π, εg → r, εg → y and εg → w
indicate the impact of the preference shock on respective endogenous variables, εr → π, εr → r, εr → y
and εr → w describe effects of the monetary policy shock and επ → π, επ → r, επ → y and επ → w
illustrate influence of the price shock.

with the highest marginal likelihood within given order p.
The DSGE-VAR model allows to inference about the parameters of the DSGE model
indirectly via the autoregression parameters. It means that parameters θ and λ could
display the posterior dependence if the covariance matrix of all parameters [θ λ] is not
diagonal. That implies the influence of the prior specification for λ on the posterior
inference of θ and further on IRFs obtained from the DSGE model. The most visible
change in the shape of the posterior IRFs is present in the case of the technological
shock influence on all endogenous variables, the impact of the preference shock on
the interest rate and the real wage, also in the initial path of the monetary shock to
inflation. In the rest of the cases the time path of responses is quite independent of
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the assumed value for the weighting parameter in conditional models. For λ = 1000
their shape is identical to ones obtained from the DSGE model estimated individually.

4.3 Misspecification analysis

The empirical analysis of misspecification degree of DSGE assumptions is possible
by comparing paths of IRFs for certain values of the weighting parameter λ.
The important comparison concerns cases for λ = 1000, which is treated as an
approximation of λ → ∞, with the IRFs for λmax and the DSGE model estimated
separately. The model with the highest marginal data density, conditional to λmax,
is regarded as one which optimally releases economic restrictions. Similarity of IRFs
for λ → ∞ and λmax indicates correct specifications of the economic assumptions,
while the discrepancy signalises the area which potentially could be modified to obtain
better harmony. The IRFs from the DSGE-VAR of lag two, estimated conditional to
λmax = 0.79 and λ = 1000, the results obtained from the DSGE model estimated
separately, depicts graph 4.
Comparison of results for λmax = 0.79 and λ = 1000 indicates that there are
differences in the shape of the impact of the technology shock on the interest rate, and
to some extent, on inflation and real wage. Discrepancies are also observed for effects
of the preference shock on inflation and real wage and the influence of monetary shock
on all endogenous variables. The influence of the price shock on the interest rate and
production also depend on the value of the weighting parameter. The similarity of
IRFs paths for the conditional model for λmax = 0.79 and λ = 1000 is visible for the
impact of the technology and preference shock on production and also in effects of the
price shock on inflation and the real wage. It means that in this area the economic
assumptions meet the data, while in the rest of the cases DSGE assumptions are
strongly modified. For the limiting case (λ → ∞) there exists agreement in the
paths of IRFs with IRFs obtained from the DSGE model estimated individually what
indicates that the solution of the linearised DSGE model, which takes the form of
the vector autoregression moving average process, is well approximated by the finite
order VAR with restricted number of lags. In the analysed case the IRFs are identical
for all variables and shocks.

5 Estimation of weighting parameter
The impact analysis of competing prior distributions for the weighting parameter
on posterior IRFs shapes was considered in two ways: firstly different types of the
prior is taken, secondly the dispersion of them is gradually changed to illustrate
consequences on IRFs’ shapes. It is common in the empirical research to assume a
priori uniform distribution for λ, which seems to be uninformative about the quantity
of prior information from the DSGE model. Unfortunately it does not imply uniform
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Figure 4: IRFs from DSGE-VAR conditional to λmax, λ→∞ and form DSGE model
estimated individually (EHL)
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distribution for the weight W . What distribution for W is implied by the assumed
distribution for λ can be assessed in a simulation way, see Wróbel-Rotter (2013c).

5.1 The prior type
The impact analysis of different types of the prior distribution for the weighting
parameter on posterior shapes of IRFs is considered after assuming the following
prior specifications for λ:

1. uniform from 0 to λG, where λG = 1, 4, 9, 19, 49 and 99, which corresponds to
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maximal possible weights W equal to: 50%, 80%, 90%, 95%, 98% and 99%
respectively,

2. gamma: fG(λ|1.4, 0.3), fG(λ|1.5, 1), fG(λ|5, 1) and fG(λ|5, 4), where for
fG(λ|g1, g2), parameters g1 > 0, g2 > 0, E(λ) = g1g2 and the standard
deviation: D(λ) = g

1/2
1 g2,

3. normal: fN (λ|1, 5), fN (λ|5, 5), fN (λ|10, 5) and fN (λ|10, 40), where n1 denotes
mean, n2 standard deviation, the distribution is truncated to fulfil requirements:
λ > λmin,

The specified distributions cover a wide range of prior beliefs about possible values of
the weighting parameter. The maximum value of logarithm of the marginal data
density was obtained for the gamma distribution fG(λ|1.4, 0.3), equal to 1221.5.
Among uniform distributions the best model is found to be for U(0, 4) where logarithm
of the modified harmonic mean is equal to 1217.3, while for normal distributions
the maximum value of the marginal likelihood is 1218.9 for fN (λ|1, 5). The graph
of marginal posterior distributions for weighting parameter λ and weights W for
abovementioned priors can be found in the work Wróbel-Rotter (2013c). The paths
of the IRFs are quite similar and independent of the assumed type of the prior
distribution for λ, what can be considered as an indication of the robustness of
posterior inference (see graph 5). The slight difference is visible for the impact of
the technological and price shocks on the interest rate.

5.2 The prior dispersion
The impact assessment of the gradual change in the dispersion of the prior distribution
for λ on posterior IRFs paths is analysed after assuming three types of the prior:
uniform, gamma (moved to assure λ > λmin) and the beta extended to interval
(a, b), which is the same as for uniform distributions. Values for the prior mean
E(λ) are set from 0.5 to 25 with step 0.5. The lower bound a of the interval (a, b)
for the uniform distribution is λmin = 0.19 for p = 2, the upper bound b was set
as to guarantee the assumed mean E(λ) of the prior distribution. For the gamma
distribution fG(λ|g1, g2) we set g2 = 2, which means that we assume χ2 distributions
with 2g1 degrees of freedom, what indicates g1 = E(λ)/2. Assumed values for the
weighting parameter prior indicate that the central tendencies of distributions are
similar but the dispersion of them is not directly comparable as uniform and modified
beta distributions have restricted support while the gamma and truncated normal
can take any positive number in that case.
The highest value of logarithm of the marginal data density for the lag p = 2 is
obtained for the uniform distribution on the interval 0.19 to 0.81 (E(λ) = 0.5) and
is equal to 1225. For the modified beta distributions the maximum value of the
marginal likelihood is registered for the same interval and it is equal to 1224. That
means that the DSGE-VAR model with the uniform distribution is more than two
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Figure 5: IRFs for alternative priors of the weighting parameter
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U(a, b) means uniform distribution on the interval (a, b), G(c, d) – Gamma distribution with parameters c
and d and N(e, f) denotes Normal distribution with mean e and standard deviation f , truncated to
λ > λmin.

times better that the model with the beta prior. In the group of gamma distributions
the maximum level of log marginal data density is calculated for the case E(λ) = 1.5
and is equal to 1221. This quantity is lower than for uniform and beta distributions,
possibly as a consequence of the fact that the gamma prior is much more dispersed
(λ ≥ λmin) than the beta and uniform, which are defined for intervals. In all cases the
marginal likelihood has tendency to decrease as the dispersion of prior distributions
increases. Within the given value of E(λ) the uniform distributions are better than the
gamma in 36 cases and better than the beta distribution in 21 cases. In 40 cases beta
distributions lead to higher marginal likelihoods than the gamma distribution. More
detailed discussion of the results can be found in the work Wróbel-Rotter (2013b).
As previously the results indicate that the shape of IRFs is quite robust to the
prior distribution for the weighting parameter. The weighting parameter estimation
approach allows freely the data to decide about posterior mean of λ and allows to
avoid the problem of arbitrary specifications of the set of values for it. The case of
estimated λ leads directly to maximum values of the marginal likelihood while in the
conditional approach one has to choose set of arbitrary values that do not guarantee
that the optimal one is present among them. Further, IRFs could be affected by the
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choice of λ. Analogous results were also found for different lags of the DSGE-VAR for
which optimal value of the weighting parameter is higher as number of free parameters
increases.

6 Summary
In the paper there was examined impact on the posterior inference of the shape of
IRFs after assuming competing prior distributions for the weighting parameter, which
defines the strength of economic restrictions in the DSGE-VAR model. The first
approach was to consider the set of conditional models obtained for arbitrary chosen
values for the weighting parameter. The second approach was to fully estimate the
weighting parameter what requires to assume for it a prior probability distribution.
At the beginning it was considered the most typical distribution: an uniform, and then
less common in such applications: gamma, modified beta to assure the same support
as for the uniform distribution, and normal, truncated to values that guarantee
existence of the prior from the DSGE model. For considered distributions the analysis
of IRFs posterior paths was conducted for different prior means and gradual change
in the prior dispersion.
In the conditional approach obtained results of the marginal likelihood confirmed the
inverse U-shape presented in the literature for different models. The IRFs time paths
in the conditional approach illustrated gradual change of their shape as a consequence
of gradual change in the degree of economic restrictions from the DSGE model. Such
comparison illustrate how the economic conclusions can be affected by incorrect choice
of the weighting parameter values. The uncertainty of the estimation of IRFs in
the DSGE-VAR model is quite strong in comparison with the ones obtained from
the DSGE model, estimated within the DSGE-VAR model and individually. HPDs
depend on the weighting parameter values. The values for the weighting parameter
have influence on the posterior IRFs obtained from the DSGE model. The solution
of the considered DSGE model is well approximated by the finite order VAR with
restricted number of lags. Misspecification analysis of the considered DSGE model
indicated areas when the economic assumption do not agree with the data and revealed
that restrictions on the parameter space coming from the solution of the DSGE are
strict and they are not entirely approved by the observed data, but also they are not
strongly rejected.
Estimation with different priors for the weighting parameter enabled comparison
between similarly specified prior and quite diversified. The paths of the IRFs are
quite independent of the assumed type of the prior distribution for the weighting
parameter, what can be considered as the robustness of economic inference based
on the DSGE-VAR model, even though the values of marginal likelihood reveal
differences. Comparison of the IRFs paths for a wide range of prior means and
dispersion for the weighting parameter and for different VAR lags confirm the results.
The estimation of the weighting parameter allows freely the data to decide about
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its posterior mean. This allows to omit the issues of correct choice of the weighting
parameter values in conditional models. The case of full parameters estimation leads
directly to the maximum values of the marginal likelihood while in the conditional
approach there is a two stage procedure. As a consequence, IRFs could be affected
by the choice of values for the weighting parameter. Both approaches confirm that
there exists advantages of incorporating economic restrictions into the VAR.
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