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Abstract

Small sample properties of unrestricted and restricted canonical correlation
estimators of cointegrating vectors for panel vector autoregressive process are
considered when the cross-sectional dependencies occur in the process generating
nonstationary panel data. It is shown that the unrestricted Box-Tiao estimator
is slightly outperformed by the unrestricted Johansen estimator if the dynamic
properties of the underlying process are correctly specified. The comparison of
performance of the restricted canonical correlation estimator of cointegrating
vectors for the panel VAR and for the classical VAR applied independently for
each cross-section reveals that the latter performs better in small samples when
the cross-sectional dependence is limited to the error terms correlations, even
though it is inefficient in the limit, but it falls short in comparison to the former
when there are cross-sectional dependencies in the short-run dynamics and/or
in the long-run adjustments.
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1 Introduction
During the last two decades, there was an increasing interest in an augmentation of the
cointegration analysis of the integrated single-indexed processes for time-series data
towards the nonstationary double-indexed processes for panel data. On the one hand,
the focus was on the univariate analysis and the limit theory was developed by Phillips
and Moon (1999). Among the surge of papers concerning univariate nonstationary
panel analysis, Entorf (1997) has studied the spurious regression phenomenon in the
panel framework, Levin et al. (2002) and Im et al. (2003) introduced the first
generation of unit root tests for panels, the panel stationarity test was proposed
by Hadri (2000), whereas the univariate cointegration tests were developed by Kao
(1999), Pedroni (1999) and McCoskey and Kao (1998), see survey in Banerjee (1999).
On the other hand, the multivariate cointegration analysis of panel data was proposed
first by Groen and Kleibergen (2003) and Larsson and Lyhagen (2007). Anderson et
al. (2006) advocated the use of both Box and Tiao (1977) and Johansen (1988)
canonical correlation estimators of the cointegrating vectors in the context of panel
data. It is noteworthy that Anderson et al. (2006) were able to find an additional
cross-sectional cointegrating vector in empirical data using Box and Tiao approach,
as opposed to the results suggested by Johansen’s trace test.
Since the cointegration analysis of vector autoregressive processes is among the most
successful methods used in empirical analyses and small sample performance of
univariate cointegration analysis of panel data seems to be well-known, it is natural to
investigate on properties of methods used in multidimensional analysis (time, cross-
sections, multiple variables) of the nonstationary panel data. In this paper we focus
on performance of Box-Tiao and Johansen canonical correlation estimators of the
cointegrating vectors applied in the framework of panel data, since the existing small
sample investigations that are based on the panel data framework are concentrated
on the Johansen’s approach only, see Larsson and Lyhagen (2000, 2007) and Larsson
et al. (2001). The comparative investigations based on the purely time-series context
are available in Bewley et al. (1994) and Bewley and Yang (1995).
Therefore, at first, using the framework of panel vector error correction model (panel
VEC or PVEC henceforth) we compare the small sample properties of the unrestricted
canonical correlation estimators proposed by Box and Tiao (1977) and Johansen
(1988). With respect to the restricted canonical correlation analysis we show that
under assumption of first order integratedness of the process the restricted canonical
correlation estimator of the cointegrating vectors for both approaches are the same.
In this paper, we compare also the performance of the restricted canonical correlation
estimator in case of the panel VEC model and in case of the usual VEC model when
the cross-sectional dependencies occurs in the underlying process. The results show
that when the cross-sectional dependencies are limited only to the non-zero error
terms correlations between cross-sections, the asymptotically inefficient estimator of
cointegrating vectors for the VEC model performs better in small samples. However,
if there are cross-sectional dependencies in the short-run dynamics or in the long-
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run adjustments, which is often the case in practice, then the efficient estimator of
cointegrating vectors for the panel VEC model performs significantly better even for
moderate samples.
The rest of the paper is organized as follows. Section 2 describes the canonical
correlation analysis for the vector autoregressive process integrated of order one in
case of time-series. Sections 3 introduces the panel VEC model and the canonical
correlation analysis for the panel framework. The design of experiment and the result
are discussed in section 4. Section 5 contains some concluding remarks.

2 Canonical correlation analysis
To focus on the problem of unrestricted and restricted canonical correlation analysis,
let us first consider briefly the canonical analysis in a purely time-series context.
Suppose yt is a P -dimensional vector of observations and it follows a first-order vector
autoregressive model

yt = Θyt−1 + εt, (1)
where Θ is a P × P matrix of coefficients, εt is an independently and identically
distributed error term and the unit roots are allowed, thus the process can be non-
stationary. Note that the first-order VAR model without any deterministic terms is
considered here only for the sake of easy of the exposition, since the canonical analysis
can be easily performed as well for higher order vector autoregressions and with
deterministic components (after concentrating out short-run effects and deterministic
terms according to Frisch-Waugh theorem). Following Box and Tiao (1977) and
Bewley et al. (1994) the canonical transformation of the original process can be
performed, by solving the eigenvalue problem∣∣∣∣λY Y ′ − (Y Y ′−1

)(
Y−1Y

′

−1

)−1 (
Y−1Y

′
)∣∣∣∣ = 0, (2)

where Y and Y−1 are P×T matrices of current and lagged observations, for eigenvalues
λp and eigenvectors vp such that

λpvp =
(
Y Y

′
)−1 (

Y Y
′

−1

)(
Y−1Y

′

−1

)−1 (
Y−1Y

′
)
vp, (3)

where the eigenvalues λp are ranked in the ascending order and V̂ =
[
v̂1 . . . v̂P

]
.

The transformed process V̂ yt generates contemporaneously independent canonical
variates that are ordered from the least to the most predictable according to the
order of the eigenvalues. The eigenvectors associated with eigenvalues approaching
unit boundary represent the non-stationary directions and span the non-stationary
subspace. The eigenvectors corresponding to eigenvalues smaller than one describe
the stationary long-run relationships and form the cointegration subspace.
As opposed to the levels canonical correlation analysis (LCCA henceforth) introduced
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by Box and Tiao (1977), the other approach to the canonical analysis, proposed by
Johansen (1988), is to take explicitly into account the dynamic properties of the
process. For the VAR process integrated of order one, the error correction form of
model (1) shall be considered

∆yt = Πyt−1 + εt, (4)

where Π = Θ − I. Therefore, the Johansen’s approach constitutes the
canonical correlation analysis of first differences and lagged levels and the canonical
transformation of the process is achieved by solving the following eigenvalue problem∣∣∣∣λY−1Y

′

−1 −
(
Y−1∆Y

′
)(

∆Y∆Y
′
)−1 (

∆Y Y
′

−1

)∣∣∣∣ = 0, (5)

where the eigenvalues are ranked in descending order and the eigenvectors associated
with non-zero eigenvalues (in the limit) span the cointegration subspace.
Clearly, since estimators of cointegrating vectors in both canonical correlation analyses
are derived as a solution to an eigenvalue problem, they represent system approaches
with non-normalised long-run relationships, as opposed to methods based on the
OLS regression. Moreover, Box-Tiao’s estimator essentially diagonalise

∨
Θ
∧
Θ matrix,

whereas Johansen’s estimator diagonalise
∧
Π
∨
Π, as it follows from (2) and (5) (the

”hat” and the ”reversed hat” denote the OLS estimators for a given regression, (1) or
(4), and an associated reverse regression), see Bewley et al. (1994).
The property of cointegration implies the non-zero rank of matrix Π, say R, and
enables to decompose Π into AB′, where both matrices are full rank matrices,
B̂ =

[
v̂1 . . . v̂R

]
and A denotes the loading matrix. The restricted canonical

correlation analysis for the Johansen’s approach can be simply performed by
employing the switching algorithm and sequentially concentrating out all but one
stationary long-run relationships, as proposed by Johansen (1991). Therefore, for the
VAR model (4) given j-th cointegrating vector can be iteratively estimated by
conditioning on B

′

[j]Y−1, where B̂[j] = [v̂1 . . . v̂j−1 v̂j+1 . . . v̂R] and solving the
eigenvalue problem for the residuals

∆Y·B[j] = ∆Y −
(

∆Y Y
′

−1B̂[j]

)(
B̂
′

[j]Y−1Y
′

−1B̂[j]

)−1 (
B̂
′

[j]Y−1

)
, (6a)

and
Y−1,·B[j] = Y−1 −

(
Y−1Y

′

−1B̂[j]

)(
B̂
′

[j]Y−1Y
′

−1B̂[j]

)−1 (
B̂
′

[j]Y−1

)
, (6b)

as follows from the Frisch-Waugh theorem.
In case of Box-Tiao approach the restricted canonical correlation analysis shall follow
the decomposition of matrix Θ, since Θ = AB′ + I = a1v

′

1 + . . . + aRv
′

R + I.
Conditioning on B′[j]Y−1 can be easily performed, however, conditioning on IY−1 leads
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to the singularity problem, since Y·IY−1 = ∆Y and Y−1,·IY−1 = 0. Therefore, instead
of conditioning, subtraction of IY−1 is a natural solution. Nevertheless, subtracting
IY−1 replaces in fact model (1) with model (4), which means that the restricted
canonical correlation analysis for Box-Tiao approach leads to the same estimator of
B as in the case of Johansen approach. Summing up, restricted canonical correlation
analysis of the VAR process with cointegration property requires imposition of a priori
assumptions about the dynamic properties of the process. As a result, the restricted
Box-Tiao estimator for the cointegrated VAR process is the same as the restricted
estimator proposed by Johansen (1991).

3 Canonical correlation analysis for panel vector
error correction model

The panel cointegrated vector autoregression can be considered in two main strands
of model’s specification. The first one is a multivariate analysis of the double-indexed
process that constitutes one form of augmentation of the VEC model towards panel
data. Therefore, the following model can be considered at first

∆yit = Πiyi,t−1 +
K−1∑
k=1

Γki∆yi,t−k + Φidt + εit, (7)

where yit =
[
y1it y2it . . . yP it

]′
is a P-dimensional vector of observations for

given cross-section i and period t, Πi and Γki are P ×P matrices of coefficient, dt and
Φi denote a N -dimensional vector of (common) deterministic components and P ×N
matrix of their coefficients and εit is a P-dimensional independently and identically
distributed error term with mean equal to zero and covariance matrix Ωi for cross-
section i.
Consider next the following VEC model for the panel VAR process

∆yt = Πyt−1 +
K−1∑
k=1

Γk∆yt−k + Φdt + εt, (8)

where yt = [y′1t y
′
2t . . . y

′
I t]
′
is a IP-dimensional vector of observations for period t, Π

and Γk are IP ×IP matrices of coefficients, Φ denotes IP ×Nmatrix of deterministic
term coefficients and εt is a IP-dimensional independently and identically distributed
error term with mean equal to zero and covariance matrix Ω. In case of the
cointegrated panel VAR process matrix Π can be decomposed into IP × IR full
rank matrices A and B, and the panel VEC model is

∆yt = AB′yt−1 +
K−1∑
k=1

Γk∆yt−k + Φdt + εt. (9)
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The benefits of employing model (8) instead of model (7) can be quickly revealed by
comparing their structures with respect to the cross-sectional dimension. The panel
VEC model (9) can be rewritten as

∆yt =


A11 A12 · · · A1I

A21 A22 · · · A2I

...
...

. . .
...

AI1 AI2 · · · AII




B′11 B′12 · · · B′1I

B′21 B′22 · · · B′2I
...

...
. . .

...
B′I1 B′I2 · · · B′II


′ 

y1t

y2t

...
yIt

+

+
K−1∑
k=1


Γ11,k Γ12,k · · · Γ1I,k

Γ21,k Γ22,k · · · Γ2I,k

...
...

. . .
...

ΓI1,k ΓI2,k · · · ΓII,k




∆y1,t−k

∆y2,t−k

...
∆yI ,t−k

+

+


Φ11
Φ21
...

ΦI1

 dt +


ε1t

ε2t

...
εI t

 ,

(10)

and its covariance matrix is

Ω =


Ω11 Ω12 · · · Ω1I

Ω21 Ω22 · · · Ω2I

...
...

. . .
...

ΩI1 ΩI2 · · · ΩII

 . (11)

On the other hand, model (7) can be written in the same full notation as in (10)
but with block-diagonal matrices A, B, Γk and Ω. Therefore, model (7) assumes
lack of any cross-sectional dependencies, however this assumption can be clearly too
restrictive for the underlying process. This is the main reason to use models nested in
framework (9), see Groen and Kleibergen (2003), Larsson and Lyhagen (2007), and
Jacobson et al. (2008), instead of straightforward panel augmentation for double-
indexed processes given by (7). The only, yet significant, disadvantage of using model
(9) is the potential dimensionality effect that can limit its application for small samples
in case of a large number of cross-sections and variables simultaneously.
The unrestricted Box-Tiao estimator of the panel VEC model (9) is computed as
follows. At first, the short-run effects are concentrated out and the concentrated
regression is

ỹt = Θỹt−1 + εt, (12)

where ỹt = yt − ytz
′

t

(
ztz
′

t

)−1
zt, ỹt−1 = yt−1 − yt−1z

′

t

(
ztz
′

t

)−1
zt and

zt =
[

∆y′t−1 . . . ∆y′t−K+1 d
′

t

]′
. Next, the canonical transformation is achieved
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by solving the eigenvalue problem∣∣∣∣λỸ Ỹ ′ − (Ỹ Ỹ ′−1

)(
Ỹ−1Ỹ

′

−1

)−1 (
Ỹ−1Ỹ

′
)∣∣∣∣ = 0, (13)

for the eigenvalues 0 < λ̂1 < . . . < λ̂IP < 1 and eigenvectors V̂ =
[
v̂1 . . . v̂IP

]
,

of which the first IR constitute the cointegration subspace.
Similarly, the unrestricted Johansen estimator is calculated by concentrating out at
first the short-run effects, thus the concentrated regression is

∆ỹt = AB′ỹt−1 + εt. (14)

Then the canonical transformation is performed by solving∣∣∣∣λỸ−1Ỹ
′

−1 −
(
Ỹ−1∆Ỹ

′
)(

∆Ỹ∆Ỹ
′
)−1 (

∆Ỹ Ỹ
′

−1

)∣∣∣∣ = 0, (15)

and B̂ =
[
v̂1 . . . v̂IR

]
.

In order to enable performance comparison of both unrestricted estimators, the
eigenvectors from both eigenvalue problems (13) and (15) shall be transformed into
linear combinations that are as close as possible to subspaces spanned by design
matrices. Therefore, the cointegrating vectors are found by solving the following
eigenvalue problem ∣∣∣ρB̂′B̂ − B̂′Hj

(
H ′jHj

)−1
H ′jB̂

∣∣∣ = 0, (16)

for the eigenvalues ρ1 > . . . > ρIR and eigenvectors u1, . . . , uIR, and choosing
b̂j = B̂û1, for each design matrix

Hj =
[

0 . . . 0 Ĩ 0 . . . 0
]′
, (17)

where Hj is IP × R matrix, j = 1, . . . , IR, and Ĩ denotes a submatrix that
consist of zeros and ones if variable is present in the cointegrating vector, f.e.

Ĩ =
[

0 0 1 0 0
0 0 0 1 0

]
if the third and the fourth variable form the cointegrating

vector, see Johansen and Juselius (1994).

4 Design of experiment and results
Performance of both unrestricted estimators is compared within the framework of
panel VEC model (9). To this end, Monte Carlo simulation is employed (simulations
are carried out in Gauss 14). We consider second-order (K = 2) cointegrated
panel VAR model with five variables and two cointegrating vectors for each cross-
section. The number of cross-sections varies from one to eight. Since we are primarily
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interested in small sample properties of the high dimensional process, the sample size
is T ∈ {100, 200, 400, 800}. The only deterministic term is a constant, which is
considered in two cases, firstly, as an unrestricted constant, secondly, as a constant
restricted to the cointegration space. However, the results for the latter case are not
reported here (available upon request), since they do not alter the conclusions drawn
from the former case. The number of replications is set as 10000.
Since the switching algorithm for the restricted estimation does not ensure that the
global maximum of the likelihood function is reached, we truncate the empirical
distribution. Therefore, a very rare replications (one or two for 10000 replications
and only for I > 5) with clearly invalid numerical convergence are rejected. In order
to identify these cases it was assumed that no individual element of cointegrating
vectors should be higher than the true value by at least 10 times. The value of the
truncation point is (enough) high in order to ensure that the distributions of both
estimators that are fat-tailed (mixed Gaussian in the limit) are not affected, on the one
hand. On the other hand, the cases of invalid numerical convergence are characterized
by clearly extreme estimates.
We allow for three different sources of cross-sectional dependence: in the error term, in
the short-run dynamics, and in the long-run adjustments. Cross-sectional dependence
in the error term may occur for example due to common shocks affecting cross-
sections. This sort of dependence can be easily observed in case of globalizing
economies and integrated financial markets, see e.g. Groen and Kleibergen (2003) and
Leuvensteijn et al. (2013). Cross-sectional short-run dependencies can be observed
in case of interdependent economies. Cross-sectional long-run adjustments can be
expected if an error-correction mechanism for given cross-section affects dynamics of
other cross-sections. The cross-sectional short-run and long-run dependencies may
arise for example in case of closely related economies and financial markets (e.g.
members of economic and monetary unions or free trade agreements), see e.g. Larsson
and Lyhagen (2007) and Beckmann et al. (2011). We do not consider here the cross-
sectional cointegrating vectors. However they can occur in specific cases, often by
definition of considered phenomenon, for example in case of purchasing power parity
testing, see Banerjee et al. (2004) and Jacobson et al. (2008).
The data generating process (DGP henceforth) is as follows:

∆yt = A (II ⊗B′11)
[
y
′

t−1 j′
]′

+
K−1∑
k=1

Γk∆yt−k + εt, (18)

where the error term εt comes from the multivariate normal distribution,
εt ∼ NIP (0 ; Ω), with covariance matrix from the inverse Wishart distribution –
Ω ∼W−1

IP (I ; 100). The initial values comes from the multivariate normal distribution
and the first one hundred observation is truncated. With respect to the cointegration
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matrix we assume that

∀
i=1,...,I

Bii =
[

1 −1 0 0 0 1
0 0 1 −1 0 1

]′
, (19a)

and
∀

i 6=j
Bij = 0. (19b)

In case of cross-sectional dependence in the long-run adjustments we impose that

∀
i=j

Aij =
[
−0.5 0 0 0 0

0 0 −0.5 0 0

]′
, (20a)

and

∀
i 6=j

Aij =
[
−0.1 0 0 0 0

0 0 −0.1 0 0

]′
. (20b)

For the cross-sectional dependence in the short-run adjustments we consider
∀

i=j
γij,1 = 0.5 and ∀

i 6=j
γij,1 ∼ U (−0.1 ; 0.1). Therefore, the DGP imposes for each

cross-section two homogenous long-run relationships within cross-section (19a) and
no cross-sectional cointegrating vectors (19b) and the error correction mechanisms
affect not only the same cross-section (20a) but also the other cross-sections (20b),
even though with rather small pulling force. Clearly, this setting does not mimic
exactly any specific empirical phenomenon, however it is intended to reflect the cross-
sectional features of empirical panel datasets, where cross-sectional co-movements are
usually easily observed, see e.g. Kębłowski 2011. The roots of the autoregressive
polynomial are computed in order to exclude explosive roots in the DGP.
With respect to the structure of cross-sectional dependence we consider three different
cases:

case 1: cross-sectional dependence in the error term, in the short-run dynamics
and in the long-run adjustments,

case 2: cross-sectional dependence in the error term and in the short-run
dynamics,

case 3: cross-sectional dependence only in the error term.

Therefore, case 1 is the most general among aforementioned and it accounts for a
significant information that comes from the cross-sectional dimension of the process,
even though it does not allow for the special case of the cross-sectional cointegrating
vectors. Cases 2 and 3 limit the cross-sectional dependencies to the short-run
dynamics and error terms correlations respectively.
As can be seen from Tables 1 and 2, the unrestricted Johansen estimator (ML) slightly
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Table 1: Standard deviations of unrestricted canonical correlation estimators of the
cointegrating vectors, T = 200

I 1 2 3 4 5 6 7 8
case 1

ML 0.064 0.159 0.278 0.512 0.736 0.991 1.535 1.949
LCCA 0.076 0.182 0.300 0.529 0.748 1.002 1.535 1.955

case 2
ML 0.052 0.160 0.281 0.440 0.611 0.874 1.091 1.318
LCCA 0.072 0.175 0.303 0.453 0.648 0.902 1.116 1.371

case 3
ML 0.056 0.143 0.279 0.414 0.609 0.880 1.178 1.479
LCCA 0.068 0.159 0.298 0.436 0.628 0.907 1.208 1.505

Table 2: Standard deviations of unrestricted canonical correlation estimators of the
cointegrating vectors, T = 800

I 1 2 3 4 5 6 7 8
case 1

ML 0.012 0.036 0.061 0.083 0.137 0.148 0.192 0.332
LCCA 0.016 0.041 0.065 0.089 0.141 0.156 0.197 0.337

case 2
ML 0.013 0.028 0.048 0.084 0.119 0.139 0.203 0.237
LCCA 0.016 0.034 0.051 0.088 0.125 0.146 0.206 0.245

case 3
ML 0.010 0.031 0.051 0.078 0.110 0.140 0.186 0.217
LCCA 0.015 0.035 0.056 0.082 0.116 0.145 0.194 0.223

outperforms the Box-Tiao estimator (LCCA) in short and in long samples for the DGP
given by (15). This holds irrespective of the structure of cross-sectional dependence,
the number of cross-sections as well as the sample size. The finding is consistent
with the fact that the unrestricted Johansen estimator takes advantage of the true
assumptions about the dynamic properties of the underlying process (integratedness
of order 1), whereas the Box-Tiao estimator does not impose any specific conditions.
However, this does not rule out the possibility that the Box-Tiao estimator may
probably outperform the Johansen estimator for misspecified models or for other
classes of cointegrated processes.
As mentioned above, the restricted canonical correlation analysis of the cointegrated
processes requires imposing assumptions about the dynamic properties of the process,
which equates the Box-Tiao and the Johansen’s approach. However, the performance
of the restricted canonical correlation estimator of the PVEC model (8) may be
referred to the restricted estimator of the (misspecified) VEC model (4) applied
for each cross-sections independently. This shall mimic the practical choice for
small sample situations, i.e. whether to neglect the cross-sectional dependencies and
consider the P -dimensional VAR model or to employ the (asymptotically) effective
IP -dimensional panel VAR framework. In other words, it can be investigated, firstly,
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how the dimension of the process affects the performance of the restricted estimator
in case of the PVEC model (dimensionality effect). Secondly, how the misspecified
VEC model (4) deteriorates the performance of the restricted estimator. Thirdly,
which approach performs better.

Table 3: Standard deviations of restricted maximum likelihood estimators of the
cointegrating vectors, cross sectional dependence in the error term, in short-run
dynamics and in long-run adjustments

I 1 2 3 4 5 6 7 8
T = 100

VEC 0.052 0.097 0.113 0.127 0.145 - - -
PVEC 0.052 0.090 0.158 0.373 0.592 - - -

T = 200
VEC 0.032 0.042 0.048 0.052 0.055 0.063 0.058 0.066
PVEC 0.032 0.039 0.042 0.043 0.033 0.046 0.032 0.050

T = 400
VEC 0.011 0.019 0.021 0.028 0.031 0.030 0.031 0.029
PVEC 0.011 0.017 0.018 0.022 0.021 0.019 0.017 0.011

T = 800
VEC 0.005 0.007 0.010 0.011 0.013 0.016 0.015 0.012
PVEC 0.005 0.006 0.007 0.008 0.009 0.009 0.007 0.004

As expected, the results of Monte Carlo simulations depend heavily on the structure
of cross-sectional dependence and also on the sample size. In case of cross-sectional
dependence in the error term, in the short-run dynamics and in the long-run
adjustments (case 1), the restricted estimator for VEC models that neglects cross-
sectional dependencies falls short in comparison to performance of the restricted
estimator for the panel VEC model, see Table 3. The exception occurs for the sample
size T = 100, which is simply too small for estimator of the panel VEC model.
In case of cross-sectional dependence in the error term and in the short-run dynamics
(case 2), the asymptotically efficient restricted estimator for the panel VEC model in
general still outperforms the restricted estimator for VEC models, even though for
small number of cross-sections – I < 5, both estimators performs comparably (except
for T = 100), see Table 4. As in the case 1, the more cross-sections the underlying
process has and the longer time spans are used, the better performs the restricted
estimator for the panel VEC model.
The reverse situation is observed when the cross-sectional dependence is limited to
error terms correlations solely (case 3). Even for moderate samples, the restricted
estimator for the VEC models performs better than the restricted estimator for the
panel VEC model, see Table 5. The efficiency of the latter can be observed only in
the limit, but even then, performance of both estimators is comparable. Therefore,
in case of cross-sectional dependence limited to error terms correlations and for small
samples, the dimensionality effect for the panel model prevails over the efficiency gains
from proper specification of the panel framework.
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Table 4: Standard deviations of restricted maximum likelihood estimators of the
cointegrating vectors, cross sectional dependence in the error term and in short-run
dynamics

I 1 2 3 4 5 6 7 8
T = 100

VEC 0.048 0.080 0.101 0.104 0.121 – – –
PVEC 0.048 0.095 0.215 0.413 0.669 – – –

T = 200
VEC 0.029 0.035 0.039 0.051 0.048 0.066 0.054 0.063
PVEC 0.029 0.037 0.039 0.051 0.043 0.061 0.055 0.058

T = 400
VEC 0.012 0.015 0.015 0.020 0.019 0.024 0.034 0.032
PVEC 0.012 0.014 0.015 0.018 0.015 0.017 0.020 0.019

T = 800
VEC 0.006 0.008 0.010 0.009 0.009 0.012 0.009 0.018
PVEC 0.006 0.008 0.009 0.008 0.008 0.009 0.003 0.004

Table 5: Standard deviations of restricted maximum likelihood estimators of the
cointegrating vectors, cross sectional dependence in the error term

I 1 2 3 4 5 6 7 8
T = 100

VEC 0.050 0.092 0.098 0.121 0.132 – – –
PVEC 0.050 0.120 0.190 0.587 1.134 – – –

T = 200
VEC 0.029 0.036 0.047 0.048 0.056 0.061 0.067 0.070
PVEC 0.029 0.038 0.053 0.059 0.073 0.085 0.101 0.136

T = 400
VEC 0.013 0.015 0.019 0.025 0.026 0.030 0.030 0.033
PVEC 0.013 0.015 0.019 0.025 0.027 0.032 0.032 0.036

T = 800
VEC 0.006 0.009 0.010 0.011 0.013 0.015 0.015 0.018
PVEC 0.006 0.009 0.010 0.011 0.012 0.014 0.014 0.016

The results for cases 1 – 3 suggest that the error-term cross-sectional dependence
shall not be considered as a decisive argument for employing the panel framework in
the multivariate cointegration analyses. On the other hand, if the cross-sections are
closely related (cross-sectional dependence in the short-run dynamics and/or in the
long-run adjustments), then use of the panel framework leads to important efficiency
gains and allows for a correct insight into the structure of dependencies in the time-
series dimension as well as in the cross-sectional dimension.

5 Conclusions
In this paper we have examined small sample properties of the canonical correlation
estimators of cointegrating vectors when the cross-sectional dependencies occur in
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the underlying process generating panel data. We have carried out Monte Carlo
simulations with the multidimensional panel VEC process generating the data. Three
different sources of cross-sectional dependence were considered: in the error-terms, in
the short-run dynamics and in the long-run adjustments. The results shows that
the unrestricted canonical correlation estimator proposed by Box-Tiao is slightly
outperformed by the unrestricted Johansen estimator. However, this is contingent
upon proper specification of dynamic properties of the underlying process, which in
turn is not required in case of the Box-Tiao canonical correlation analysis for levels
of variables.
An interesting result has been obtained when the performance of the restricted
canonical correlation estimator of the panel VEC model was compared to the
restricted estimator of the classical VEC model applied for each cross-section
independently. It was found that when the cross-sectional dependence is limited
to the error terms correlations, the latter outperforms the former in small samples,
even though it is inefficient in the limit. On the other hand, in case of cross-
sectional dependence in the short-term dynamics and/or in the long-run adjustments
the restricted estimator for the panel VEC model works significantly better than its
time-series counterpart in small samples, except for very short samples, which are
simply too short for the multidimensional panel framework.
This work may be extended in different directions. For example, it would be
interesting to explore whether imposing the restriction of common cointegration space,
i.e. that the cointegrating vectors in each cross-section span the same space, gives
further essential gains to the panel framework. Therefore, the trade-off between
the dimensionality effect and the homogeneity effect in small samples should be
investigated. Another issue would be to examine the performance in case of near-
I(2) processes e.g.
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