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Abstract

The paper refines Lenk’s concept of improving the performance of the com-
puted harmonic mean estimator (HME) in three directions. First, the adjusted
HME is derived from an exact analytical identity. Second, Lenk’s assumption
concerning the appropriate subset A of the parameter space is significantly weak-
ened. Third, it is shown that, under certain restrictions imposed on A, a fun-
damental identity underlying the HME also holds for improper prior densities,
which substantially extends applicability of the adjusted HME.
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1 The HME and Lenk’s correction
The marginal data density values (also called the marginal likelihoods of the data,
or the normalizing constants, or the integrated likelihoods) are essential in formal
Bayesian model selection and model averaging.1 Let us consider a model, in which a)
the parameter space2 is denoted by Θ; b) p(θ) is a prior density function of parameters
collected in θ ∈ Θ; c) y is a vector of observations. The marginal data density,
p(y), is defined as an integral (calculated over the whole parameter space) of the
conditional data density given the vector of parameters, p(y|θ), with respect to the
prior distribution:

p(y) =
∫
Θ

p(y|θ)p(θ) dθ. (1)

For the majority of models a closed-form expression for the marginal data density
is not available, and a certain Monte Carlo approximation of p(y) for the observed
vector y is needed. For the case of MCMC simulations from the posterior distribution,
Newton and Raftery (1994) proposed the simple (and hence popular) harmonic mean
estimator (HME) of the marginal data density value, given by:

p̂HME(y) =

[
1
k

k∑
q=1

1
p(y|θ(q))

]−1

, (2)

where the elements of the series {θ(q)}k
q=1, are drawn from the posterior by means of

some MCMC algorithm. The form of HME is based on a simple identity:

p(y) =

∫
Θ

1
p(y|θ)

p(θ|y) dθ

−1

, (3)

easily derived from a fundamental relation:

1 =
∫
Θ

p(θ) dθ, (4)

holding for all densities of proper (i.e. probabilistic) prior measures.
Even though the HME is consistent (see Newton and Raftery 1994), it has serious
shortcomings. Namely, it lacks finite asymptotic variance and, in small samples (i.e.,
for finite MCMC chains), it overestimates the marginal data density. As pointed

1Bayesian model comparison and inference pooling - described by, e.g., Osiewalski and Steel
(1993) - are rooted in testing statistical hypotheses through their posterior probabilities; see, e.g.,
Zellner (1971).

2Following the Bayesian approach, we assume that the vector of parameters includes also latent
variables (if there are any in the model).
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by Lenk (2009), the latter results from the "simulation pseudo-bias" of the HME,
which calls for an appropriate "pseudo-bias" correction. Apart from identifying the
source of the "simulation pseudo-bias", Lenk (2009) also delivers several methods of
estimating the "pseudo-bias" adjustment factor. The adjusted HME for the marginal
data density, proposed by Lenk (2009), is given by the formula:

p̂AHME(y) = P̂ (A)

[
1
k

k∑
q=1

1
p(y|θ(q))

]−1

= P̂ (A)p̂HME(y), (5)

where P̂ (A) is an estimate of the prior probability of A ⊆ Θ (i.e. P (A)).
In formula (5) the elements of the series {θ(q)}k

q=1 are the MCMC draws from the
posterior distribution restricted to the subset A. It is assumed by Lenk (2009) that
the posterior probability of A is greater than 1 − ε for some small ε > 0 (i.e.,
P (A|y) > 1 − ε), and it is presented that, due to this assumption, the adjusted HME
can be used for estimating p(y).
In the next section we substantially generalize the basic identity (3) that underlies
the original HME. We thus firmly justify the construction of the adjusted HME and
extend its applicability to different subsets A and even to improper priors.

2 A formal justification and generalization of Lenk’s
correction

In this section it will be shown that the adjusted HME results from the following
exact identity:

p(y) = P (A)

∫
A

1
p(y|θ)

p(θ|y) dθ

−1

, (6)

holding for any subset A ⊆ Θ of a non-zero prior probability mass. Thus, Lenk’s ad-
justed HME can be used not only for the subset A, for which the posterior probability
is close to 1, but also for any (reasonable) subset of the parameter space.
Let us assume that p(y) > 0 and A is any subset of the parameter space such that
P (A) > 0 and p(θ|y) > 0 almost everywhere in A. Then we have:

P (A) =
∫
A

p(θ) dθ =
∫
A

p(θ)
p(θ|y)

p(θ|y) dθ.

From Bayes’ rule:

p(θ|y) = p(y|θ)p(θ)
p(y)

,
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thus
P (A) =

∫
A

p(θ)p(y)
p(y|θ)p(θ)

p(θ|y) dθ.

Consequently,
P (A) = p(y)

∫
A

1
p(y|θ)

p(θ|y) dθ,

which immediately leads to (6).
The fundamental identity (6) suggests that the marginal data density value, p(y), can
indeed be always approximated by (5), i.e. the product of 1) the harmonic mean of
the likelihood values, calculated using draws {θ(q)}k

q=1 from the posterior distribution
of θ restricted to the subset A, and 2) Lenk’s correction (an estimate of P (A)). As
shown above, the subset A can be chosen arbitrarily.
Note that the identity underlying the original HME estimator heavily relies on the
properness of the prior distribution. However, the derivation presented in this section
for the adjusted HME does not require the prior measure to be a probabilistic one.
The crucial assumption is that P (A) is finite.
Let p(θ) be a density function of some σ-finite measure such that p(y), defined by
(1), is non-zero and finite (possibly except for measure-zero sets in the sample space),
i.e. the posterior distribution exists. Let A ⊆ Θ be a set of non-zero and finite prior
measure. Then our derivation remains valid and thus (6) still holds. For example,
if A is a bounded subset of the parameter space Rd, then P (A) is finite irrespective
of whether the prior is improper uniform or proper, and the adjusted HME can be
applied. An "advantage" of restricting the analysis to the proper priors only would
reside in the possibility to use the original HME, which is not a reliable estimator.
Of course, since we estimate marginal data density values in competing models in
order to compute their Bayes factors and conduct formal model comparison, we can
use improper priors only for the common parameters; see, e.g. Osiewalski and Steel
(1993).

3 Concluding remarks
In this note it has been shown that Lenk’s correction can be used regardless of the
posterior probability accumulated in the chosen subset of the parameter space. This
analytical result makes it possible to select A (the subset of the parameter space),
used in estimating the marginal data density with MCMC methods, and consequently
to improve numerical properties of the adjusted harmonic mean estimator. In fact,
each A defines a new estimator of the marginal data density value. The properties of
such estimator may heavily depend on the choice of A, and examining them should
be a subject of future research. Finally, it is important to note that some estimators
from the adjusted HME class can be used in the case of an improper prior.
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