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Abstract

Matched sampling is a methodology used to estimate treatment effects. A
caliper mechanism is used to achieve better similarity among matched pairs.
We investigate finite sample properties of matching with caliper and propose a
slight modification to the existing mechanism. The simulation study compare
performance of both methods and show that standard caliper perform well only
in case of constant treatment or uniform propensity score distribution. Secondly,
in a case of non-uniform distribution and non-uniform treatment the dynamic
caliper method outperform standard caliper matching.
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1 Introduction

Quasi-experimental methods are nowadays widely applied in evaluation studies. Their
advantage, in comparison to fully controlled experimental design, is low cost. Matched
sampling is a methodology for reducing bias due to observed covariates in comparative
observational studies. However, even when matching on observable characteristics, it
is necessary in order to estimate treatment effects to adjust for the difference in the
distributions of those characteristics between treated and non-treated population.
The most frequently used technique in application is pair matching, called also the
nearest neighbour matching. The procedure seeks for each treated observation a non-
treated counterpart with identical or very similar characteristics. In the adjustment
process propensity score matching plays a fundamental role, since it reduces a course
of dimensionality problem and allows for one dimension non-parametric regression
(Rosenbaum and Rubin, 1983).
The caliper matching introduced in a work by Cochran and Rubin (1973) is a
modification of the nearest neighbour matching procedure that impose a tolerance
on the difference in characteristics between matched objects. Treated observations
for which no matches can be found within a caliper are excluded from the analysis,
which is one way of imposing a common support condition. A drawback of caliper
matching is that it is difficult to know a priori what choice for tolerance level is
reasonable (Todd, 2006).
In this paper we propose a slight modification of the caliper mechanism. We postulate
that the size of the caliper should be retrieved from investigated data instead of
choosing some ad hoc value. We call this procedure a dynamic caliper, as the size of
the caliper depends solely on the estimated propensity score value. In other words, the
size of the caliper is adjusted to the empirical data in the estimation process. A similar
method was proposed by Rubin and Thomas (2000) but with a considerably larger
caliper value on covariates. Their caliper value is 0.2 of the logit of the propensity
score for the treated standarised in such way that variance in the control sample is
equal to unity. This mean that the caliper value for instance is equal to 1/45 for
propensity score of 0.1, 1/5 for propensity score of 0.5 and 2.25 for propensity score
of 0.9, respectively. In other words, their caliper is very narrow for small value of
propensity score and very wide for larger values. Furthermore, one-to-one matching
estimators are widely used in empirical studies, and it is important to understand their
properties. Thus, we analyse the properties of the dynamic caliper in comparison with
the standard procedure, and show its strengths and weaknesses. Our main result is
that a standard caliper performs poorly when treatment is not the same for all units.
Secondly, we show that in case of non-uniform distribution of the propensity score and
non-constant treatment the dynamic caliper method has a lower Root Mean Squared
Error (RMSE) and hence is better than standard matching with a caliper.
The article is divided into four sections. Next section briefly introduces matching
estimators. In the third section we describe Monte Carlo simulations for different
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distributions of the propensity score and the outcome equations. In the fourth section
we present our main results, while the fifth section summarises and concludes.

2 The caliper matching

The main problem in treatment effect literature is the estimation of the average
treatment effect on the treated. We follow a standard notation. Let Y1i be an
outcome when individual i receive a treatment and Y0i when he or she does not. The
latter situation is called control treatment. Let Pi 0,1 be an indicator of treatment
status. The average treatment effect on the treated (ATT) is defined as

ATT = E[Y1|P = 1]− E[Y0|P = 1] (1)

Typical matching estimator has a form (Smith & Todd, 2005)

1
N

N∑
n=1

[
Y1i − E(Y0i|Pi = 1)

]
(2)

where E(Y0i|Pi = 1) =
∑
W (i, j)Y0i is an estimator of the counterfactual state,

W (i, j) is a matrix of distance between i and j, and N is a number of matched pairs.
The fundamental problem of inference is that, for each individual we can observe only
one of these potential outcomes, because each unit will receive either treatment or
control, not both. The estimation of causal effects can thus be thought of as a missing
data problem (Rubin, 1973), where we are interested in predicting the unobserved
potential outcomes.
It is assumed that conditional on all factors that influence the potential outcome
for untreated (Y0|Pi = 1) and the decision to participate, Pi is independent of
{Y0, Y1}. In other words, decision of individual to receive treatment or control
treatment can be considered as random. This assumption is called unconfoundness,
conditional independence, or overlap or selection on observables (Imbens, 2004). The
counterfactual mean can be identified, provided that the support of all factors that
influence outcome X among the treated is contained in the support of X among
the non-treated. This property is called common support condition. An additional
assumption is the Stable Unit Treatment Value Assumption (SUTVA) (Rubin, 1980),
which states that the outcomes of one individual are not affected by treatment
assignment of any other individual. This means that the outcome of the program
does not depend on the number of participants.
The idea of matching is to compute similarity measure and use the algorithm to
match observations from the treatment group with their closest counterpart from the
control group. The aim is a construction adequate comparison group that replaces
missing data and allows to estimate E(Y0i|Pi = 1) without imposing additional a
priori assumptions (Blundell & Costa-Dias, 2009). Objects are matched according
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to the estimated value of the similarity measure. The straightforward algorithm is to
choose for each object in the treatment group an object with the same or very close
value of the similarity measure p from the control group. Usually the propensity score
which is probability of receiving the treatment is chosen for that purpose. Let define
set Ai such that only one comparison unit i belongs to Ai:

Ai = {j|j ∈ 1 . . . n : min ||pi − pj ||} (3)

where ||.|| is a metric. In case of the nearest neighbour matching set Ai can be
treated as weighting matrix. The weight matrix P (i, j) is a square matrix with zeros
and ones as elements. The value one is for the closest neighbour, and zeros for all
remaining objects. This type of matching is called 1 to 1 matching. Each unit from
the treatment group is linked with only one element in the control group.
The nearest neighbour matching estimator has good statistical properties if pi and pj

are defined on common set. The role of the evaluator is to decide how to treat poorly
matched observations (Lee 2005, pp. 89). The total distance, the average distance
or the median distance between matched pairs pi-pj may be viewed as a measure of
matching quality (Rosenbaum, 1985). The lower measure the better fit. For the ideal
procedure all quality measures should equal 0. Relying on all matched pair regardless
matching quality may affect the balance. The balance is weaker condition than close
matching within each pair, and since it is weaker it can often be attained when
close matching within pairs is not possible. Rosenbaum and Rubin (1985) showed
that balancing two samples on the propensity score is sufficient to equalise covariate
distributions. On the other hand, if large number of poorly matched pairs would
be left out, the size of the control group shrinks and for certain observations in the
treatment group can be no adequate comparison in the control group. As a result,
they are dropped from the analysis. This would help with the balance but at the
cost of efficiency, because some information is not used. The evaluator has to choose
among the bias and the variance of the estimator.
One to one or one to many matching is characterised by the risk having poorly
matched pairs that is pair that are distant in terms of chosen similarity measure. The
caliper matching (Cochran and Rubin, 1973) is a variation of the nearest neighbour
matching that attempts to avoid "bad" matches (those for which pj is far from pi)
by imposing a tolerance of the maximum distance ||pi − pj || allowed.

Ai = {j|j ∈ 1 . . . n : min ||pi − pj || < δ} (4)

The set Ai is made of such objects j, that their distance from the nearest match is
not greater than δ. That is, a match for person i is selected only if ||pi − pj || < δ,
where δ is pre-specified tolerance. Treated persons for whom no matches can be found
within caliper are excluded from the analysis, which is one way of imposing a common
support condition. Implementation of caliper matching may lead to a smaller bias in
regions where similar controls are sparse. A unresolved problem is choosing a priori
reasonable value for tolerance level.
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Rosenbaum and Rubin (1985) discuss the choice of the caliper size, generalizing the
results from table 2.3.1 of Cochran and Rubin (1973). When variance of the linear
propensity score in the treatment group is twice as large as that in the control group,
a caliper of 0.2 standard deviations removes 98% of the bias in a normally distributed
covariate. Rosenbaum and Rubin generally suggest the caliper of 0.25 standard
deviation of the linear propensity score. However, in the analysis they considered
matching on the Mahalanobis distance not on the propensity score.
Unfortunately, there is no one optimal value for the caliper. The literature suggests
small number such as 0.005 or 0.001 (Austin, 2009). The caliper reduces the bias of
the average treatment effect estimator at the cost of an increased variance (Heckman
et al, 1997). In a special case, when the propensity score distribution is the same
in the treatment and the control group, the caliper cut off the worst matched pairs
and lowers the bias without significant increase in estimator variance. The caliper
also lowers the value of matching quality measures. The cost is lower number of
successfully matched pairs. As a consequence the variance of the average treatment
effect may increase. However, this is not a major concern as long as one is interested
in precise point estimation of the ATT (Smith and Todd, 2005). The bias of the
estimate is reduced at the cost of increased variance. On the other hand, Smith and
Todd (2005) point out that the potential problem with a caliper is a lack of a priori
knowledge about its optimal value. It is common practice to set the value by trial
and error.
We postulate to use as matching procedure slightly modified caliper mechanism

Ai = {j|j ∈ 1 . . . n : min ||pi − pj || < δpi} (5)

In this setting the caliper value is directly linked with estimated propensity score.
For the observations with low treatment probability modified mechanism requires
better matches from the control group in order to be included in computation of
the ATT estimator value. In practice, there is a few such observations, but on
the other hand, it is very likely that there is good counterfactual in the control
group for them. A large number of matched pairs with low treatment probability
could cause the ATT estimator to be biased. Therefore, in our opinion influence of
observation with low value of the propensity score should be limited, despite that for
those observations it is relatively easy to find a good counterfactual observation. In
a situation where probability of participation approaches 1 dynamic caliper will have
no major differences from the standard one. As a result, we expect that a greater
number of matched pairs is left aside in the computation, those with low participation
probability.

3 Monte Carlo study
In this section we describe the Monte Carlo simulation conducted to examine the
properties of the propensity score matching with dynamic caliper in comparison with
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standard matching with caliper procedure. Since the propensity score is unknown in
general, it is assumed that is estimated in a semi-parametric way.
The design of experiment involves several assumptions and pre-set parameters values.
At the beginning we decided to work with moderate sample sizes, and we establish
this parameter on 500. A number of that range is very common in this type of
simulations founded in the literature. The next pre-set parameter value is a ratio of
treated observations to control observations. Frölich (2004) has shown that the mean
squared error of matching is lower and hence the quality of matching procedure is
higher when control to treated ratio is higher than one to one and is low in cases
where there are more treated observations than those in the control group. Relying
on those results we decided to set a constant relation between the number of treated
observation and the number of controls, and set this parameter to 1:2. The precise
number is each simulation is determined stochastically. For each observation we draw
a random number from standard uniform distribution and we include observation in
the treated group if this random number is below 1/3. Otherwise, this particular
observation is located in the control group. In this way, we receive on average 165
treated observations and 335 control observations. The following step involves setting
the distribution of propensity score values. We considered three different distributions:
uniform, normal and Johnson SB distribution. In a case of two latter distributions,
the distribution in treatment group is concentrated at the right tail, while in the
control group at left tail (see Figure 1).
The uniform distribution of the propensity score vector, presented on the left panel
of Figure 1, is just used as a benchmark. The normal distributions, presented on
the middle panel of Figure 1, are a picture of a rather ideal case in which most
of characteristics follow a normal distribution. The normal distribution of several
personal characteristics is a common assumption is social sciences. On the right
panel the propensity scores follow a Johnson SB distribution. This is very flexible
distribution, described by four parameters, and has a closed form. Those properties
cause the fact that this distribution is frequently used in simulation based studies.
The distributions are parameterised in such a way that propensity score values belongs
to (0,1) interval.

Figure 1: Propensity score distributions
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Legend: Solid line represent distribution in treated groups, dashed in controls ones.
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Another parameter that we control in simulation is a shape of the outcome in the
treated population conditional on the propensity score value. We consider four
different distributions; they are presented on Figure 2, and in Table 1.

Figure 2: Distribution of treatment effect
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The uniform distribution mirrors the ideal case, when the value of the treatment is the
same for all objects. This distribution will be also used as a benchmark. The linear
distribution reflects the situation in which objects that are more likely to take a part
in a program will benefit more. For instance, this is very common in social support
programs. Two other non-linear curves are adapted from Frölich (2004). The non-
linear m2 curve might represent situation where outcome depends discontinuously on
object characteristic that is strongly related to the propensity score. The non-linear
m4 curve could be thought as a reversal of linear curve. The program pays the most
for those participants that are less likely to participate. Consider job training program
and education as a key determinant of the propensity score. Usually, well educated
persons do not need such programs and are able to find a job without external help.
The last assumption involves the outcome value in the non-treated population and it
is set to 0 for simplicity. Knowing the propensity score value and the outcome for all
observations we were able to compare the result of standard caliper matching with
our proposition of dynamic caliper matching. The construction of caliper mechanism
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Table 1: Outcome equations for treated population

Distribution Outcome equation for treated group
Constant y = 5 + e, e ∼ U(0, .01)

Linear y = 4 + 2p + e, e ∼ U(0, .01)

Non-linear m2 y = 0.1 + 0.5p + 0.5e−200∗(p−0.7)2 + e, e ∼ U(0, .01)

Non-linear m4 y = 0.2 + (1− p)0.5 − 0.6(0.9− p)2 + e, e ∼ U(0, .01)

Please note that curves are adjusted by linear transformation to have mean value of 5.

is different in both methods, as it is shown in equation (4) and (5). For the same
numerical value of caliper parameter standard method seeks for comparison units
in larger area. The shape of the area for allowed matches is rectangular in case of
standard method, and triangular for dynamic caliper (see Figure 3). Thus, with the
same parameter value in both mechanisms the size of the area for possible matches
using dynamic caliper is a half of those in standard method. To neglect this difference
in simulation, the caliper size in dynamic setting is going to be twice of that for
standard caliper. The simulation is carried for all distributions of the propensity
score vector and the functional forms for outcome equation with 10,000 replications.

Figure 3: Effect of caliper
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Before moving to the result it is worth to note, that numerical experiment is designed
in such a way that "true" value of the average treatment effect should be 5 regardless of
the distribution of the propensity score vector and the functional form of the outcome
equation. The small error added to the outcome equation causes that deviation from
value of 5 no greater than 0.01 should be regarded as purely random. Conversely,
larger deviations would be an indication of biasness of particular estimation technique.
We also run simulations with larger errors of 0.1 and 0.5 but it has no impact on the
final results.

4 Empirical results

The main results of our numerical experiment are presented in three separate tables.
Each table consist outcomes for only one distribution of the propensity score and all
possible combinations of other parameters are considered. The values in caliper size
column refer to the size of caliper in standard approach. In case of dynamic caliper
they are simply doubled.
The results presented in Table 2 are kind of benchmark to the further results. They
are obtained under assumption of identical distribution of the propensity score in
the treatment and the control group. In this case dynamic caliper method should
be neither no better nor no worse than standard caliper matching. In case of the
constant impact of treatment in fact there is no difference. However, when the impact
of treatment is not uniform and depends on the value of the propensity score results
show different pattern. With linear outcome equation standard caliper technique gives
still unbiased results, while the results from dynamic caliper method are positively
biased. Nevertheless, as the size of the caliper increases the bias is smaller, due to
greater number of successfully matched pairs (see Table 5). The sizes of standard
errors for both methods are on the same level. Similar results are observed for both
non-linear specifications. Standard methods provide unbiased estimates, while results
of estimation with the dynamic caliper mechanism are biased and the bias disappear
as the caliper size increases.
In a situation in which distribution of the propensity score in the treatment group
differs from those in the control group the results are different. Table 3 shows the
situation when propensity score follows a normal distribution in both groups but with
different mean value. As the size of the treatment is the same for all objects, both
methods, that is, caliper and dynamic caliper, provide identical and unbiased results.
In a situation with linear dependence between treatment value and propensity score
value both methods result in downward biased estimates, and again results from both
methods do not differ statistically from one another. For each pair we perform two-
sided t-test. Beside that, the difference in estimates do not exceed one standard
deviation. In simulations with nonlinear outcome equations both methods perform
rather poorly and it is hard to decide which one is better. However, the results of the
dynamic caliper mechanism are closer to the "true value" of 5 than those obtained
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Table 2: The ATT estimated with uniform distribution of propensity score

Treatment constant linear m2 m4
Caliper standard dynamic standard dynamic standard dynamic standard dynamic
size caliper caliper caliper caliper caliper caliper caliper caliper

0.001
5.000 5.000 5.000 5.265 5.010 6.082 4.997 4.750
0.000 0.001 0.064 0.057 0.307 0.295 0.099 0.119

0.005
5.000 5.000 5.000 5.123 5.011 5.508 4.998 4.941
0.000 0.000 0.046 0.044 0.219 0.224 0.071 0.080

0.010
5.000 5.000 5.000 5.069 5.010 5.278 4.997 4.981
0.000 0.000 0.045 0.044 0.215 0.218 0.069 0.075

0.020
5.000 5.000 5.000 5.036 5.010 5.148 4.997 4.994
0.000 0.000 0.045 0.044 0.215 0.216 0.069 0.072

0.025
5.000 5.000 5.000 5.029 5.010 5.121 4.997 4.995
0.000 0.000 0.045 0.044 0.215 0.215 0.069 0.072

0.050
5.000 5.000 5.000 5.015 5.010 5.066 4.997 4.997
0.000 0.000 0.045 0.045 0.215 0.215 0.069 0.070

Please note that in for each caliper size the number in top row is an estimate of ATT and in bottom row
its standard error.

Table 3: The ATT estimated with normal distribution of propensity score

Treatment constant linear m2 m4
Caliper standard dynamic standard dynamic standard dynamic standard dynamic
size caliper caliper caliper caliper caliper caliper caliper caliper

0.001
5.000 5.000 4.065 4.072 3.462 3.518 5.211 5.202
0.001 0.001 0.014 0.014 0.098 0.103 0.015 0.015

0.005
5.000 5.000 4.107 4.113 3.796 3.869 5.159 5.150
0.001 0.001 0.010 0.010 0.097 0.101 0.013 0.013

0.010
5.000 5.000 4.124 4.129 3.996 4.083 5.135 5.126
0.001 0.001 0.010 0.010 0.104 0.108 0.013 0.013

0.020
5.000 5.000 4.138 4.145 4.224 4.335 5.112 5.101
0.001 0.001 0.010 0.010 0.113 0.119 0.013 0.013

0.025
5.000 5.000 4.143 4.150 4.307 4.430 5.104 5.092
0.001 0.001 0.010 0.010 0.118 0.125 0.013 0.014

0.050
5.000 5.000 4.160 4.170 4.611 4.781 5.074 5.055
0.001 0.001 0.010 0.010 0.137 0.146 0.014 0.016

Please note that in for each caliper size the number in top row is an estimate of ATT and in bottom row
its standard error.

from the standard method.
The last set of simulations deals with propensity score that follows Johnson SB

distribution. Again, when the treatment is a simple constant value there are no
significant differences between two methods of estimations. In a case of linear
distribution of the propensity score the ATT estimates obtained via dynamic caliper
method are closer to the "true values" than those from a standard caliper method.
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On the other hand, the differences are within one standard error with the exception
for the smallest caliper value where is larger. Under non-linear outcome equation the
picture is somewhat blur. For the m2 equation all but two results for dynamic caliper
are closer to the "true" value than standard method. The similar results are observed
for m4 equation, in most cases the dynamic caliper performs better than its standard
counterpart. However, the estimates are significantly and positively biased.

Table 4: The ATT estimated with Johnson distribution of propensity score

Treatment constant linear m2 m4
Caliper standard dynamic standard dynamic standard dynamic standard dynamic
size caliper caliper caliper caliper caliper caliper caliper caliper

0.001
5.000 5.000 4.694 4.777 4.197 4.604 5.686 5.582
0.000 0.000 0.052 0.048 0.322 0.315 0.073 0.079

0.005
5.000 5.000 4.809 4.851 4.796 4.952 5.523 5.439
0.001 0.001 0.032 0.030 0.213 0.197 0.055 0.056

0.010
5.000 5.000 4.863 4.897 5.018 5.076 5.418 5.336
0.001 0.001 0.029 0.028 0.189 0.174 0.054 0.055

0.020
5.000 5.000 4.906 4.935 5.099 5.099 5.314 5.231
0.001 0.001 0.027 0.027 0.170 0.158 0.054 0.056

0.025
5.000 5.000 4.918 4.947 5.103 5.097 5.281 5.197
0.001 0.001 0.027 0.027 0.165 0.153 0.055 0.058

0.050
5.000 5.000 4.952 4.983 5.094 5.089 5.180 5.074
0.001 0.001 0.026 0.026 0.151 0.141 0.058 0.064

Please note that in for each caliper size the number in top row is an estimate of ATT and in bottom row
its standard error

The last element of the simulation is to check the influence of the caliper method
and it size on the number of successfully matched pairs, that is the number of those
objects in the treated group for with there is a pair within a caliper distance in the
control group.
As the number of matched pairs depend only on the distribution of propensity score,
the table is common for all outcome equation specifications. With the uniform
distribution of the propensity score, the caliper value equal or larger than 0.01 has
no impact on the number of matched pairs. The dynamic version of caliper is, as it
is expected, more conservative and prevents a greater number of poor matches.
With the normal distribution of the propensity score dynamic version of caliper allows
for about 5% of possible matches more in comparison with standard procedure.
However, as the caliper size increase the difference between two methods in term
of the number of matched pairs become smaller. When propensity score follow a
Johnson SB distribution the situation is very similar to those for normal distribution,
except that in each cell there is greater number of successfully matched pairs.
The comparison of Root Mean Squared Error (RMSE) for both estimation methods
confirms our results. To conserve space we show in Table 5 results for caliper of
0.005 only; other results are similar to those presented. When propensity scores
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Table 5: Number of successfully matched pairs

Propensity score distribution
uniform normal Johnson SB

Caliper standard dynamic standard dynamic standard dynamic
size caliper caliper caliper caliper caliper caliper
0.001 81 74 52 55 83 78
0.005 159 140 96 101 93 105
0.010 165 153 112 117 115 127
0.020 165 159 126 131 132 143
0.025 165 160 130 136 136 147
0.050 165 163 143 150 149 159

follow uniform distribution or treatment is constant, the standard caliper procedure
provides unbiased results with low variance. If the value of treatment depends on the
value of propensity score, a dynamic mechanism that adjusts caliper to the data has
lower RMSE. The difference between the two methods is significant in the case of non
uniform propensity score distribution and nonlinear outcome equation.

Table 6: Root Mean Squared Error

Treatment constant linear m2 m4
Distribution standard dynamic standard dynamic standard dynamic standard dynamic

caliper caliper caliper caliper caliper caliper caliper caliper
uniform 0.000378 0.000398 0.046571 0.131745 0.223129 0.585890 0.072525 0.100656
normal 0.000659 0.000673 0.893121 0.887302 1.223241 1.157174 0.160712 0.152604
Jonhson SB 0.000571 0.000585 0.195951 0.155794 0.334864 0.244080 0.531482 0.452099

RMSE computed for caliper size of 0.005

5 Conclusions

The influence of the caliper mechanism on the estimation of the Average Treatment
Effect on the Treated is not well recognised in the literature. On the other hand, the
caliper is frequently used in applications to control for the balance between treated
and non-treated population. In this paper we tried to shed some light on impact of
caliper on the properties of the ATT estimator. We also have proposed a modification
of the caliper mechanism and conduct a comparative study. We call our method the
dynamic caliper. The name is rooted in fact that we postulate that the size of the
caliper should be retrieved empirically from available data.
We show that the standard caliper matching provide unbiased estimates in specific
situations. Namely, when the treatment is constant, that is in situation in which the
influence of the treatment is the same for every treated subject, or the probability
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of being treated is the same for all objects. With the propensity score distribution
that is closer to the real empirical data our simulations indicate that the estimates
of the ATT are biased and the RMSE’s are quite large. Also we observe that the
smaller caliper size comes along with the higher bias. This means that usually trade-
off between achieving balance between the treated and the control group and unbiased
estimates of the ATT is present.
The dynamic caliper is characterised by lower bias and lower variance in non-
uniform propensity score and non-linear outcome setting. On the other hand, the
dynamic caliper method performs poorly when the propensity score follows uniform
distribution. The estimates are severely biased and have significantly larger RMSE
in most cases. In simulations in which we assumed propensity score distribution that
is close to the real data realizations, in most cases the dynamic caliper is better, in
the sense that using that technique causes a lower bias and mean squared error. This
result shows that the likelihood of obtaining a closer estimate to the true value is
larger when using the dynamic caliper.
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