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Abstract

Various approaches have been introduced over the years to evaluate
information in the expected utility framework. This paper analyzes the
relationship between the degree of risk aversion and the selling price of
information in a lottery setting with two actions. We show that the initial
decision on the lottery as well as the attitude of the decision maker towards
risk as a function of the initial wealth level are critical to characterizing this
relationship. When the initial decision is to reject, a non-decreasingly risk
averse decision maker asks for a higher selling price as he gets less risk averse.
Conversely, when the initial decision is to accept, non-increasingly risk averse
decision makers ask a higher selling price as they get more risk averse if
information is collected on bounded lotteries. We also show that the assumption
of the lower bound for lotteries can be relaxed for the quadratic utility family.
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1 Introduction
It is well known that information has value only when it offers the possibility
of a decision change. Decision makers may seek information to see whether the
best course of action they could take without information is still preferable when
uncertainty is reduced. The uncertainty-reducing benefit of information may at
first lead to a premature conclusion that risk averse decision makers assign a
higher value to information. However, it has been proven in the expected utility
framework that information is not necessarily preferred by decision makers that are
less tolerant towards risk. In fact, the value of information may sometimes behave
counterintuitively with respect to changes in some particular attributes of the decision
environment such as the initial wealth, risk aversion and action flexibility (see Gould
1974 and Hilton 1981). If we leave the well-structured expected utility framework and
explore how decision makers evaluate information in empirical settings, behavior of
preferences towards information become even more difficult to predict. We encounter
many instances in which decision makers reveal irrational and sometimes inconsistent
preferences towards information. For example, they may acquire information even
when it has no impact on their decisions (see Bastardi and Shafir 1998, Tykocinski
and Ruffe 2003). Moreover, decision makers may overvalue information in strategic
environments (see Gehrig et al. 2003), whereas this tendency might change in non-
strategic environments (see Branthwaite 1975, Rötheli 2001, and Sakalaki and Kazi
2007).
In pricing uncertain prospects, approaches such as the buying price and the selling
price are widely used in literature. An extensive comparative analysis of these two
approaches can be found in the seminal paper by La Valle (1968) and the recent study
by Lewandowski (2013). Information can also be classfied as an uncertain prospect for
two reasons. First, decision makers do not know what information will be conveyed
before buying or selling information. Second, unless decision makers deal with perfect
information, uncertainty is not fully reduced even after information is revealed. As
shown in Hazen and Sounderpandian (1999), selling and buying price approaches do
not agree in ranking various information alternatives. In a two-action lottery setting
considered here, Bakir and Klutke (2011) shows that quite restrictive conditions
should be imposed on the behavior of the value of information to ensure that these
approaches agree. Selling price, which is the main focus of this paper, assigns a
monetary value to information by measuring the wealth increase that would make
the decision indifferent between making the decision with and without information at
the original wealth level. In fact, selling price approach converts the expected utility
increase to monetary units.
It has been shown that attitude towards decision alternatives prior to information
gathering has a significant effect on the value of information. In particular, choices
made before information is revealed makes the value of information behavior more
predictable as the degree of risk aversion changes. For example, in the context of
the simplest of decision problems with two actions where the decision maker chooses
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between a sure outcome and a risky prospect (i.e., a lottery), we observe such an
effect. In these decision problems, if the decision maker accepts the lottery, then
the terminal wealth is the initial wealth plus the outcome of the lottery. Conversely,
a decision to reject the lottery renders a sure outcome. In Mehrez (1985), we see
that a risk neutral decision maker pays more for perfect information if the initial
decision is to reject the lottery. Likewise, a simple example discussed in Eeckhoudt
and Godfroid (2000) suggests that an uninformed decision made by a risk neutral
newsvendor determines whether more should be paid for acquiring information. In a
slightly more complex case where both actions generate random outcomes, Delquié
(2008) shows that the value of certain information alternatives is maximized when
the decision maker is initially indifferent between rejecting and accepting the lottery.
This result is observed in other studies as well (see Fatti et al. 1987 for the case of
a risk neutral decision maker and Bickel 2008 where a risk averse decision maker is
considered).
This paper is concerned with the relationship between risk aversion and the selling
price of information. This study is novel is the sense that none of the earlier studies
that discussed this relationship offers a comparative analysis evaluating information
using its selling price. However, from a technical point of view, results introduced here
are an extension of findings presented in Abbas et al. (2013) where authors explore
the relationship between risk aversion and the buying price of information. In Abbas
et al. (2013), if the initial decision made by the decision maker is to reject the lottery
without information acquisition, it is shown that less risk averse decision makers are
willing to pay more for information. We show in this paper that the same is true for
the selling price of information if the decision maker’s utility function exhibits non-
decreasing degree of risk aversion. In the case when the initial decision is to accept the
lottery, we show that the behavior of the selling price is more predictable than that
of the buying price. In particular, if an accept decision is made without information
on a lottery whose potential loss to the decision maker is finite, then selling price
is increasing in the degree of risk aversion for a non-increasingly risk averse decision
maker.
The discussion of this paper continues in the following order. Section 2 provides
some notation and definitions. Our main results are presented in Section 3, where
the discussion is ordered based on the initial decision made on the lottery. First, we
analyze the case with the reject decision and then consider the case with the accept
decision. Section 4 presents some concluding remarks.

2 Model formulation
We begin with a description of the problem. A decision maker makes a decision about
a lottery Π : Ω → E,E ⊆ R with monetary outcomes in E that are either positive
or negative. This decision is made with a continuous and monotonically increasing
utility function u : R → R and an initial wealth level of w. The decision maker has
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two alternative courses of action available in action set A: He could either reject or
accept the lottery. If the decision maker decides to accept the lottery, his terminal
utility is u(w + Π ) whereas rejecting the lottery leads to a terminal utility of u(w).
There is also a probability distribution (with a cumulative distribution function F )
that governs the occurrence of outcomes in E.
The decision maker is presented with the opportunity to gather information on the
lottery Π . The piece of information that is gathered will make it known to the
decision maker whether one or more events on the lottery outcome occur or not. In
this regard, information is not necessarily perfect; however the decision maker will
reduce uncertainty by shrinking the set of possible outcomes of Π . More technically,
information is gathered on a collection of disjoint events {A1, . . . , Ak}. They partition
the entire outcome space into k events (i.e., ∪k

j=1Aj = E) and generate an information
alternative I. By gathering information I, the decision maker learns not only whether
or not A1 to Ak occur, but also the occurrence of events that either complement or are
formed as a union or intersection of an arbitrary number of events in {A1, . . . , Ak}.
Accordingly, if the decision maker gathers I and learns that Aj , 1 ≤ j ≤ k, occurs,
then he will know that the set of outcomes is indeed Aj ⊂ E. The probabilities of
all other outcomes in E−Aj that was deemed possible before information acquisition
become zero.
The major question that we address in this study is concerned with the price of
I. We assume that the decision maker uses the selling price approach for pricing
I. According to this approach, the price of information is the minimum monetary
compensation that the decision maker asks to forgo the opportunity to make a decision
in the light of information. In other words, this compensation will make the decision
maker equally well off between making an informed and an uninformed decision on
Π . We denote the selling price with S(w, I, u) highlighting its dependence on I, u
and w. To simplify the notation though, we use a shorthand form Su = S(w, I, u)
throughout the paper unless an explicit notation is needed. Su satisfies

max {u(w + Su),E[u(w + Π + Su)]} =
∑

i

P{Ai} ·max {E[u(w + Π )|Ai], u(w)} .

(1)
In (1), the right hand side of the equation is the expected utility of making the
decision with information whereas the left hand side is the expected utility of making
an uninformed decision after receiving Su (as compensation). Hence, we argue that
Su balances the expected utility of making an informed and an uninformed decision.
We define an optimal decision function du : R × B → R (where B is the collection
of Borel sets in R) to simplify the problem by updating the partition imposed by an
information alternative. The optimal decision function is

du(w,A) =
{

+1 if E[u(w + Π )|A] ≥ u(w)
−1 o.w.
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The idea in defining the optimal decision function is clustering the outcomes of
the lottery in two sets based on the decision made after acquiring an information
alternative. In the perfect information case, these clusters can be formed easily
based on the sign of an outcome (i.e., the decision maker chooses to accept if the
outcome is positive, and to reject if the outcome is negative). However, in the case
of arbitrary information alternatives, an outcome π ∈ R is placed into one of these
clusters based on the decision made after observing the event in the information
alternative that includes π. Using the optimal decision function, we could define
Γu(w, I) = { π ∈ R : du(w,A) = +1 for A ∈ {A1, . . . , Ak} and π ∈ A}. In words,
Γu(w, I) is the union of the disjoint events that generate I on which the decision
maker accepts the lottery. We should also have Γu(w, I) ∪ Γc

u(w, I) = E because the
decision maker’s action set includes only two elements. The following example should
make the clustering idea more clear.
Example 1 Suppose that a decision maker with a utility function u(w) should make
a decision on a lottery Π with five outcomes, E = {π1, π2, π3, π4, π5}. An information
alternative I generated by the disjoint events {π1, π2}, {π3, π4}, and {π5} is also
available for purchasing. If the decisions conditional upon the occurrence of {π1, π2}
and {π5} are both accept and the decision conditional on {π3, π4} is reject, then the
cluster sets should be Γu(w, I) ={π1, π2, π5}, and Γc

u(w, I) ={π3, π4}.

3 Selling price of information for a risk averse
decision maker

Building on the findings of previous value of information literature, we separate
our discussion based on the initial decision made on the lottery. The degree
of risk aversion at wealth level w is measured by the absolute risk aversion
function ru(w) = −u′′(w)/u′(w). To simplify notation, ru ≥ rv is used to express
ru(w) ≥ rv(w) holds for every w. We first consider the case in which the initial
decision is to reject the lottery Π , and then discuss the relationship between risk
aversion and the selling price when the initial decision is to accept Π .

3.1 When the lottery is rejected without information
The definition of the selling price indicates that the decision made without information
may not coincide with the decision made after a compensation is given to the decision
maker to sell information. Hence, whether or not a decision maker is decreasingly risk
averse is important. The first proposition stated below indicates that monotonicity
of risk aversion with the selling price of information is obtained when the decision
maker is non-decreasingly risk averse and his decision is to reject the lottery without
information.
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Proposition 1 Consider two decision makers with non-decreasingly risk averse
utility functions u and v such that ru ≥ rv. Suppose that both decision makers reject
the lottery Π without information. Then Sv ≥ Su.
Proof: See Appendix.

The requirement that the utility function u exhibits non-decreasing risk aversion is
imposed because such an attitude towards risk guarantees that the initial decision to
reject at wealth level w does not change at the wealth level w + Su as well. As such,
it is also possible to extend Proposition 1 to hold for decreasingly risk averse utility
functions if the decision without information is not sensitive to small changes in the
wealth level w. We formalize this result in Proposition 2 and characterize the risk
sensitive behavior of the selling price for decreasingly risk averse utility functions.
Proposition 2 Consider two decision makers with decreasingly risk averse utility
functions u and v such that ru ≥ rv. Suppose that both decision makers reject the
lottery Π without information at any wealth level in [w,w + EΠ ). Then Sv ≥ Su.
Proof: See Appendix.

The following example demonstrates that if the decision is sensitive to small increases
in wealth level, then a more risk averse decision maker may sell information at a
higher price even when the decision is to reject the lottery by both decision makers.

Example 2: Consider two decision makers with utility functions
u(x) = x− 33.6e−0.05x and v(x) = x − 33.5e−0.05x. Both utility functions belong to
the linear plus exponential family, satisfy ru ≥ rv and are decreasingly risk averse.
Suppose a decision is made whether or not to accept the following lottery Π̃:

Table 1: Lottery in Example 2

Prob. 0.1 0.3 0.3 0.3
πi, $ 9 -4 10 -7.2

At an initial wealth level of w = 19, both decision makers reject the lottery without
information. The decision maker is presented with information generated by sets
(or events) {9,−4} and {10,−7.2}. In plain words, if a decision maker acquires this
piece of information, then he learns whether the outcome of the lottery lies in the set
{9,−4} or the set {10,−7.2}. The selling price of this piece of information for the
utility function u is greater than the selling price for the utility function v although
v is less risk averse. This follows because the decision to reject the lottery changes
as a result of the change in the wealth level augmented by the selling price. In other
words,

u(w + Π̃) > E[u(w + Π̃)],whereas u(w + Su + Π̃) < E[u(w + Su + Π̃)]

N.O. Bakir
CEJEME 7: 71-90 (2015)

76



Monotonicity of the Selling Price of Information . . .

v(w + Π̃) > E[v(w + Π̃)],whereas v(w + Sv + Π̃) < E[v(w + Sv + Π̃)].
This is entirely possible in the decreasingly risk averse linear plus exponential utility
family.
One final remark about decreasingly risk averse utility functions should be made
here. Even for the decreasingly risk averse utility functions, such a change in the
decision made against a risky lottery is relatively uncommon. In fact in Example
2, the magnitude of the difference in the selling price of two decision makers is
extremely small when compared against lottery payoffs. Therefore, we could easily
argue that monotonicity of selling price with the degree of risk aversion holds in
overwhelming majority of cases for decreasingly risk averse utility functions when the
decision without information is to reject.

3.2 When the lottery is accepted without information
In the case when the initial decision on the lottery is to accept, the benefit of
information acquisition is compared against a lottery choice rather than a sure
outcome. As such, the dynamics of information acquisition changes. The resulting
implication is that we cannot prove a general monotonicity result to characterize the
aforementioned relationship. However, we present a result on lotteries with potential
losses bounded from below. For non-increasingly risk averse utility functions, we show
that if possible losses that could result from choosing to accept the lottery are bounded
by some maximum amount, then selling price of that information is higher for a more
risk averse decision maker. To this end, we define πmin = sup{π : P (Π < π) = 0}
and formally state the result below.
Proposition 3 Consider two decision makers with non-increasingly risk averse
utility functions u and v such that ru ≥ rv. Suppose both are presented with a lottery
Π bounded from below. If both decision makers accept the lottery without information
at the wealth level w and consider acquisition of information I on Π , then Su ≥ Sv.
Proof: See Appendix.
This result indicates that as far as the relationship between risk aversion and value
of information is concerned, selling price exhibits a more predictable behavior than
the buying price in two action decision problems. Existence of such a monotonic
behavior of the selling price which is not necessarily observed with the buying price is
another point of difference between these two approaches. It is difficult to explain the
intuition behind this apparent divergence in behavior, but here is a rather technical
explanation. First, let us recall the definition of the buying price, Bu, of the lottery
Π for the utility function u. It is defined as solution to the following equation

max{u(w),E[u(w+ Π )]} =
∑

i

P{Ai} ·max{E[u(w+ Π −Bu)|Ai], u(w −Bu)}. (2)

One major difference between the selling price and the buying price in assigning
a monetary value to uncertain prospects including information acquisition is the
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compensation made for the benefit of information acquisition. In selling price, the
decision maker is compensated for forgoing the opportunity of making an informed
decision whereas in buying price, the decision maker makes the informed decision
at a cost without receiving any compensation. Accordingly, adding the selling price
as a compensation to the decision maker’s wealth level has an influence on only one
decision made, that is the decision made between the original lottery and the sure
outcome (which appears on the left hand side of the value of information equation, see
Equation 1). On the other hand, the buying price appears on the right hand side of the
value of information equation (see Equation 2). This in fact causes the buying price
to shift the risk preferences of the decision maker in k conditional decisions made. To
see this, recall that the events A1 to Ak provide a partition of entire outcome space E
and the right hand side of Equation 2 involves k conditional decisions on the lottery
Π . Therefore, in comparison to the selling price, the buying price has a more risk
preference shifting influence on the value of information equation, which reduces its
tendency to move monotonically with respect to the degree of the decision maker’s
risk aversion.
Proposition 3 is important because in many practical applications lotteries under
consideration are bounded. A question to ask is whether this result can naturally be
extended to decisions involving unbounded lotteries. While it looks trivial to show
that extension at the first glance, a comparative analysis of the selling price equation
for two utility functions u and v such that ru ≥ rv indicates that monotonicity
may not necessarily hold for unbounded lotteries. We currently have no proof or
counterexample to support this conjecture. However, there is a technical note in the
appendix that discusses why a trivial extension cannot be made here. The case for
unbounded lotteries remains an open research question.
As in the case in which the initial decision is to reject the lottery, we present
an analogous result for the increasingly risk averse utility functions that requires
robustness of the initial decision to accept at any wealth level in [w,w + EΠ ).
Proposition 4 Consider two decision makers with increasingly risk averse utility
functions u and v such that ru ≥ rv. Suppose both are presented with a lottery Π
bounded from below. If both decision makers accept the lottery without information at
any wealth level in [w,w+EΠ ) and consider acquisition of information I on Π , then
Su ≥ Sv.
Proof: See Appendix.

There is indeed one utility function family that is widely used in literature,
increasingly risk averse and for which the selling price exhibits a monotonic behavior
as a function of risk aversion even in the case of unbounded lotteries. Quadratic
utility functions constitute a special increasingly risk averse family that possess the
one-switch property (see Bell 1988 for the families of one-switch utility functions). In
Abbas et al. (2013), quadratic utility functions were shown to be the only family for
which a monotonicity relationship is observed for the buying price of information. We
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have already shown that monotonicity between risk aversion and selling price is not
elusive, however, quadratic utility function is the only widely used utility function
in which a less risk averse decision maker never pays more for information when the
initial decision is to accept and remains robust to small changes in wealth. The most
general form of this utility function is u(x) = ax2+bx+c. Since u′′ < 0, we have a < 0
and for obvious reasons we eliminate parameter c. Thus, we use u(x) = −ax2 + bx,
a > 0 in our treatment of quadratic utility functions below.
In its general form, the selling price is the value of Su that satisfies the following
equation

−aE[(w + Π + Su)2] + bE[w + Π + Su] =

= P{Γu(w, I)} ·
(
− aE[(w + Π )2|Γu(w, I)] + bE[w + Π |Γu(w, I)]

)
+

+P{Γc
u(w, I)} ·

(
− aw2 + bw

)
.

(3)

Using the usual shorthand notation Γu = Γu(w, I) and Γc
u = Γc

u(w, I) and further
simplifying (3), we obtain

(b− 2aw) ·
(
E[Π ] + Su

)
− a ·

(
E[Π 2] + S2

u

)
− 2aSuE[Π ] =

= (b− 2aw) · P{Γu}E[Π |Γu]− aP{Γu}E[Π 2|Γu].
(4)

Using (4), we prove the next monotonicity result.

Proposition 5 Consider a decision maker with a quadratic utility function
u(x) = −ax2 + bx, a > 0 whose initial decision on lottery Π is to accept at the wealth
level w. If the initial decision to accept remains insensitive to wealth changes in the
range [w,w + EΠ ), then the selling price of information I, Su is non-decreasing in
ru.

Proof: See Appendix.

This nice result in the quadratic utility case cannot be extended to other one-switch
utility functions. The below example is provided to illustrate the necessity of decision
robustness in the wealth range [w,w+EΠ ) when we consider increasingly risk averse
utility functions.

Example 3 Consider again two decision makers with quadratic utility functions
u(x) = −x + 43x2 and v(x) = −x + 43.1x2. We observe that ru ≥ rv. Suppose a
decision is made whether or not to accept the lottery in Table 2.
The decision made at the wealth level w = 0 is to accept the lottery for both decision
makers. However, this decision is quite sensitive to changes in the wealth level;
both decision makers are almost equally well off rejecting the lottery. They have the
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Table 2: Lottery in Example 3

Prob. 0.1 0.3 0.3 0.3
πi, $ 9 -4 10 -5

opportunity to gather information generated by sets (or events) {9,−4} and {10,−5}.
Because of the sensitivity of the decision to changes in the wealth level, selling price
is higher for the less risk averse decision maker. Therefore, the wealth level condition
imposed in propositions presented for the accept case on increasingly risk averse utility
functions is necessary.

4 Conclusions
Selling price of information measures the compensation that the decision maker asks
to forgo the opportunity to make an informed lottery decision. It is well documented
in the value of information literature that information value is not monotonic as a
function of the degree of risk aversion. It has been shown that in the context of the
buying price of information, the relationship between the two depends on the initial
lottery decision. We show in this paper that such a behavior is also valid for the selling
price of information. When two non-decreasingly risk averse decision makers decide to
reject the lottery before acquiring further information, the selling price is higher for a
less risk averse decision maker. This result holds largely because the characterization
of how a risky prospect relates to a sure outcome is well defined for all risk averse utility
functions. When the initial decision is to reject the lottery, the selling price is largely
a function of how the certainty equivalent of the lottery introduced by information
acquisition compares to the sure outcome. For the decreasingly risk averse decision
makers, though, we need the initial decision to remain robust to wealth level changes
to obtain a parallel result.
When the initial decision is to accept the lottery, we obtain a similar monotonicity
result for lotteries bounded from below. In particular, we find that more risk averse
decision makers are willing to sell information on bounded lotteries at a higher price.
This result is important for two reasons. First, lotteries with a finite maximum loss
are observed in many practical decision problems. Second, as known from similar
studies using the buying price approach, monotonicity between risk aversion and the
value of information does not necessarily follow. However, we obtain such a strong
monotonicity result with the selling price approach. Finally, when we restrict ourselves
to the quadratic family of utility functions, we show that the boundedness condition
can also be eliminated.
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Appendix
Proof of Proposition 1: The conclusion follows trivially when Su = 0, so we restrict
our attention to the case Su > 0. Since the decision maker is non-increasingly risk
averse, if the decision without information is to reject the lottery Π , then this decision
remains the same at any level w∗ > w as well. Then the selling price equations are

u(w + Su) =
∫

Γu(w,I)

u(w + π) · f(π) dπ + P{Γc
u(w, I) } · u(w), (5)

v(w + Sv) =
∫

Γv(w,I)

v(w + π) · f(π) dπ + P{Γc
v(w, I) } · v(w), (6)

where f is the density function for Π . Since ru ≥ rv holds, we should have Γu ⊆ Γv.
Then using the shorthand notation Γu = Γu(w, I) and Γv = Γv(w, I), we could
rewrite (5) as

u(w + Su) =
∫
Γu

u(w + π) · f(π) dπ + (P{Γv} − P{Γu}) · u(w) + P{Γc
v } · u(w). (7)

Similarly, (6) could be rearranged as follows:

v(w + Sv) =
∫
Γu

v(w + π) · f(π) dπ +
∫

Γv−Γu

v(w + π) · f(π) dπ + P{Γc
v} · v(w)

≥
∫
Γu

v(w + π) · f(π) dπ + (P{Γv} − P{Γu}) · v(w) + P{Γc
v} · v(w).

(8)
In expressions (7) and (8), lottery Π̃ evaluated on the right hand side offers Π
on Γu and w on Γc

u. The certainty equivalent of Π̃ for the utility function u,
CEu(Π̃ ) = w + Su. For v though, CEv(Π̃ ) ≤ w + Sv. If we combine these results
with the fact that CEv(Π̃ ) ≥ CEu(Π̃ ) (since ru ≥ rv), the relationship Sv ≥ Su is
obtained. This completes the proof.

Proof of Proposition 2: Again, the conclusion follows trivially when Su = 0, so we
consider the case Su > 0. First, note that Su ≤ EΠ and Sv ≤ EΠ because any
information alternative is less valuable than perfect information and the certainty
equivalent of perfect information is strictly less than EΠ for a decreasingly risk averse
decision maker. This implies that since the decision maker does not switch from the
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reject decision to the accept decision in the wealth range [w,w+EΠ ), the selling price
equations are

u(w + Su) =
∫

Γu(w,I)

u(w + π) · f(π) dπ + P{Γc
u(w, I) } · u(w),

v(w + Sv) =
∫

Γv(w,I)

v(w + π) · f(π) dπ + P{Γc
v(w, I) } · v(w).

The remaining line of arguments to conclude the proof are in fact identical to the
proof of Proposition 1. Therefore, we argue at this point that Sv ≥ Su in this case as
well.
Before proving Proposition 3, we state a useful lemma. First, recall that an
information alternative I is generated by disjoint events A1 to Ak. These events
may include both positive and negative elements. Note that the lottery Π is now
bounded below by πmin defined in the paper. We define the lottery Π Γ as follows:

Π Γ =
{

Π if Π ∈ Ai s.t. du(w,Ai) = +1,
0 o.w.

In words, Π Γ is the lottery that is evaluated on the right hand side of the selling price
equation (1). Its value is identical to the value of the original lottery when the lottery
outcome lies in an element Ai of the information partition such that the decision is
to play the lottery upon the occurrence of Ai. Otherwise, Π Γ takes on the value zero
which indicates the decision to choose the sure outcome instead of the lottery. After
defining Π Γ, we now state the following useful lemma.

Lemma 6 Suppose H is concave and increasing and u is a utility function. Lottery
Π is bounded below by πmin. Then for any y > 0

E[H(u(w + Π + y))]− E[H(u(w + Π Γ))]
≤ H ′(u(w + πmin)) ·

{
E[u(w + Π + y)]− E[u(w + Π Γ)]

}
.

Proof: For arbitrary π and y > 0

H(u(w + π + y))−H(u(w + π)) ≤ H ′(u(w + π)) ·
{
u(w + π + y)− u(w + π)

}
.

Since u(w + πmin) ≤ u(w + π), H ′(u(w + πmin)) ≥ H ′(u(w + π)) and

H(u(w + π + y))−H(u(w + π)) ≤ H ′(u(w + πmin)) ·
{
u(w + π + y)− u(w + π)

}
.
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If we take expectations over the set {Π ∈ Γ} and observe that Π = Π Γ when Π ∈ Γ,

E[H(u(w + Π + y)) · 1{Π∈Γ}]− E[H(u(w + Π Γ)) · 1{Π∈Γ}]
≤ H ′(u(w + πmin)) ·

{
E[u(w + Π + y) · 1{Π∈Γ}]− E[u(w + Π Γ) · 1{Π∈Γ}]

}
.

(9)
The outcomes in Γc are also allowed to be mixed in sign. Again, for arbitrary π and
y > 0

H(u(w + π + y))−H(u(w)) ≤ H ′(u(w)) ·
{
u(w + π + y)− u(w)

}
.

Note that, there should be at least one negative outcome in Π to make sure that
information has positive value (which is the only interesting case to analyze). This
implies πmin < 0 and u(w + πmin) ≤ u(w), H ′(u(w + πmin)) ≥ H ′(u(w)). Then

H(u(w + π + y))−H(u(w)) ≤ H ′(u(w + πmin)) ·
{
u(w + π + y)− u(w)

}
.

Taking expectations over the set {Π ∈ Γc}

E[H(u(w + Π + y)) · 1{Π∈Γc}]− E[H(u(w)) · 1{Π∈Γc}]

≤ H ′(u(w + πmin)) ·
{
E[u(w + Π + y) · 1{Π∈Γc}]− E[u(w) · 1{Π∈Γc}]

}
.

Recall that Π Γ = 0 on the set Γc. Then the last inequality can be rewritten as

E[H(u(w + Π + y)) · 1{Π∈Γc}]− E[H(u(w + Π Γ)) · 1{Π∈Γc}]

≤ H ′(u(w + πmin)) ·
{
E[u(w + Π + y) · 1{Π∈Γc}]− E[u(w + Π Γ) · 1{Π∈Γc}]

}
.

(10)
Finally, we combine expressions (9) and (10) and obtain the desired inequality. This
completes the proof.
We use the above lemma to prove Proposition 3.

Proof of Proposition 3: Our first consideration will be the simpler case in which
Γu = Γv. Since u is more risk averse than v, there exists an increasing and concave
function H such that u = H(v). We prove the proposition by considering the below
difference

E[u(w + Π + Sv)]− E[u(w + Π + Su)] =
= E[H(v(w + Π + Sv))]− E[u(w + Π Γ)] =
= E[H(v(w + Π + Sv))]− E[H(v(w + Π Γ))],

(11)

All three expressions are equal because u = H(v) and E[u(w+Π +Su)] = E[u(w+Π Γ)]
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by the definition of Π Γ and the selling price equation (1). We now use Lemma 6

E[H(v(w + Π + Sv))]− E[H(v(w + Π Γ))]
≤ H ′(v(w + πmin)) ·

{
E[v(w + Π + Sv)]− E[v(w + Π Γ)]

}
= 0, (12)

where the inequality is the implication of Lemma 6 and the equality is the direct
result of the selling price equation (1). Hence, Su ≥ Sv follows in this case.
However, Γu and Γv might be different. We define Γv − Γu = Γd. Let’s recall the
selling price equations in this case:

E[u(w + Π + Su)] =
∫

Γu(w,I)

u(w + π) · f(π)dπ + P{Γd(w, I)} · u(w)+

+ P{Γc
v(w, I)} · u(w),

E[v(w + Π + Sv)] =
∫

Γu(w,I)

v(w + π) · f(π)dπ+

+
∫

Γd(w,I)

v(w + π) · f(π)dπ + P{Γc
v(w, I)} · v(w).

On set Γd, the decision maker with the utility function u prefers to reject the lottery.
Therefore, the following inequality should hold:

E[u(w+Π+Su)] ≥
∫

Γu(w,I)

u(w+π)·f(π)dπ+
∫

Γd(w,I)

u(w+π)·f(π)dπ+P{Γc
v(w, I)}·u(w)

In fact, there exists 0 < S̃ ≤ Su such that the following equality holds:

E[u(w+Π+S̃)] =
∫

Γu(w,I)

u(w+π)·f(π)dπ+
∫

Γd(w,I)

u(w+π)·f(π)dπ+P{Γc
v(w, I)}·u(w)

(13)
Now, S̃ in equation (13) and Sv in the selling price equation for v are comparable
because both equations resemble the first case analyzed above where we assumed
Γu = Γv. As such, we have S̃ ≥ Sv. Therefore, Su ≥ Sv and this completes the proof.
Next, we present a technical note that argues that an extension of Proposition 3 does
not necessarily follow for unbounded lotteries. Assume Π is unbounded and u is a
more risk averse utility function than v. If Sv > Su, then there exists S̄, Su < S̄ < Sv,
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such that

E[v(w + Π + S̄)] <

∫
Γv(w,I)

v(w + π) · f(π)dπ + P{Γc
v(w, I)} · v(w),

E[u(w + Π + S̄)] >

∫
Γv(w,I)

u(w + π) · f(π)dπ + P{Γc
v(w, I)} · u(w).

(14)

We focus on the first of the above inequalities. It can be rewritten as follows:

P{Γv(w, I)} · E[v(w + Π + S̄)|Γv(w, I)] + P{Γc
v(w, I)} · E[v(w + Π + S̄)|Γc

v(w, I)]

< P{Γv(w, I)} · E[v(w + Π )|Γv(w, I)] + P{Γc
v(w, I)} · v(w).

(15)
In this form, inequality (15) involves three separate lotteries: Lottery Π +S̄ truncated
to sets Γv(w, I) and Γc

v(w, I), respectively and lottery Π truncated to Γv(w, I).
In the same order, let CEv(w,Π + S̄,Γv(w, I)), CEv(w,Π + S̄,Γc

v(w, I)), and
CEv(w,Π ,Γv(w, I)) be the certainty equivalents of the respective lotteries for the
utility function v at wealth level w. Then inequality (15) can be rearranged to obtain

v(CEv(w,Π + S̄,Γv(w, I)))− v(CEv(w,Π ,Γv(w, I)))
v(w)− v(CEv(w,Π + S̄,Γc

v(w, I)))
<

Γc
v(w, I)

Γv(w, I) . (16)

Note that

CEv(w,Π + S̄,Γv(w, I)) ≥ CEv(w,Π ,Γv(w, I)) ≥ w ≥ CEv(w,Π + S̄,Γc
v(w, I))

The first inequality is trivial. The second inequality holds because the decision on
lottery Π given Γv(w, I) is to accept at wealth level w. The last inequality is obtained
because otherwise inequality (15) does not hold. Then since u is more risk averse, it
is a concave transformation of v and thus the following inequality should hold:

u(CEv(w,Π + S̄,Γv(w, I)))− u(CEv(w,Π ,Γv(w, I)))
u(w)− u(CEv(w,Π + S̄,Γc

v(w, I)))
<

v(CEv(w,Π + S̄,Γv(w, I)))− v(CEv(w,Π ,Γv(w, I)))
v(w)− v(CEv(w,Π + S̄,Γc

v(w, I)))
.

(17)

87 N.O. Bakir
CEJEME 7: 71-90 (2015)



Niyazi Onur Bakir

Since CEv(w,Π + S̄,Γc
v(w, I)) > CEu(w,Π + S̄,Γc

v(w, I)), we have

u(CEv(w,Π + S̄,Γv(w, I)))− u(CEv(w,Π ,Γv(w, I)))
u(w)− u(CEu(w,Π + S̄,Γc

v(w, I)))
<

u(CEv(w,Π + S̄,Γv(w, I)))− u(CEv(w,Π ,Γv(w, I)))
u(w)− u(CEv(w,Π + S̄,Γc

v(w, I)))
.

(18)

Now, if we could argue that

u(CEu(w,Π + S̄,Γv(w, I)))− u(CEu(w,Π ,Γv(w, I))) ≤
≤ u(CEv(w,Π + S̄,Γv(w, I)))− u(CEv(w,Π ,Γv(w, I)))

then the following relationship would be obtained:

u(CEu(w,Π + S̄,Γv(w, I)))− u(CEu(w,Π ,Γv(w, I)))
u(w)− u(CEu(w,Π + S̄,Γc

v(w, I)))
<

u(CEv(w,Π + S̄,Γv(w, I)))− u(CEv(w,Π ,Γv(w, I)))
u(w)− u(CEu(w,Π + S̄,Γc

v(w, I)))
≤ Γc

v(w, I)
Γv(w, I) .

(19)

If (19) were to hold, that would contradict the second inequality in (14), which
would eventually contradict the fact that S̄ exists. Consequently, we would show
that Su ≥ Sv should hold for any unbounded lottery as well. However, we are short
of this result because

u(CEu(w,Π + S̄,Γv(w, I)))− u(CEu(w,Π ,Γv(w, I))) ≤
≤ u(CEv(w,Π + S̄,Γv(w, I)))− u(CEv(w,Π ,Γv(w, I)))

does not necessarily follow for all concave utility functions. A good example
comes from the exponential utility family. In this family of utility functions, since
there is the property of constant absolute risk aversion, we observe

CEu(w,Π + S̄,Γv(w, I))− CEu(w,Π ,Γv(w, I)) =
CEv(w,Π + S̄,Γv(w, I))− CEv(w,Π ,Γv(w, I)) = S̄.

In addition
CEu(w,Π + S̄,Γv(w, I)) ≤ CEv(w,Π + S̄,Γv(w, I))

and
CEu(w,Π ,Γv(w, I)) ≤ CEv(w,Π ,Γv(w, I))

Again, because of the concavity of u, these observations immediately lead to
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u(CEu(w,Π + S̄,Γv(w, I)))− u(CEu(w,Π ,Γv(w, I))) >
> u(CEv(w,Π + S̄,Γv(w, I)))− u(CEv(w,Π ,Γv(w, I)))

Consequently, the monotonicity result cannot be stated for unbounded lotteries.
Proof of Proposition 4: Much like the similarity between the proofs of Propositions 1
and 2, the proofs of Propositions 3 and 4 are identical as long as the decision maker’s
initial decision to accept the lottery remains unchanged at a higher wealth level w
plus the selling price.
Proof of Proposition 5: The requirement that the decision to accept the lottery is
robust to increases in the wealth level is the standard requirement that we proved in
earlier propositions on increasingly risk averse utility functions. Recall that the risk
aversion function for the quadratic utility is ru = 2a/(b − 2aw). If we divide both
sides of the equation (4) by (b− 2aw) and rearrange, we obtain

E[Π ]+Su−
ru

2 ·
(
E[Π 2]+S2

u

)
−ruSuE[Π ] = P{Γu}E[Π |Γu]− ru

2 P{Γu}E[Π 2|Γu]. (20)

To measure the sensitivity of Su as a function of ru, we cannot proceed under
differentiability assumptions because Γu might be subject to a change as the risk
tolerance shifts rendering E[Π |Γu] and E[Π 2|Γu] non-differentiable. Based on
the impact on Γu, we consider two cases. Under case 1, Γu is robust to small
perturbations around ru; ∃ ε > 0 s.t. Γu(w, I) remains the same for all values of
ru in (ru − ε, ru + ε). We may handle case 1 under differentiability assumptions
as long as the risk aversion function lies in (ru − ε, ru + ε). Case 2 is the opposite
of case 1, where such ε > 0 does not exist and Γu(w, I) is sensitive to any change in ru.

Case 1: First, we make a slight arrangement of (20) to obtain:

Su −
ru

2 S
2
u − ruSuE[Π ] = ru

2 P{Γ
c
u}E[Π 2|Γc

u]− P{Γc
u}E[Π |Γc

u]. (21)

Since in this case, Γc
u is insensitive to small changes in ru, we may observe that an

increase in ru results in an increase in the right hand side (RHS) of (21) whereas the
left hand side (LHS) decreases. To reestablish the equality, Su on the LHS should
be perturbed and we should have ∂LHS/∂Su > 0. This follows if

∂LHS/∂Su = 1− ruSu − ruE[Π ] = 1− 2a
b− 2awSu −

2a
b− 2awE[Π ] > 0,

or
b− 2a(w + Su + E[Π ]) > 0. (22)

Inequality (22) should hold because u′ > 0 implies that b > 2aw̃ at any terminal
wealth level w̃ = w + π + Su of the decision maker at any lottery outcome π.
Therefore, the quadratic utility result follows in case 1.
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Case 2: In this case, Γu is sensitive to even the slightest perturbation in ru, so we
should have at least one Ac ∈ {A1, . . . , Ak} such that the decision maker is indifferent
between accepting and rejecting the lottery Π . Without loss of generality, we assume
that there exists only one such Ac. This implies that the decision maker moves from
the point of indifference to an accept decision on Ac whenever ru decreases and to a
reject decision whenever ru increases. In such a case, the selling price can be calculated
solving either one of the two equations below

Su −
ru

2 S
2
u − ruSuE[Π ] = ru

2 P{Γ̃
c
u}E[Π 2|Γ̃c

u]− P{Γ̃c
u}E[Π |Γ̃c

u], (23)

Su −
ru

2 S
2
u − ruSuE[Π ] = ru

2 P{Γ̂
c
u}E[Π 2|Γ̂c

u]− P{Γ̂c
u}E[Π |Γ̂c

u]. (24)

where Γ̂u− Γ̃u = Ac (i.e., Γ̂u includes Ac, but Γ̃u does not). If ru is increased slightly,
then the selling price equation becomes (23). Therefore, in that case we could analyze
the selling price as in case 1 using equation (23) and argue that selling price increases.
Conversely, when ru is decreased slightly, equation (24) becomes the relevant selling
price equation. Again, from case 1, we know that the solution to Su decreases if ru is
perturbed in the downward direction. Hence, we can conclude that the selling price
is increasing in the degree of risk aversion in case 2 as well. This completes the proof.
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