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Abstract

If the most parsimonious behavioral model between an observed behavior, Y ,
and some factors, X, can be defined as f(Y |X1, X2), then fx1 will measure the
impact in behavior of a change in factor X1. Additionally, if fx1x2 6= 0, then the
impact in behavior of a change in factor X1 is qualified, or moderated by X2. If
this is the case, X2 is said to be a moderating variable and fx1x2 is said to be the
moderating effect. When Y is modeled via a logistic regression, the moderation
effect will exist regardless of whether the index function of the logit specification
includes a moderation term or not. Thus, including a moderation terms in the
index function will help the researcher more precisely qualify the moderation
effect between X1 and X2. The question that naturally arises is whether the
researcher must include the moderation term or not. In this document, we
provide the conditions in which moderation terms will naturally arise in a logistic
regression and introduce some modeling guidelines. We do so by introducing a
general framework that nests models with no moderation terms in three scenarios
for the independent variables, commonly found in applied research.
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1 Introduction
In economics, as well as in other social and behavioral sciences, it is often necessary
to model the behavior of economic agents reacting to different stimuli. The
empirical applications of such studies have a wide range and cross many domains,
including modeling labor force participation decisions (Faridi, Malik, and Basit,
2009; Theeuwes, 1981; Molina, Saei, Lombardia, 2007; Hyslop, 1999; Mroz, 1987),
predicting opinions on legislation (Theilmann and Wilhite, 1987; Segal, Westerland,
and Lindquist, 2010), understanding occupational choices of individuals (Boskin,
1974; Hansen, Wahlberg, and Faisal, 2010), qualifying the effectiveness of methods
of teaching (Spector and Mazzeo, 1980), and explaining migration and relocation
decisions (Nakosteen and Zimmer, 1980; Tunali, 1986). In the most general framework
of predicting or modeling observed economic behavior, the objective is to account
for the expected behavior of an observed response, Y , by relating the probability
of observing that behavior to a set of explanatory variables, X, through some link
function, usually the logit or the probit. It is then of interest to the researcher to
understand the factors that determine the choice. In a two-variable case situation,
where the most parsimonious behavioral model between an observed behavior, Y , and
some sociodemographic characteristics or factors, X, can be defined as f(Y |X1, X2),
then fx1 will measure the impact in behavior of a change in factor X1, while fx2 will
do the same for the factor X2. Additionally, if fx1x2 6= 0, then the impact in behavior
of a change in factor X1 is qualified, or moderated by X2. If this is the case, X2 is
said to be a moderating variable and fx1x2 is said to be the moderating effect. It is
this moderating factor that is of particular interest to researchers in order to qualify
the marginal effect of a variable interest when controlling for additional information
on the individual.
In logistic regression, the moderation effect will exist regardless of whether the index
function of the logit specification includes a moderation term or not. The inclusion of
the moderation term allows the researcher to more accurately and reliably assess the
marginal effect of X1 on Y as well as to more precisely qualify the moderation effect
between X1 and X2. The question that naturally arises is whether the researcher
must include the moderation term or not in the logit regression model. In this
document, we provide the conditions in which moderation terms will naturally arise in
a logistic regression and introduce some modeling guidelines. We do so by presenting
a general framework that nests models with no moderation terms in three scenarios
for independent variables, commonly found in applied research: continuous and
continuous explanatory variables; continuous and dichotomous explanatory variables;
and dichotomous and dichotomous explanatory variables variables. We show that in
logistic regression, moderation terms appear to be the rule, rather than the exception,
as long as the explanatory variables are non-independent. For this reason, we suggest
researchers using logistic regression to follow a general-to-specific approach and
exclude the moderation term only if warranted by likelihood ratio testing. The rest of
this document is organized as follows: section 2 presents the modeling framework for
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logistic models, section 3 derives three models where the moderation terms naturally
arise from the probabilistic structure of the data, section 4 provides the results of
simulation analysis to test the existence of moderation terms. Section 5 summarizes
this document and provides some modeling guidance.

2 Binary choice and the logit model
Consider a stochastic vector {Yi, Xi, i = 1, . . . , N} whose joint density (probability)
function takes the form f(Y1, . . . , YN , X1, . . . , XN ;ϕ). For the moment, let
{Yi, i = 1, . . . , N} be a random variable distributed Bernoulli, with E(Yi) = p
and V ar(Yi) = p(1 − p); and let {Xi = (X1,i, . . . , XK,i), i = 1, . . . , N} be a vector
of K random variables of unspecified distribution but with a proper joint density
function f(Xi, ψ2). By construction, (Yi, Xi) has identical distribution. Imposing
independence to this joint distribution allows us to represent the density of (Yi, Xi)
as

f (Yi, Xi) =
N∏
i=1

f (Yi, Xi;ϕ) (1)

Applying Bayes’ theorem to (1) yields f(Yi|Xi)f(Xi) = f(Xi|Yi)f(Yi). Using this
result, and the fact that Yi can only take two values, it is possible to establish the
following ratio (see Arnold, Castillo, and Sarabia, 1999 and Bergtold et al., 2010):

f (Xi|Yi = 1; η1)
f (Xi|Yi = 0; η1)

f(Yi = 1; p)
f (Yi = 0; p) = f (Yi = 1|Xi;ψ1)

f (Yi = 0|Xi;ψ1)
f (Xi;ψ2)
f (Xi;ψ2) (2)

Notice that the appropriateness of (2) is conditional upon the existence and
compatibility of the conditional density functions f(Yi|Xi) and f(Xi|Yi) but not
on the existence and compatibility of f(Xi, ψ2). Since f(Yi|Xi;ψ1) is Bernoulli
distributed (see Chen and Liu, 1997; Spanos, 1999) with density function
f(Yi|Xi;ψ1) = g(Xi;ψ1)Yi [1 − g(Xi;ψ1)]1−Yi , substituting this into equation (2)
yields,

f(Xi|Yi = 1; η1)
f(Xi|Yi = 0; η1)

π1

π0
= g(Xi;ψ1)

1− g(Xi;ψ1) , (3)

where πj = pj(1− p)1−j for j = 0, 1. Thus (see Kay and Little, 1987),

g(Xi;ψ1) = π1f(Xi|Yi = 1; η1)
π0f(Xi|Yi = 0; η1) + π1f(Xi|Yi = 1; η1) = exp{h(Xi; η1)}

1 + exp{h(Xi; η1)} , (4)

where h(Xi; η1) = ln f(Xi|Yi=1;η1)
f(Xi|Yi=0;η1) +κ, and κ = ln π1− ln π0. Thus, a proper statistical

model in which the dependent variable is binary and the conditional relationship
is Bernoulli naturally establishes the logistic cumulative density function as the
transformation function and requires the use of logit specifications to model the
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statistical dependency of Yi on Xi. As mentioned above, this does not rule out
the possibility of using other transformation functions and obtaining similar results.
It is clear from (4) that the functional form of the index function h(·) depends entirely
on the conditional distribution of Xi given the two outcomes of Yi. This probabilistic
dependence is the basis for the derivation of logistic regressions with moderation
terms.
At this point, an illustration of the use of probabilistic dependencies and the derivation
of logistic specifications is in order. Consider the following case, let a stochastic
vector {Yi, Xi, i = 1, . . . , N} be such that not only Y is a binary choice random
variable but also X is limited to taking only two values, High and Low (This
is the case of the Tetrachoric Correlation. For a more detailed illustration see
Romero (2011)). In this case, X is also Bernoulli distributed with density function
f(Xi|Yi = j; η1) = ρXi

j (1 − ρj)1−Xi , where η1 is an appropriate set of parameters.
Substituting into (4) yields,

E(Yi|Xi = xi) = expβ0 + β1xi
1 + expβ0 + β1x1

, (5)

where β0 = κ+ ln 1−ρ1
1−ρ0

, β1 = ln ρ1
ρ0
− ln 1−ρ1

1−ρ0
, and κ = ln π1 − ln π0. Notice then that

the index function contains a linear combination of X that is completely derived from
the statistical properties of f(Yi), f(Yi|Xi), and f(Xi|Yi).

3 Where do moderation terms come from?
In the least squares tradition, when Y is a continuous random variable that
can be modeled using regression analysis, the existence of a moderating effect
requires the introduction of moderation terms (also known as interaction terms to
econometricians) in the regression equation (Hayes and Matthes, 2009). In this
case, for fx1x2 to be not zero, the regression equation must include the factor or
focal variable (x1) and the moderating variable (x2) entering as linear terms into
the equation, as well as the cross product of the variables as the moderation factor
(x1x2). Thus, in least squares modeling, the moderation term and the moderation
effect are the same. However, when Y is a dichotomous random variable that can be
modeled via a logistic regression, there exists a separation between the moderation
term and the moderation effect, since the latter will exist regardless of whether the
index function of the logit specification includes an moderation term or not (Mood,
2010). That is, in logistic regression, if Y and X2 are not independently distributed,
fx1x2 6= 0 even if X1 and X2 are uncorrelated. In other words, while the inclusion of
moderation terms is not a necessary condition for the existence of moderation effects,
the addition of the moderation terms in the index function allows the researcher to
more precisely and reliably qualify the moderation effect between X1 and X2. Not
only that, failure to do so will result in statistically misspecified models and produce
biased, and perhaps, inconsistent estimators of the marginal effect of X1 and X2 on
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Y and the moderation effect between X1 and X2 because of the problem of statistical
omitted variable bias (Mood, 2010).
It is not surprising that moderation terms are used widely in applied econometrics
for their importance in qualifying the marginal effect of variables of interest in
the observed response. Unfortunately, most applied researchers misinterpret the
coefficient of the moderation term in nonlinear models. Nevertheless, in this document
we will not provide a framework for computing interaction effects nor will we illustrate
their appropriate interpretation. Excellent research papers on those subjects have
been put forth by Ai and Norton (2003); Norton, Wang, and Ai (2004); and Hayes and
Matthes (2009). In the logistic regression literature, it is commonplace to establish
and assess the existence and magnitude of moderation terms by simply adding a
multiplicative factor of two explanatory variables and test its statistical significance
via a likelihood ratio test or a similarly appropriate metric. Nevertheless, based on
the discussion in section 2, whether a specification of the index function contains or
not an moderation term will depend completely on the statistical properties of the
joint distribution of {Yi, Xi, i = 1, . . . , N} and the related marginal and conditional
densities. In what follows, we present three general models of moderation terms that
nest index functions without moderation terms. Table 1 presents the three cases
studied.

Table 1: Modeling Framework

Model X1 X1
(1) Continuous - Discrete Bernoulli Distributed Exponential Distributed

(2) Discrete - Discrete Bernoulli Distributed Bernoulli Distributed
(3) Continuous - Continuous Normally Distributed Normally Distributed

The first model considers non-independent explanatory variables where one variable
is continuous, takes non-negative values, and is positively skewed (say education,
age, household income, home prices, etc.); whereas the other variable is dichotomous
(say gender, employment status, etc.). The second model considers both explanatory
variables to be dichotomous. The third model considers a situation where one variable
is continuous and normally distributed (say real prices, capital-labor ratios, well-
behaved test scores, etc.).

3.1 Model 1: Exponential-Bernoulli
Model Let X1 given Y = j be Bernoulli distributed; X2 given Y = j be exponentially
distributed, and assume X1 and X2 are not independent (this assumption will be
relaxed below). Although there is no explicit functional form for the joint distribution
of f(X1,i, X2,i|Yi = j; η1), it is still possible to parameterize this distribution through
sequential conditioning since:

f(X1,i, X2,i|Yi = j; η1) = f(X2,i|X1,i = l, Yi = j; η′1)f(X1,i|Yi = j; η′′1 )
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; thus, assuming X2 given X1 = l and Y = j be exponentially distributed, the joint
distribution of (X1, X2) given Y = j is (see Bergtold et al., 2010),

f(X1,i, X2,i|Yi = j; η1) =
{
ρj
θj1

exp
[
−x2,i

θj1

]}x1,i
{

(1− ρj)
θj0

exp
[
−x2,i

θj

]}1−x1,i

(6)

Substituting this into (4) yields (the derivation of this and the subsequent
specifications is available upon request),

E(Yi|Xi = xi) = exp {β0 + β1x1,i + β2x2,i + β3x1,ix2,i}
1 + expβ0 + β1x1,i + β2x2,i + β3x1,ix2,i

, (7)

Clearly, the probabilistic structure of the data requires the addition of moderation
terms to the logit-link function. In this situation, failure to add them to the
specification will lead to omitted variable bias as long as the explanatory variables
are not independently distributed. If they indeed are independently distributed, that
is, if θj1 = θj0, the resulting specification becomes logit(β0 + β1x1,i + β2x2,i), where
the moderation term is no longer needed, and is logit(·) represents the logit function.

3.2 Model 2: Bernoulli-Bernoulli Model
Let X1 and X2 given Y = j be bivariate Bernoulli distributed. Furthermore, assume
that X1 and X2 are not independently distributed (we will relax this assumption
below). Using the sequential conditioning procedure illustrated in Model 1, we have

f(X1,i, X2,i|Yi = j; η1) = f(X2,i|X1,i = l, Yi = j; η′1)f(X1,i|Yi = j; η′′1 ), (8)

where X1 given Y = j is Bernoulli(ρj) and X2 given X1 = l and Y = j is
Bernoulli(ρj1). In this case, the explicit functional form of this joint density becomes,

f(X1,i, X2,i|Yi = j; η1) =
{
ρ
x2,i

j1 (1− ρj1)1−x2,i
}x1,i

{
ρ
x2,i

j0 (1− ρj0)1−x2,i

}1−x1,i

·
·ρx1,i

j (1− ρj)1−x1,i
,

(9)
where j = 0, 1. Substituting (7) into (4) yields the following logit specification,

E(Yi|Xi = xi) = exp {β0 + β1x1,i + β2x2,i + β3x1,ix2,i}
1 + exp {β0 + β1x1,i + β2x2,i + β3x1,ix2,i}

, (10)

where, once again, the probabilistic structure of the data requires the addition of
moderation terms to the logit-link function. Allowing X1 and X2 to be independently
distributed implies ρjl = ρj0 for j = 0, 1. If this is the case, the above derivation yields
logit(β0 +β1x1,i+β2x2,i), where once again, the moderation term is no longer needed.
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3.3 Model 3: Normal-Normal model
Fortunately, explicit functional forms for the multivariate normal distribution exist.
This allows us to model the joint conditional distribution of X1 and X2 given Y = j
directly. Let (X1, X2) be jointly normally distributed with means µx1j and µx2j

dependent upon Y . Let the variance-covariance matrix also be heterogeneous with
respect to Y . Assuming non-zero correlation between X1 and X2 (and assumption
that will be relaxed below), and substituting the heterogeneous bivariate normal
density into (4) yields the following conditional mean equation for the logit model:

E(Yi|Xi = xi) =
exp

{
β0 + β1x1,i + β2x2,i + β3x1,ix2,i + β4x

2
1,i + β5x

2
2,i
}

1 + exp
{
β0 + β1x1,i + β2x2,i + β3x1,ix2,i + β4x2

1,i + β5x2
2,i
} . (11)

From this general specification, specific functional forms, commonly found in the
literature, can be derived. For instance, a standard model with no squared terms
in the X’s but cross products can be obtained if ρ0 =

√
σ2
x11

(ρ2
1 − 1) + σ2

x10
and

σx21 = σ2
x20

. In this case, the logit-link reduces to logit(β0+β1x1,i+β2x2,i+β3x1,ix2,i),
which is the standard moderation term specification.
Given the above three models, one might be inclined to think that moderation terms
should always be added in logistic models since their existence is warranted by
dependence between the explanatory variables, and non-independence between the
regressors is likely; especially if the data is not generated through an experimental
framework. This is, however, not necessarily so for it is possible to have a logit-link
specification that is linear with no moderation terms and yet have non-independent
regressors. To show this, and using again model 3, if the variance-covariance matrix is
not heterogeneous with respect to Y , but X1 and X2 are correlated (i.e., σ2

x11
= σ2

x10
,

σ2
x21

= σ2
x20

, and ρ1 = ρ0 6= 0), then the logit-link function reduces to

logit(β0 + β1x1,i + β2x2,i), with neither squared terms nor moderation terms.

4 Simulation analysis
We conducted Monte Carlo simulation analysis to illustrate how the specific
probabilistic dependence between the variables in the model determines whether the
logit-link function will include an moderation term or not. For Models 1 and 2,
we conducted two simulation scenarios: one where the resulting model includes an
moderation term and one where it does not. Alongside the usual descriptive statistics
related to the simulations, we also provide the result of testing the existence of the
moderation term by calculating the percentage of times we will reject a model without
and moderation term, when indeed the model requires one, via a likelihood ratio test.
It is our modeling recommendation that, since the existence of an moderation term
seems to be the rule, rather than the exception, especially when the covariates are non-
independent, that the researcher follows a general to specific approach when modeling
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them and then drop the aforementioned term if the likelihood ratio test warrants
it. For Model 3, we exploit the flexibility of the normal specification and provide
three different simulation scenarios: a model with moderation terms and squares of
the explanatory variables; a model with moderation terms and linear terms of the
explanatory variables; and a model where the explanatory variables enter linearly in
the logit-link function and neither cross-products nor quadratic terms exist, although
the covariates are not independently distributed. All the simulations where conducted
using Matlab software with a sample size of T = 200 and R = 10, 000 replicas.
Additional sample sizes (T = 100,500,1000) were also estimated to verify convergence
of the distribution of the estimated to normality, and are available upon request.

4.1 Model 1: Exponential-Bernoulli model

Moderation Terms: The stochastic process {(Yi, Xi), i = 1, . . . , N} was generated
letting π1 = .75; ρ1 = .5; ρ0 = .6; ρ01 = .6; ρ00 = .5; ρ11 = .4; and ρ10 = .75. The
simulation results are summarized in Table 2. The table includes the true parameters
warranted by these probabilistic structure as well as the sample statistics of the
estimated parameters and the percentage of times we will reject a model without
and moderation term, when indeed the model requires one.
No Moderation Terms: The stochastic process {(Yi, Xi), i = 1, . . . , N} was generated
letting π1 = .7; ρ1 = .5; ρ0 = .6; ρ01 = .6; ρ00 = .6; ρ11 = .4; and ρ10 = .4.
The simulation results are also summarized in Table 2. Notice that this specification
imposes independence between the regressors and thus requires no moderation term,
as shown by the true parameters of this model. In this situation, we would expected
the percentage of rejections to be higher than in a model that does require the
moderation terms, as it is indeed the case.

Table 2: Summary Results of Monte Carlo Simulation for Model 1

Sample Statistics
Parameter True Parameters Mean St. Dev. Min. Max. Percentage of Rejections

Model With Moderation Terms
β0 0.9163 0.9029 0.3774 -0.5301 2.6624

0.3151β1 0.4055 0.4517 0.5068 -1.8926 2.4806
β2 0.6667 0.7858 0.5806 -1.0176 5.9852
β3 -1.5 -1.6505 0.7719 -7.0428 1.4742

Model Without Moderation Terms
β0 1.7272 1.762 0.4006 0.3814 3.884

0.9413β1 -0.4055 -0.4094 0.5261 -2.6322 1.8707
β2 -0.8333 -0.8418 0.616 -3.8591 3.4295
β3 0 -0.025 0.8022 -4.0798 3.022
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4.2 Model 2: Bernoulli-Bernoulli Model
Moderation Terms: The stochastic process {(Yi, Xi), i = 1, . . . , N} was generated
letting π1 = .7; ρ1 = .7; ρ0 = .4; ρ01 = .6; ρ00 = .5; ρ11 = .4; and ρ10 = .75. The
simulation results are summarized in Table 3. The table includes the true parameters
warranted by these probabilistic structure as well as the sample statistics of the
estimated parameters and the percentage of times we will reject a model without
and moderation term, when indeed the model requires one.

No Moderation Terms: The stochastic process {(Yi, Xi), i = 1, . . . , N} was
generated letting π1 = .7; ρ1 = .7; ρ0 = .4; ρ01 = .6; ρ00 = .6; ρ11 = .4; and
ρ10 = .4. The simulation results are also summarized in Table 3. Once again, notice
that this second set of parameters imposes independence between the regressors and
thus requires no moderation term. This can be seen on column 2 of the second panel
of Table 3. Again, just as expected, the percentage of rejections for this reduced
model is higher.

Table 3: Summary Results of Monte Carlo Simulation for Model 2

Sample Statistics
Parameter True Parameters Mean St. Dev. Min. Max. Percentage of Rejections

Model With Moderation Terms
β0 -0.539 -0.5627 0.4159 -2.4849 1.0296

0.182β1 2.3514 2.4207 0.5574 0.5013 5.5835
β2 1.0986 1.1326 0.5155 -0.8023 3.541
β3 -1.9095 -1.9671 0.7118 -5.0251 0.9247

Model Without Moderation Terms
β0 0.5596 0.5827 0.3539 -0.9555 2.8622

0.9486β1 1.2528 1.2807 0.5201 -1.1024 4.0775
β2 -0.8109 -0.8473 0.4876 -2.9469 0.9555
β3 0 0.0117 0.6911 -3.2021 2.8556

4.3 Model 3: Normal-Normal Model
Moderation and Squared Terms: The stochastic process {(Yi, Xi), i = 1, . . . , N} was
generated letting π1 = .75. For Y = 1: µx1 = 4; µx2 = 2; σx1 = 1; σx2 = 3; and
ρ = −.75. For Y = 0: µx1 = 3; µx2 = ‘; σx1 = 2; σx2 = 4; and ρ = −.75. The
simulation results are summarized in Table 4. The table includes the true parameters
warranted by these probabilistic structure as well as the sample statistics of the
estimated parameters and the percentage of times we will reject a model without
cross-products and squared terms, when indeed the model requires them.

Moderation Terms: The stochastic process {(Yi, Xi), i = 1, . . . , N} was generated
letting π1 = .75. For Y = 1: µx1 = 4; µx2 = 2; σx1 =

√
2; σx2 = 2; and ρ = 0.8.

For Y = 0: µx1 = 3; µx2 = 1; σx1 = 1; σx2 =
√

2; and ρ = 0.5292. The simulation
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results are also summarized in the middle panel of Table 4. Notice that this model
does not require the quadratic terms of the general specification. The reason is not
related to any independence between the variables but rather to a judicious selection
of the probabilistic structure of the data.

No Moderation Terms: The stochastic process {(Yi, Xi), i = 1, . . . , N} was
generated letting π1 = .75. For Y = 1: µx1 = 4; µx2 = 2; σx1 = 1; σx2 = 2; and
ρ = 0.6. For Y = 0: µx1 = 3; µx2 = 1; σx1 = 1; σx2 = 2; and ρ = 0.6. The simulation
results are summarized in the lower panel of Table 4. Notice that homogeneity
of the variance-covariance matrix is a necessary condition for the quadratic and
moderation terms to disappear from the specification. Nevertheless, independence
of the regressors is not a sufficient condition, as it was for the previous two models.

Table 4: Summary Results of Monte Carlo Simulation for Model 3

Sample Statistics
Parameter True Parameters Mean St. Dev. Min. Max. Percentage of Rejections

Model With Moderation and Squared Terms
β0 -19.2245 -20.89 4.977 -46.09 -5.9805

0.0035

β1 9.2024 9.955 2.294 2.5951 22.01
β2 2.4603 2.6509 0.7123 0.4885 6.5304
β3 -0.4881 -0.5259 0.1554 -1.3869 0.0055
β4 -0.9762 -1.056 0.2582 -2.4683 -0.1711
β5 -0.0853 -0.0901 0.0321 -0.2782 0.0486

Model With Moderation Terms and No Squared Terms
β0 -2.6123 -2.5905 2.3607 -13.14 13.4779

0.9999

β1 1.0938 0.9678 1.5711 -10.67 7.4045
β2 -0.0781 -0.0193 0.6048 -2.219 4.8785
β3 0 -0.0292 0.2105 -1.6713 0.7824
β4 0 0.038 0.2619 -0.9626 2.0878
β5 0 0.0123 0.0624 -0.2302 0.3456

Model Without Moderation Terms
β0 -2.6123 -2.5905 2.3607 -13.14 13.4779

0.9999

β1 1.0938 0.9678 1.5711 -10.67 7.4045
β2 -0.0781 -0.0193 0.6048 -2.219 4.8785
β3 0 -0.0292 0.2105 -1.6713 0.7824
β4 0 0.038 0.2619 -0.9626 2.0878
β5 0 0.0123 0.0624 -0.2302 0.3456

5 Conclusion and guidelines
Logistic regression with moderation terms are of particular interest to social scientists
modeling behavior of economic agents for they allow researchers to more precisely
qualify the marginal response of the explanatory variables and the moderating
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relationships between them. Since the moderation effect exists whether the index
function of the logit specification includes a moderation term or not, it is crucial that
the researcher accounts for their existence to avoid statistical omitted variable bias of
the estimates and unreliability of inferences. In this document we demonstrated that
whether the logistic regression includes a moderation term or not depends entirely
on the probabilistic structure of the data, especially when the covariates are not
independently distributed. However, given that non-independence is not a sufficient
condition of their existence, we recommend researchers follow a general to specific
approach when using the logistic regression, only eliminating the moderation terms if
warranted by likelihood-ratio testing.

References
[1] Ai, Chunrong and Edward C. Norton (2003). Interaction terms in logit and probit

models, Economics Letters, 80, 123–129.

[2] Arnold, Barry C.; Enrique Castillo; Jose M. Sarabia (1999). Conditional
Specification of Statistical Models, Lecture Notes in Statistics, Vol. 73. Springer
Series in Statistics.

[3] Bergtold, Jason S.; Aris Spanos; Ebere Onukwugha (2010). Bernoulli Regression
Models: Revisiting the Specification of Statistical Models with Binary Dependent
Variables. Journal of Choice Modeling, 3(2), 1–28.

[4] Boskin, Michael J. (1974). A Conditional Logit Model of Occupational Choice,
The Journal of Political Economy, 82(2-1), pp. 389–398.

[5] Chen, Sean X. and Jun S. Liu (1997). Statistical Applications of the Poisson-
Binomial and Conditional Bernoulli Distributions, Statistica Sinica, 7, 875–892.

[6] Faridi, Muhammad Zahir; Shahnawaz Malik; A.B. Basit (2009). Impact of
Education on Female Labour Force Participation in Pakistan: Empirical
Evidence from Primary Data Analysis, Pakistan Journal of Social Sciences,
29(1), 127–140.

[7] Hansen, Jörgen; Roger Wahlberg; Sharif Faisal (2010). Wages and immigrant
occupational composition in Sweden, IZA Discussion Papers, No. 4823.

[8] Hayes, Andrew F. and Jörg Matthes (2009). Computational procedures
for probing interactions in OLS and logistic regression: SPSS and SAS
implementations, Behavior Research Methods, 41, 924–936.

[9] Hyslop, Dan R. (1999). State Dependence, Serial Correlation and Heterogeneity
in Intertemporal Labor Force Participation of Married Women, Econometrica,
67(6).

67 A.A. Romero
CEJEME 6: 57-68 (2014)



Alfredo A. Romero

[10] Kay, R. and S. Little (1987). Transformations of the explanatory variables in the
logistic regression model for binary data, Biometrika, 74(3), 495–501.

[11] Molina, Isabel; Ayoub Saei; M. Jose Lombardia (2007). Small area estimates of
labour force participation under a multinomial logit mixed model, Journal for
the Royal Statistical Society, 170(4), 975–1000.

[12] Mood, Carina (2010). Logistic Regression: Why We Cannot Do What We Think
We Can Do, and What We Can Do About It, European Sociological Review,
26(1), 67–82.

[13] Mroz, Thomas A. (1987). The Sensitivity of an Empirical Model of
Married Women’s Hours of Work to Economic and Statistical Assumptions,
Econometrica, 55(4), 765–99.

[14] Nakosteen, Robert and Michael Zimmer (1980). Migration and Income: The
Question of Self-Selection, Southern Economic Journal, 46, 840–851.

[15] Norton Edward C.; Hua Wang; Chunrong Ai (2004). Computing interaction
effects and standard errors in logit and Probit models, The Stata Journal, 4(2),
154–767.

[16] Romero, Alfredo A. (2011). Tetrachoric Correlation and Data Anomalies,
Working Paper, North Carolina A&T State University.

[17] Segal, Jeffrey A.; Chad Westerland; Stefanie A. Lindquist (2010). Congress, the
Supreme Court, and Judicial Review: Testing a Constitutional Separation of
Powers Model, American Journal of Political Science, 55(1), 89–104.

[18] Spanos, Aris (1999). Probability Theory and Statistical Inference: Econometric
Modeling with Observational Data. Cambridge, UK: Cambridge University Press.

[19] Spector, Lee C. and Michael Mazzeo (1980). Probit Analysis and Economic
Education, Journal of Economic Education, 11(2), 37–44.

[20] Theeuwes, J. (1981). Family labour force participation: Multinomial logit
estimates, Applied Economics, 13(4).

[21] Theilmann, John and Allen Wilhite (1987). A Southern Strategy for Labor, A
Pac Connection? Southeastern Political Review, 15(1), 69–87.

[22] Tunali, Insan (1986). A General Structure for Models of Double-Selection and
an Application to a Joint Migration/Earnings Process with Re-Migration, [in:]
Ronald G. Ehrenberg (ed.), Research in Labor Economics, 8(B), JAI Press, 235–
84.

A.A. Romero
CEJEME 6: 57-68 (2014)

68


	Introduction
	Binary choice and the logit model
	Where do moderation terms come from?
	Model 1: Exponential-Bernoulli
	Model 2: Bernoulli-Bernoulli Model
	Model 3: Normal-Normal model

	Simulation analysis
	Model 1: Exponential-Bernoulli model
	Model 2: Bernoulli-Bernoulli Model
	Model 3: Normal-Normal Model

	Conclusion and guidelines

