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Abstract

We study the autocovariance structure of a general Markov switching
second-order stationary VARMA model. Then we give stable finite
order VARMA(p∗, q∗) representations for those M -state Markov switching
VARMA(p, q) processes where the observables are uncorrelated with the regime
variables. This allows us to obtain sharper bounds for p∗ and q∗ with respect to
the ones existing in literature. Our results provide new insights into stochastic
properties and facilitate statistical inference about the orders of MS-VARMA
models and the underlying number of hidden states.
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1 Introduction
Investigations of economic systems and models make use of linear transformations of
multivariate stochastic processes in various ways, for instance, when linear aggregates
or subprocesses are considered. It is known that linear transformations of VARMA
models are again VARMA processes, as proved by Lütkepohl (1984). In the present
paper we consider dynamic models whose parameters can change as a result of a
regime shift variable, governed by an unobserved Markov chain. Such models have
attracted much interest in the literature for their applications in areas as economics,
statistics, and finance. As general references see, for example, Hamilton (2005),
Krolzig (1997), and Guidolin (2012). The achievements of the Markov switching
(MS) models in fitting empirical data have been confirmed in many economic studies.
For this reason, it is important to characterize the theoretical properties of these
models. Stationarity conditions and the autocovariance structure for MS-VARMA
models were derived by Yang (2000) and Francq and Zakoïan (2001). An interesting
question arising in this context is to investigate the state dimension of the MS process.
The current methods for determining the number of regimes are based either on
complexity-penalized likelihood criteria (see, for example, Psaradakis and Spagnolo
(2003), Olteanu and Rynkiewicz (2007), Ríos and Rodríguez (2008)) or on finite-
order stable VARMA representations of the initial switching models (see, for example,
Krolzig (1997), Zhang and Stine (2001), Francq and Zakoïan (2001), and Cavicchioli
(2014)). The parameters of the VARMA representations can be determined by
evaluating the autocovariance function of the MS models. It turns out that the
above parameters are elementary functions of the dimension of the dynamic process,
the number of regimes and the orders of the switching autoregressive moving-average
model. As the sample autocovariances are more easily calculated than maximum
(penalized) likelihood estimates of the model parameters, the bounds arising from
the above-mentioned elementary functions are very useful for selecting the number
of regimes and/or the orders of the switching moving-average autoregression. Some
bounds are previously determined by Krolzig (1997), Zhang and Stine (2001), Francq
and Zakoïan (2001), and Cavicchioli (2014) for some Markov regime switching models
of different type. Now we state the main results of the paper (the specifics of the
models and the standard regularity conditions will be explained in detail in the next
sections).

Theorem 1.1 Let y = (yt) be a K-dimensional second-order stationary process
which satisfies the M -state Markov switching (also in the intercept term)
VARMA(p, q) model, in short MS(M)-VARMA(p, q):

φst
(L)yt = νst

+ Θst
(L)ut

where φst
(L) =

∑p
i=0 φst,iL

i , φst,0 = IK , φst,p 6= 0, Θst(L) =
∑q
j=0 Θst,jL

j,
Θst,0 = Σst

(non-singular K × K matrix), Θst,q 6= 0, and ut ∼ IID(0, IK).
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Suppose that the regime variable is uncorrelated with the observables. Under standard
regularity conditions, y = (yt) admits a stable VARMA(p∗, q∗) representation, where
p∗ ≤M + p− 1 and q∗ ≤M+q−1. If we require that the autoregressive lag polynomial
of such a stable representation is scalar, then the bounds become p∗ ≤ M + Kp − 1
and q∗ ≤M + (K − 1)p+ q − 1. If the AR and MA polynomials of the former stable
representation have top degrees and no common roots, the above relations become
equalities, that is, p∗ = M + p− 1 and q∗ = M + q − 1.

Here the hypothesis assuming uncorrelated regime variable with the observables is
always satisfied when the intercept term is absent (when, of course, the innovation
process is independent of the Markov chain). However, it is also a reasonable
assumption if the researcher believes changing in regime is due to an event outside
the economic system. The above result allows us to determine a lower bound for the
number of states.

Corollary 1.2 The number of states M of the Markov chain s = (st) in the model
above satisfies M ≥ max{p∗ − p + 1, q∗ − q + 1}, where p∗ and q∗ are the orders of
the stable VARMA representation of y = (yt).

The rest of the paper is organized as follows. In Section 2 we define notations
and give some preliminary results on the autocovariance structure of the MS(M)-
VMA(q) process which will be useful to prove the main theorem in the following
section. In fact, in Section 3 we state general results for a second–order
stationary MS(M)-VARMA(p, q), p, q ≥ 0, in terms of its autocovariances and linear
representation. An empirical application is shown in Section 4. Finally, Section 5
concludes. Proofs are given in the Appendix.

2 Notations and preliminary results
This section is devoted to introduce notations and some preliminary results which
we shall use to prove the main theorem. First, we consider Markov switching vector
moving-average process, in short MS(M)-VMA(q):

yt = νst
+ Θst

(L)ut (1)

Here we allow Markovian shifts in the intercept term; the case with regime changes
in the mean can be treated in a similar manner. As usual, y = (yt) is a K-
dimensional random process, Θst

(L) =
∑q
j=0 Θst,jL

j is K × K matrix polynomial
in the lag operator L, with Θst,0 = Σst

(non-singular K × K matrix) and
Θst,q 6= 0. The process u = (ut) is a zero-mean white noise with E(utu

′

τ ) = δtτ IK
(through the paper, δtτ denotes the Kronecker symbol). The M -state Markov chain
s = (st) is irreducible, stationary and ergodic with transition matrix P = (pij),
where pij = P (st+1 = j|st = i), and stationary distribution π = (π1, . . . , πM )′ .
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Irreducibility implies that πm > 0, for m = 1, . . . ,M , meaning that all unobservable
states are possible. As remarked in Francq and Zakoïan (2001), Example 2, p.351,
a Markov switching moving-average process is always second-order stationary. It is
sufficient to observe that the terms νst and Θst,jut−j , j = 0, . . . , q in (1) belong
to the L2 space of square-summable vector functions. The Markov chain follows an
AR(1) process

ξt = P
′
ξt−1 + vt (2)

where ξt is the random M × 1 vector whose mth element is equal to 1 if st = m and
zero otherwise. The innovation process v = (vt) is a martingale difference sequence
with zero mean. By direct computations, we have

E(ξt) = π E(ξtξ
′

t+h) = DPh E(vtv
′

τ ) = δtτ (D−P
′
DP)

where D = diag(π1, . . . , πM ) and h ≥ 0 (here, and in the sequel, we use the convention
that Ah = I, identity matrix, if h = 0 for every square matrix A). We also assume that
(st,ut) is a strictly stationary process defined on some probability space, and that (st)
is independent of (ut). Our formulation includes the Hidden Markov chain processes
of Krolzig (1997), Chp. 3, and the Markov mean-variance switching models of Zhang
and Stine (2001), Section 3.1, which is the case q = 0. Setting Λ = (ν1 . . . νM ) and
Θj = (Θ1,j . . . ΘM,j) for j = 0, . . . , q, where Θ0 = Σ = (Σ1 . . . ΣM ), the process
y = (yt) in (1) admits the following state-space representation:

yt = Λξt +
q∑
j=0

Θj(ξt ⊗ IK)Ljut

ξt = P
′
ξt−1 + vt

(3)

Taking expectation gives µy = E(yt) = ΛE(ξt) = Λπ, as E(ξt) = π. In the
next theorem we compute the autocovariance function of the process y = (yt). This
extends Theorem 3 from Zhang and Stine (2001) proved for the case q = 0.

Theorem 2.1 The autocovariance function of the process y = (yt) in (1) is given by

i) Γy(h) = Λ(Q
′
)hD(IM − δ0

hP∞)Λ
′
+

q∑
j=h

Θj((P
′
)hD⊗ IK)Θ

′

j−h

for h = 0, . . . , q;

ii) Γy(h) = Λ(Q
′
)hDΛ

′
for every h ≥ q + 1

where Q = P−P∞, P∞ = limn→∞Pn = iMπ
′ and iM = (1, 1, . . . , 1)′ .

Now we use an argument discussed in Krolzig (1997), Section 2.3. The transition
equation in (3) differs from a stable linear AR(1) process by the fact that one
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eigenvalue of P′ is equal to one and the covariance matrix of vt is singular, due
to the adding-up restriction i′Mξt = 1. For analytical purposes, a slightly different
formulation of the transition equation is more useful, where the above restriction is
eliminated. This procedure alters representation (3), and we consider a new, (M−1)-
dimensional state vector defined by δt = (ξ1,t−π1 . . . ξM−1,t−πM−1)′ . The transition
matrix, say F, associated with the state vector δt is given by

F =

 p11 − pM1 · · · pM−1,1 − pM1
...

...
p1,M−1 − pM,M−1 · · · pM−1,M−1 − pM,M−1


which is an (M −1)× (M −1) matrix with all eigenvalues inside the unit circle. Then
we have

δt = Fδt−1 + wt (4)

where wt = [IM−1 − iM−1]vt. By direct computations, we have

E(δt) = 0 E(δtδ
′

t+h) = D̃(F
′
)h E(wtw

′

τ ) = δtτ (D̃− FD̃F
′
)

where D̃ = AD(I − P∞)A′ and A = [IM−1 oM−1] is (M − 1) ×M (here oM−1 is
the (M − 1)× 1 vector of zeros). More explicitly, we get

D̃ =


π1(1− π1) −π1π2 · · · −π1πM−1
−π1π2 π2(1− π2) · · · −π2πM−1

...
...

...
−πM−1π1 −πM−1π2 · · · πM−1(1− πM−1)


We can see that |D̃| = |D| = π1π2 · · ·πM 6= 0 as the Markov chain is irreducible. Now
the measurement equation in (3) can be reformulated as

yt = Λπ + Λ(ξt − π) +
q∑
j=0

Θj [(ξt − π)⊗ IK ]ut−j +
q∑
j=0

Θj(π ⊗ IK)ut−j .

Then the process y = (yt) in (1) admits another state-space representation:

yt = Λπ + Λ̃δt +
q∑
j=0

Θ̃j(δt ⊗ IK)ut−j +
q∑
j=0

Θj(π ⊗ IK)ut−j

δt = Fδt−1 + wt

(5)

where

Λ̃ = (ν1 − νM · · · νM−1 − νM ) Θ̃j = (Θ1,j −ΘM,j · · · ΘM−1,j −ΘM,j)
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for every j = 0, . . . , q. Equations given by (5) are also called the unrestricted state-
space representation of y, where w = (wt) is a martingale difference sequence with
a non-singular covariance matrix and the innovation sequence in the measurement
equation is unaltered. Note that the measurement equation in (5) can be written in
short as

yt − µy = Λ̃δt +
q∑
j=0

Θ̃j [(δt + π̃)⊗ IK ]Ljut

where µy = E(yt) = Λπ and π̃ = (π1 − πM · · · πM−1 − πM )′ . Using representation
(5) and doing computations similar to those in the proof of Theorem 2.1, we get

Theorem 2.2 The autocovariance function of the process y = (yt) in (1) is given by

i) Γy(h) = Λ̃FhD̃Λ̃
′

+
q∑

j=h
Θ̃j [(FhD̃)⊗ IK ]Θ̃

′

j−h +
q∑

j=h
Θj [(DP∞)⊗ IK ]Θ

′

j−h

for h = 0, . . . , q;

ii) Γy(h) = Λ̃FhD̃Λ̃
′

for every h ≥ q + 1.

3 MS(M)-VARMA(p, q) models
Let us consider y = (yt) be a K-dimensional second-order stationary dynamic process
satisfying the following Markov switching autoregressive moving average model

φst
(L) yt = νst

+ Θst
(L) ut (6)

where ut ∼ IID(0, IK) and φst
(L) =

∑p
i=0 φst,iL

i with φst,0 = IK and φst,p 6= 0.
As in Section 2, Θst(L) =

∑q
j=0 Θst,jL

j , with Θst,0 = Σst (a non-singular K ×K
matrix) and Θst,q 6= 0. As usual, we assume that the polynomials |φst

(z)| have
all their roots strictly outside the unit circle. Sufficient conditions ensuring second-
order stationarity for Markov switching VAR models and Markov switching VARMA
models can be found, for example, in Yang (2000) and Francq and Zakoïan (2001),
respectively. Define

Λ = (ν1 · · · νM ) Σ = (Σ1 · · · ΣM )

and

φ(L) = (
p∑
i=0

φ1,iL
i · · ·

p∑
i=0

φM,iL
i)
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Then the process y = (yt) in (6) admits the following state-space representation:

φ(L)(ξt ⊗ IK)yt = Λξt +
q∑
j=0

Θj(ξt ⊗ IK)Lj ut

ξt = P
′
ξt−1 + vt

(7)

Taking expectation gives φ(1)(π ⊗ IK)µy = Λπ. Assuming the invertibility of the
K × K matrix R = φ(1)(π ⊗ IK), we can write µy = R−1Λπ. Set xt = Λξt +∑q
j=0 Θj(ξt⊗ IK)Lj ut. For every h ≥ 0 and assuming that the regime variable ξt+h

is uncorrelated with yt, we have

cov(xt+h,yt) = cov(φ(L)(ξt+h ⊗ IK)yt+h,yt) =
= φ(L)[E(ξt+h)⊗ cov(yt+h,yt)] =
= φ(L)(π ⊗ IK)[1⊗ cov(yt+h,yt)] =
= B(L)Γy(h)

(8)

where B(L) = φ(L)(π ⊗ IK) is a K × K matrix lag polynomial of degree p. Here
L denotes also the backward shift operator, i.e., LΓy(h) = Γy(h − 1). By explicit
computations, we can see that B(L) =

∑p
i=0 BiL

i, with B0 = IK , where Bi =
φi(π ⊗ IK) is K ×K and φi = (φ1,i · · · φM,i) is K × (KM) for every i = 1, . . . , p.
As done in Section 2, we can substitute ξt with the (M − 1) × 1 state vector δt in
order to obtain the unrestricted state-space representation

φ̃(L)(δt ⊗ IK)yt + φ(L)(π ⊗ IK)yt = Λπ + Λ̃δt+

+
q∑
j=0

Θ̃j(δt ⊗ IK)Lj ut +
q∑
j=0

Θj(π ⊗ IK)Lj ut

δt = Fδt−1 + wt

(9)

where

Λ̃ = (ν1 − νM · · · νM−1 − νM )

Σ̃ = (Σ1 −ΣM · · · ΣM−1 −ΣM )

and

φ̃(L) = (
p∑
i=1

(φ1,i − φM,i)Li · · ·
p∑
i=1

(φM−1,i − φM,i)Li)
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From the transition equation in (9) we obtain δt+h = Fhδt+
∑h−1
j=0 Fjwt+h−j . Using

this relation, xt+h can be expressed as

xt+h =Λπ + Λ̃Fhδt +
h−1∑
r=0

Λ̃Frwt+h−r +
q∑
j=0

Θ̃j [(Fhδt)⊗ IK ]Lj ut+h

+
q∑
j=0

h−1∑
r=0

Θ̃j [(Frwt+h−r)⊗ IK ]Lj ut+h +
q∑
j=0

Θj(π ⊗ IK)Lj ut+h

By this formula, we obtain

cov(xt+h,yt) = cov(Λπ + Λ̃Fhδt,yt) = Λ̃Fhcov(δt,yt) = Λ̃FhE(δty
′

t) (10)

for every h ≥ q + 1.
Now we explicitly compute E(δty

′

t). Postmultiplying the measurement equation in
(9) by δ

′

t and taking expectation give the relation φ(1)(π⊗ IK)E(ytδ
′

t) = Λ̃D̃, hence

E(δty
′

t) = D̃Λ̃
′

[R
′
]−1 (11)

Substituting Formulae (8) and (11) into (10), we get the following result:

Theorem 3.1 The autocovariance function of the second-order stationary process
y = (yt) in (6) satisfies the matrix relation

B(L)Γy(h) = Λ̃FhD̃Λ̃
′

[R
′
]−1

for every h ≥ q + 1, where R = φ(1)(π ⊗ IK) has been assumed to be non-singular.

Now we apply Theorem 4 of Cavicchioli (2014) replacing q by q+ 1 and M by M − 1
(bearing in mind that F is (M − 1)× (M − 1)). This gives the following result:

Theorem 3.2 Suppose that the regime variable is uncorrelated with the observables
and Λ̃ 6= 0. Then the process y = (yt) in (6) admits a stable VARMA(p∗, q∗)
representation with p∗ ≤ M + p − 1 and q∗ ≤ M + q − 1. If we require that the
autoregressive lag polynomial of such a stable representation is scalar, then the bounds
become p∗ ≤M+Kp−1 and q∗ ≤M+(K−1)p+q−1. If the AR and MA polynomials
of the former stable representation have top degrees and no common roots, the above
relations become equalities, that is, p∗ = M + p− 1 and q∗ = M + q − 1.

Now we compute explicitly a stable VARMA representation for the process y = (yt)
in (6). This gives a new proof of Theorem 3.2 and extends Proposition 3 from Krolzig
(1997), Section 3.2.4. We start with the more simple case in which the autoregressive
lag polynomial of the initial process is state independent.
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Theorem 3.3 Let us consider the process y = (yt) in (6), with φst
(L) = A(L) =∑p

i=0 AiL
i being state independent and A0 = IK . Assume that the reduced transition

matrix F and the pth autoregressive matrix Ap are non-singular. Then y has a
VARMA(p∗, q∗) representation with p∗ ≤ M + p − 1 and q∗ ≤ M + q − 1. If we
require that the autoregressive lag polynomial of such a stable representation is scalar,
then the bounds become p∗ ≤ M + Kp − 1 and q∗ ≤ M + (K − 1)p + q − 1. More
precisely, there exists a stable finite order VARMA(p∗, q∗) representation

γ(L)(yt − µy) = C(L)εt

where γ(L) = |F (L)||A(L)| is the scalar AR operator of degree M + Kp − 1, C(L)
is a matrix lag polynomial of degree M + (K − 1)p + q − 1, and the process εt =
(w′t u

′

t(w
′

t ⊗ IK) . . . u
′

t(w
′

t+q ⊗ IK) u
′

t)
′ is a zero-mean vector white noise

with covariance matrix given by

var(εt) = diag(D̃− FD̃F
′
, (D̃− FD̃F

′
)⊗ IK , . . . , (D̃− FD̃F

′
)⊗ IK , IK).

In the general case in which the autoregression part of the initial process is
state dependent (assuming again that the regime variable is uncorrelated with the
observables), we can proceed as follows. By Theorem 3.1 the autocovariances of
the process satisfy a finite difference equation of order p∗ = M + p − 1 and rank
q∗ + 1 = M + q. Then the process can be represented by a stable VARMA(p∗, q∗)
model. Given the process (yt), we can estimate the coefficients of the stable
VARMA(p∗, q∗) via OLS. If there is no cancellation between the AR and MA part of
the estimated VARMA(p∗, q∗), then we get the representation of Theorem 3.2 with
equalities.

4 An empirical application
Here we show how Theorem 3.2 can be used for model selection in the case where
q (resp. p) and M are all unknown, given the value of p (resp. q). We propose
the following algorithm to estimate simultaneously the number of regimes and the
order of the autoregressive (AR) (resp. moving-average (MA)) part of the considered
MS-VARMA process, given the MA (resp. AR) order.
Step 1. Use one of the existing model selection criteria (for example, the Box-Jenkins
strategy or the Choi method (1992)) to estimate the orders of the stable VARMA
from Theorem 3.2. Let p̂∗ and q̂∗ denote such estimates.

Step 2. If the AR and MA polynomials of the stable VARMA representation
have no roots in common, Theorem 3.2 gives the estimates M̂ = p̂∗ − p + 1 and
q̂ = q̂∗ − p̂∗ + p for M and q unknown, given the value of p. Analogously, Theorem
3.2 gives the estimates M̂ = q̂∗ − q + 1 and p̂ = p̂∗ − q̂∗ + q for M and p unknown,
given the value of q.
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Moreover, note that if the researcher has a clear prior belief on the number of regimes
(states of nature) to be considered in a particular application, then the algorithm
is convenient to correctly specify the lag order of the AR and MA parts before
proceeding to the estimation and forecast exercises. This is the starting point in the
following application of the above algorithm, in which we focus on model selection
issue introduced in the paper by Bergman and Hansson (2005). These authors propose
to model the real exchange rate between the major currencies in the post-Bretton
Woods period as a stationary 2-state Markov switching AR(1) model. In particular,
they argue that unit roots can be rejected when allowing structural instability in the
time series. A natural implication is to associate the parameters of the model to
different regimes or states of nature. In the context of nominal exchange rates, it is
straightforward to distinguish between two regimes corresponding to exchange rate
appreciation and depreciation. Having this in mind, Bergman and Hansson (2005)
estimate exchange rate series by means of univariate MS(2)-AR(1) models where
only the intercept varies across regimes. Then they show that this model outperforms
both the single regime random walk and the 2-regimes random walk models (where
the autoregressive coefficients are equal to unity). Now we want to test whether the
data are correctly modeled via autoregressive processes and how many lags should
be considered. The data consist of quarterly observations on the period average
spot exchange rates (in units of foreign currency per US dollar) and the consumer
price index for six major industrialized countries (UK, France, Germany, Switzerland,
Canada, Japan and USA) taken from the IMF International Financial Statistics CD-
ROM. The sample runs from the second quarter of 1973 to the fourth quarter of 1997.
The effective sample of observations is 99. The real exchange rate is normalized to
unity in the second quarter of 1973 and we use 100 times the natural logarithm of
the real exchange rate, just as in Bergman and Hansson (2005). Table 1 reports the
estimated p∗ and q∗ orders using Box-Jenkins procedure together with the implied
switching model using the bounds described above. Since it is reasonable to assume
2-regimes, we evaluate the AR and MA orders to asses the correct model and to
discriminate whether only the intercept switches or also the other parameters.

Table 1: Estimated switching model orders for the univariate series of the six real
exchange rates, 1973:2-1990:4.

Rate ARMA(p̂∗, q̂∗) Bounds MS-Model
GBP ARMA(1,0) 1 ≤ 2 + p− 1, 0 ≤ 2 + q − 1 MS(2)-ARMA(0,0)
FRF ARMA(2,0) 2 ≤ 2 + p− 1, 0 ≤ 2 + q − 1 MS(2)-ARMA(1,0)
DEM ARMA(2,0) 2 ≤ 2 + p− 1, 0 ≤ 2 + q − 1 MS(2)-ARMA(1,0)
CHF ARMA(2,0) 2 ≤ 2 + p− 1, 0 ≤ 2 + q − 1 MS(2)-ARMA(1,0)
CAD ARMA(1,0) 1 ≤ 2 + p− 1, 0 ≤ 2 + q − 1 MS(2)-ARMA(0,0)
JPY ARMA(2,0) 2 ≤ 2 + p− 1, 0 ≤ 2 + q − 1 MS(2)-ARMA(1,0)

This analysis suggests that four (FRF, DEM, CHF, JPY) out of six series should
be correctly modeled using a process in which both the intercept and the first lag
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autoregressive coefficient switch, while GBP and CAD can be considered by means
of the specification used in Bergman and Hansson (2005). However, this analysis is
in line with the conclusions of Bergman and Hansson (2005), which are in favour
of a switching model. It also supports the theoretical predictions by Dumas (1992),
which imply a Markov switching model whose intercept, autoregressive parameter
and variance should all depend on the state.

5 Conclusions
We have investigated the linear representations of Markov switching (MS)
VARMA(p, q) models, in which the coefficients are functions of a finite state-space
Markov chain. It has already been established in the literature that such models
admit finite order VARMA(p∗, q∗) representations, but we obtain sharper bounds
for the stable VARMA orders. These linear representations are potentially useful
for statistical applications since inference within MS models is notoriously difficult.
Determining lower bounds for the number of regimes or the order of AR and MA
switching polynomials is the first step in the statistical inference in MS models and in
real-world data applications where structural instability should be taken into account.
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Proof of Theorem 2.1
The following are well-known facts (see, for example, Zhang and Stine (2001), Section
3.1): DP∞ = ππ

′ , Pn
∞ = PnP∞ = P∞Pn = P∞ and Qn = Pn − P∞ for every

n ≥ 1. First, we treat the case h = 0. Then we have

Γy(0) = E(yty
′

t)− E(yt)E(y
′

t) = E(yty
′

t)−Λππ
′
Λ
′

= E(yty
′

t)−ΛDP∞Λ
′

and

E(yty
′

t) = E[(Λξt +
q∑
j=0

Θj(ξt ⊗ IK)ut−j)(
q∑
j=0

u
′

t−j(ξ
′

t ⊗ IK)Θ
′

j + ξ
′

tΛ
′
)] =

= ΛE(ξtξ
′

t)Λ
′
+

q∑
j=0

Θj [E(ξtξ
′

t)⊗ IK ]Θ
′

j =

= ΛDΛ
′
+

q∑
j=0

Θj(D⊗ IK)Θ
′

j

hence

Γy(0) = ΛD(IM −P∞)Λ
′
+

q∑
j=0

Θj(D⊗ IK)Θ
′

j

which proves i) for h = 0. For h = 1, . . . , q, we have

Γy(−h) = cov(yt,yt+h) = E(yty
′

t+h)− E(yt)E(y
′

t+h) = E(yty
′

t+h)−ΛDP∞Λ
′

and

E(yty
′

t+h) = E[(Λξt +
q∑
j=0

Θj(ξt ⊗ IK)ut−j)(
q∑
i=0

u
′

t+h−i(ξ
′

t+h ⊗ IK)Θ
′

i + ξ
′

t+hΛ
′
)] =

= ΛE(ξtξ
′

t+h)Λ
′
+

q∑
j=0

q∑
i=0

Θj [E(ξtξ
′

t+h)⊗ δt−jt+h−iIK ]Θ
′

i =

= ΛDPhΛ
′
+
q−h∑
i=0

Θi[(DPh)⊗ IK ]Θ
′

i+h

hence

Γy(−h) = ΛD(Ph −P∞)Λ
′
+
q−h∑
i=0

Θi[(DPh)⊗ IK ]Θ
′

i+h =

= ΛDQhΛ
′
+
q−h∑
i=0

Θi[(DPh)⊗ IK ]Θ
′

i+h.
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Now taking transposition and setting j = i+ h, we get

Γy(h) = Λ(Q
′
)hDΛ

′
+

q∑
j=h

Θj [((P
′
)hD)⊗ IK ]Θ

′

j−h

which proves i) for h = 1, . . . , q. For every h ≥ q + 1, we have

E(yty
′

t+h) = ΛE(ξtξ
′

t+h)Λ
′

= ΛDPhΛ
′

and
Γy(−h) = ΛD(Ph −P∞)Λ

′
= ΛDQhΛ

′

hence
Γy(h) = Λ(Q

′
)hDΛ

′

which proves ii). �

Proof of Theorem 3.3
From (9) we get δt = F (L)−1wt as usual. Equating (6) and (9) and substituting the
last formula, we get

A(L)yt = Λπ + Λ̃δt +
q∑
j=0

Θ̃j(δt ⊗ IK)Lj ut +
q∑
j=0

Θj(π ⊗ IK)Lj ut = A(1)µy+

+ Λ̃F (L)−1wt +
q∑
j=0

Θ̃j(F (L)−1 ⊗ IK)(wt ⊗ IK)Lj ut +
q∑
j=0

Θj(π ⊗ IK)Lj ut

hence

A(L)(yt − µy) = Λ̃F (L)−1wt +
q∑
j=0

Θ̃j(F (L)−1 ⊗ IK)(wt ⊗ IK)Lj ut+

+
q∑
j=0

Θj(π ⊗ IK)Lj ut.

Premultiplying this formula by |F (L)| yields

|F (L)|A(L)(yt − µy) =Λ̃F (L)∗wt +
q∑
j=0

Θ̃j(F (L)∗ ⊗ IK)(wt ⊗ IK)Lj ut+

+ |F (L)|
q∑
j=0

Θj(π ⊗ IK)Lj ut.
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This equation is a stable VARMA(p∗, q∗) representation with p∗ ≤ M + p − 1 and
q∗ ≤M + q − 1. Since the reduced transition matrix F is non-singular, the degree of
|F (L)| isM−1. Now, we can write A(L)∗A(L) = |A(L)|IK , where the degree of |A(L)|
isKp because the pth autoregressiveK×K matrix Ap is non-singular. Premultiplying
the last equation by A(L)∗, we get the stable VARMA(p∗, q∗) representation, with
p∗ ≤M+Kp−1 and q∗ ≤M+(K−1)p+q−1, whose autoregression lag polynomial
is scalar:

|F (L)||A(L)|(yt − µy) = A(L)∗Λ̃F (L)∗wt+

+A(L)∗
q∑
j=0

Θ̃j(F (L)∗ ⊗ IK)(wt ⊗ IK)Lj ut + |F (L)|A(L)∗
q∑
j=0

Θj(π ⊗ IK)Lj ut

which is a model as required in the statement. �
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