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Abstract

Forecasting yield curves with regime switches is important in academia and
financial industry. As the number of interest rate maturities increases, it poses
difficulties in estimating parameters due to the curse of dimensionality. To deal
with such a feature, factor models have been developed. However, the existing
approaches are restrictive and largely based on the stationarity assumption of
the factors. This inaccuracy creates non-ignorable financial risks, especially
when the market is volatile. In this paper, a new methodology is proposed to
adaptively forecast yield curves. Specifically, functional principal component
analysis (FPCA) is used to extract factors capable of representing the features
of yield curves. The local AR(1) model with time-dependent parameters is used
to forecast each factor. Simulation and empirical studies reveal the superiority
of this method over its natural competitor, the dynamic Nelson-Siegel (DNS)
model. For the yield curves of the U.S. and China, the adaptive method provides
more accurate 6- and 12-month ahead forecasts.
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1 Introduction
The yield curve depicts interest rates against maturities which is important for
not only households, firms and financial institutions when making many economic
and financial decisions such as risk management and derivatives pricing, but also
for central banks conducting monetary policy for social investment, inflation and
unemployment. Although many methods and models predict the interest rate at
some particular maturities, such as those of Merton (1973), Vasicek (1977) and Cox,
Ingersoll and Ross (1985) as well as Chan, Karolyi, Longstaff and Sanders (1992) and
the references therein, accurately forecasting the yield curve remains a challenging
task.
The difficulty lies in the curse of dimensionality, for as the number of interest rate
maturities increases, accurate estimation of the parameters when some parametric
models are applied is difficult, as seen in Härdle, Müller, Sperlich and Werwatz (2004).
This inaccuracy creates a non-ignorable risk in applications. Factor models developed
by Chen (1996), Schaefer and Schwartz (1984) and Hull and White (1994), among
others, address this inaccuracy. By extracting a small number of dominant factors, the
problem is converted to a low-dimensional one, see Vetzal (1994). Of all the proposed
solutions, the Nelson-Siegel (NS) model (e.g. Nelson and Siegel, 1987; Svensson, 1995)
is by far the most popular, obtaining 3 factors based on exponential factor loadings.
Figure 1 depicts the factor loadings corresponding to the level, slope and curvature
of the yield curve.
Although popular, it is natural to ask whether the NS exponential factor loadings
are universally appropriate for any kind of yield curves. Figure 1 also displays 3
empirical factor loadings for the monthly yield curves of China Treasury. These curves
are obtained using functional principal component analysis (FPCA), a data-driven
method capable of reflecting the empirical evidence of the data. More specifically, the
respective factors account for more than 99% of the variations of the raw data and
represent well the level, slope and curvature of the yield curves. Section 3.1 details the
FPCA method. Interestingly, the shape of the empirical curvature factor loadings,
among others, greatly deviates much from the conventional NS curve, with an obvious
double-humped shape peaking not only around the medium maturity but also around
the long maturity. This possibly is due to unique sovereign credit risks or central
bank regulations. The recent development of functional data analysis opens a door
to a new approach to obtain factors of yield curves. By considering yield curves as
functional data, with each yield curve naturally representing a function of maturities,
the FPCA method extracts factors that explain the maximal variation of the curves
via orthogonal decomposition. A comprehensive review of theories and applications of
FPCA is found in Ramsay and Silverman (2002), Ramsay and Silverman (2005) and
Ferraty and Vieu (2006). Compared to the NS model, the FPCA method is appealing
as it takes into account the natural functional features of yield curves and extracts
factors according to the data’s empirical dependence structure. This method also
identifies unique features, if they exist, and can be safely used for any kind of yield
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Figure 1: The empirical factor loadings of the China Treasury yield curves (bottom)
and the NS exponential loadings (upper)
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In the NS framework: the level loading is 1; the slope loading is (1− e−λtτ )/λtτ and the curvature
loading is (1− e−λtτ )/λtτ − e−λtτ , with λt = 0.0609. and τ denoting the time to maturities. Data:
monthly yield curves of China treasuries from March 2003 to October 2011, Datastream.

curves. It is worth mentioning that FPCA is different from the multivariate PCA
method. The former handles data as curves that correspond to infinite maturities,
while the latter considers data as points with multiple but finite maturities, see Müller
(2005).
Existing forecasting models are largely based on factor stationarity with a restrictive
model set-up. In the widely used Dynamic Nelson-Siegel (DNS) model (Diebold and
Li, 2006), the AR(1) specification for each of the three factors is shown to be superior
to many competitors, including the random walk model, the slope regression, the
Fama-Bliss forward rate regression (Fama and Bliss, 1987), the affine model (see Duffie
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and Kan, 1996; Egorov, Li and Ng, 2011), the vector autoregressive (VAR) models and
the error correction models (Engle and Granger, 1987). The DNS model, however,
ignores the structure changes and regime shifts that exist. This non-stationarity,
pushed into the factors via the static factor models, is apparent. Figure 2, for
example, displays the evolution over time of the resulting NS level factor extracted
from data based on the monthly U.S. Treasury yield curves, as in Diebold and Li
(2006). The sample autocorrelations are persistent, indicating the existence of non-
stationarity. This persistence is addressed in the literature on the non-stationarity of
interest rates. Hall, Anderson, Granger (1992) show that interest rates at different
maturities are co-integrated and driven by unit-root non-stationary factors. Bansal
and Zhou (2002) develop a model where the short rate and the market price of risks
are subject to regime shifts. Guidolin and Timmermann (2009) propose a regime-
switching VAR model for an aggregated forecast of U.S. short-term interest rates, in
which the aggregation weights shift between regimes. The question of the true source
of the persistence, however, remains. In fact, Diebold (1986) and Lamoureux and
Lastrapes (1990) note that the presence of structural breaks may result in misleading
inferences on a long memory diagnosis. The theoretical results in Diebold and Inoue
(2001) and Granger and Hyung (2004) further support that this phenomenon can also
be spuriously generated by a short-memory model with structural breaks or regime
shifts. More generally, Mikosch and St.aric.a (2004b) argue, independently of any
particular model assumptions, that non-stationarity in the data, such as changes in
the unconditional mean or variance, can create long-range dependencies. Such findings
led to the development of structural break detection methods (see, for example,
Chen and Gupta, 1997; Mikosch and Stărică, 2004a; Liu and Maheu, 2008), time-
varying coefficient models using either a Markov-switching approach (see Hamilton
and Susmel, 1994; So, Lam and Li, 1998) or using a smooth function of time or other
transition variables, (see Baillie and Morana, 2009; Scharth and Medeiros, 2009) as
well as local parametric models with a focus on volatility forecasting (see, for example,
Čížek, Härdle and Spokoiny, 2009). Chen, Härdle and Pigorsch (2010) propose a local
autoregressive (LAR) model, where the time-dependent parameters are estimated
under the assumption of local homogeneity. Although a stationary model such as
AR(1) fails to handle persistence, the LAR model is universally suitable for both
stationary and non-stationary time series. In the application of volatility forecasting
for the S&P500 index futures, the local model delivers superior forecasting accuracy to
several alternative models including long memory models and some regime-switching
models.
We propose a new methodology to adaptively forecast yield curves. First, the FPCA
method is used to extract dominant factors to represent the empirical features of
yield curves. Then the LAR(1) model is employed to forecast each of the resulting
factors, where the time-dependent parameters are estimated over an interval of
local homogeneity. The main contribution of our study is not developing a new
estimation method or exhibiting related theoretical results; it is to offer a data-driven
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Figure 2: The Nelson-Siegel level factor (upper) and its sample ACF plot (bottom)
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Data: monthly U.S. Treasury yield curves from January 1985 to December 2000, see also Diebold and
Li(2006).

technology that automatically selects a trustable stationary time interval to improve
the accuracy of yield curve forecasting. The application of this local method to the
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prediction of the U.S. and China yield curves is compared to its natural competitor,
the DNS model. A simulation study and empirical analysis demonstrate reasonable
performance, particularly for forecasting 6- and 12-months ahead yield curves.
A dynamic semiparametric factor model (DSFM) developed by Fengler, H¨ardle
and Mammen (2007) extracts dominant factors of functional data such as the
volatility surface via a weighted least squares approach. The DSFM is used in
the study of electricity forward curve dynamics, risk-neutral density estimation and
the dynamics of hourly electricity prices, see Borak and Weron (2008), Giacomini,
Härdle and Krätschmer (2009) and Härdle and Trück (2010), respectively. The
semiparametric method represents the evolution of data in a local interval controlled
by smoothing parameter(s). By contrast, our method addresses factor extraction and
non-stationarity separately. Using time-independent basis functions, it pushes all the
dynamics into the time series of the factors, simplifying computations.
The remainder of the paper is structured as follows. Section 2 describes the data.
Section 3 presents the proposed forecasting model, detailing the factor extraction by
FPCA and the LAR parameter estimation. Section 4 tests the performance of this
method in a practically oriented simulation study. Section 5 reports the real data
analysis and forecast comparison with the alternative model. Section 6 concludes.

2 Data

Two data sets are considered, the U.S. Treasury and the China Treasury. The U.S.
data consist of the end-of-month price quotes (bid-ask average) for U.S. Treasury,
from January 1985 to December 2000. There are 192 monthly interest rates at 17
maturities of 3, 6, 9, 12, 15, 18, 21, 24, 30, 36, 48, 60, 72, 84, 96, 108, and 120
months. The data is the same as in Diebold and Li (2006). The second set of data
are the end-of-month price quotes for China Treasury from March 2003 to October
2011. There are 104 monthly interest rates at 11 maturities of 3, 6, 12, 24, 36, 48, 60,
84, 96, 108 and 120 months.
The underlying yield curve, as a function of maturities, is not directly observable.
Parametric and nonparametric methods are available to estimate the yield curve based
on the observed discrete interest rates, among which nonparametric methods often
provide a better fit. Polynomial splines are the most popular nonparametric technique
used to estimate yield curves, see McCulloch (1971), Schaefer (1973), McCulloch
(1975), Vasicek and Fong (1982) and Shea (1985). The methods are sensitive to the
selection of smoothing parameters such as knots in splines. For the selection issues, we
refer to Jarrow, Ruppert and Yu (2004) and Fern´andez- Rodr´ýguez (2006), among
many others.
In our study, we use the B-splines smoothing technique to obtain the functional data.
Let xt(τ1, · · · , τq) be the discrete interest rates at time t, t = 1, · · · , T , that contains
q maturities. Use xt(τ) to denote the yield curve, a function of maturity τ ∈ R. The
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yield curves are estimated as

xt(τ) =
K∑
k=1

ctkφk(τ) = ct1φ1(τ) + · · ·+ ctKφK(τ),

where φ1(τ), · · · , φK(τ) are K basis functions. We refer to Ramsay and Silverman
(2005) to justify the selection of the number of basis functions. The coefficients
ct1, · · · , ctK are estimated by minimizing the penalized sum-of-squared errors

PENSSEλ = ‖xt(τ1, · · · , τq)− xt(Λ)‖2 + λ

∫
[D2xt(τ)]2dτ,

where xt(Λ) contains the function values of the smoothed curve at the discrete
maturities Λ = (τ1, · · · , τq), D2xt(τ) is the second derivative function of xt(τ) and
parameter λ is a smoothing parameter that controls the smoothness of the estimated
curve x̃t. We denote the L2 norm by ‖ · ‖. In Figure 3 and Figure 4, the smoothed
yield curves are displayed in both 3D and 2D views. The 3D plots capture the
movement of the yield curves as time goes by. At the same time, we have a clear
view of the structure and shape of the smoothed curves from the 2D plots. We
calculate the percentage errors across all maturities. By assessing the fitted percentage
errors, we easily see that the smoothed curves using B-splines serve as a reasonable
representation of the underlying yield curves because the average percentage errors
for all curves are 1.5309× 10−5 and 6.5702× 10−6 for the U.S. and China data sets,
respectively.
The smoothed curves are the functional data considered in the following sections.

3 Method
The FPCA method projects yield curves into the directions with the first few largest
variations, along which p-dimensional factors are extracted. In fact, the empirical
loadings in Figure 1 are obtained using FPCA. Using a linear transformation, any
form of non-stationarity in the yield curves is solely attributed to the time series
of the resulting factors. A time-varying autoregressive model is used to model and
forecast each of the factors, where the parameters are respectively estimated under
a local homogeneity assumption. That is, for any particular time point, there exists
a past time interval over which the data is represented well by an AR process with
constant parameters. It is analogous to the rolling window technique (with fixed
window size), though in the local model, the window size changes over time t. The
time intervals are identified in a data-driven way.

3.1 Extracting factors via FPCA
The yield curve is denoted as xt(τ) at time t ∈ [1, T ], which is a function of time
to maturities τ ∈ R. Without loss of generality, the yield curves are assumed to be
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Figure 3: Smoothed yield curves via B-splines in 3D(upper) and 2D (bottom) for U.S.
Treasury with 15 maturities: 3, 6, 9, 12, 18, 24, 30, 36, 48, 60, 72, 84, 96, 108 and 120
months, from January 1985 to December 2010. The 3D plot captures the movement
of the yield curves as time goes by, while the 2D plot provides an overall view of the
structure and shape of the smoothed curves.
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demeaned, i.e., E[xt(τ)] = 0. We apply FPCA to extract factors, giving

ft =
∫
ξ(τ)xt(τ)dτ, (1)
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Figure 4: Smoothed yield curves via B-splines in 3D(upper) and 2D (bottom) for
China Treasury with 11 maturities of 3, 6, 12, 24, 36, 48, 60,84, 96, 108 and 120
months, from March 2003 to December 2011.The 3D plot captures the movement of
the yield curves as time goes by, while the 2D plot provides an overall view of the
structure and shape of the smoothed curves.
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where ft denotes the factor and ξ the corresponding factor loadings. The solution
maximizes the variation of the respective factors ft such that

max 1
T

∑
t

f2
t = 1

T

∑
t

{∫
ξ(τ)xt(τ)dτ

}2
, subject to

∫
ξ2(τ)dτ = 1.
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Here, the factor loadings follow the unit-norm condition to guarantee a unique
solution. To obtain the other factors, the factor loadings are assumed to be orthogonal
with

∫
ξk(τ)ξm(τ)dτ = 0, for all k 6= m and k,m ≤ p, where p is the number of selected

factors.
The factor loadings are estimated through solving an eigen-decomposition. Define the
covariance of yield curves as

v(τ, s) = 1
T

∑
t

xt(τ)xt(s),

where τ ∈ R and s ∈ R. Figure 5 displays the sample covariance surfaces of the U.S.
and China Treasury yield curves respectively. Clearly, the covariance is larger when
maturities are closer together, and decays as maturities move farther apart. Factor
loading ξ(τ) is actually an eigenfunction of the covariance∫

v(τ, s)ξ(τ)dτ = ρξ(s), (2)

where ρ denotes the eigenvalue.
Ramsay and Silverman (2005) propose a solution for Equation (2). Express the
functional data x(τ) with K basis functions Φ(τ) = [φ1(τ), · · · , φK(τ)]ᵀ as

x(τ) =


x1(τ)
x2(τ)

...
xT (τ)

 =


∑K
k=1 c1kφk(τ)∑K
k=1 c2kφk(τ)

...∑K
k=1 cTkφk(τ)

 = CΦ(τ), (3)

where C is a T ×K matrix of coefficients. Formulate the weight function ξ(τ)
in a basis expansion with the same basis functions, but different coefficients, b =
(b1, · · · , bK)ᵀ, such that

ξ(τ) = Φᵀ(τ)b. (4)
Substituting the expansions, Equation (3) and Equation (4) into Equation (2), we
have

1
T

Φᵀ(s)CᵀC
∫

Φ(τ)Φᵀ(τ)dτb = ρΦᵀ(s)b.

Note that this equation applies for all values of s so we can drop Φᵀ(s). Defining a
K ×K matrix W =

∫
Φ(τ)Φᵀ(τ)dτ and a vector u = W1/2b, we have

1
T

W1/2CᵀCW1/2u = ρu,

and bᵀ
mWbm = 1, bᵀ

kWbm = 0 for k 6= m, where bm corresponds to the coefficient
vector of the mth eigenfunction ξm(τ). The eigenvalues ρ and eigenvectors u are
solvable for the K ×K matrix 1

T W1/2CᵀCW1/2. Consequently, we have

ξ(τ) = Φᵀ(τ)b, b = W−1/2u.
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Figure 5: The sample covariance surfaces of the yield curves of U.S. Treasury from
January 1985 to December 2000 (upper) and of China Treasury from March 2003 to
October 2011 (bottom).
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How many factors are needed to capture the dynamics of yield curves? In other
words, how do you select the number of factors, p. Litterman and Scheinkman
(1991) show that three factors are necessary for U.S. yield curves, with the factors
representing the level, slope and curvature, while Cochrane and Piazzesi (2005) and
Dai, Singleton and Yang (2004) show that up to five factors should be considered for
U.S. government bonds. Besides, Egorov et al. (2011) find four factors (two common
and two local) for the joint yield curves of U.S. and euro interest rates. In addition to
these qualitative selection, FPCA provides a natural quantitative selection criterion.
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According to Equation (2), the ith largest eigenvalue, ρi, associates with the variation
of yield curves defined by ξi(τ), i = 1, · · · ,K. Therefore, the cumulative proportion
of variation explained by all the p factors is

ρ1 + · · ·+ ρp
ρ1 + · · ·+ ρK

.

In our study, we select p = 3 factors. This selection is motivated by economic
meanings. However, more factors may be included should the cumulated sum of
the explained variation fall below 99%.

3.2 Fitting a local AR model to the factors
Since the model structure and estimation procedure are the same for all the selected
p factors, for notational simplicity we drop the subscript j of the factors fjt with
j = 1, · · · , p. Therefore, without loss of generality, {ft} now stands for the univariate
time series of any of the p factors. For each {ft} taking values in IR, the LAR
model of order 1, or LAR(1) model, is defined through a time-varying parameter set
θt = (θ0t, θ1t, σt)ᵀ:

ft = θ0t + θ1tft−1 + εt, εt ∼ (0, σ2
t ).

The estimation of the parameters is conducted under the assumption of local
homogeneity at each time t. Under local homogeneity, parameter θ is assumed to
not deviate substantially from constant in a local interval It = [t−mt, t), and hence
the data are (approximately) stationary. The local maximum likelihood estimator θ̂t
is defined over the local interval:

θ̂t = argmaxθ∈ΘL(It, θ)

= argmax
{
−mtlogσt −

1
2σ2

t

t−1∑
s=t−mt

(fs − θ0 − θ1fs−1)2
}
,

where Θ denotes the parameter space and L(It, θ) is the local log-likelihood function.
The local estimation method is different from the rolling window technique with a
globally constant window size. Here the local window size mt is time-dependent and,
in practice, unknown. The question is, of course, how to select the local interval
or the value of mt. Generally speaking, the optimal selection would be the longest
interval where the local homogeneity assumption holds; that is, the time series of
the factor can be described well by a model with constant parameters. Under that
assumption, long intervals provide accurate estimators with low variation. However,
as the interval length further increases, the local homogeneity assumption is likely
to be violated. This violation possibly leads to a large modeling bias. Therefore,
the optimal selection should be designed to balance the modeling bias and variance
tradeoff.
We employ an automatic procedure to select the intervals. At every time point, we
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start with a small sample size m0 that defines a local interval I(0)
t = [t−m0, t). The

value of m0 is small enough to ensure homogeneity, and where a conventional AR(1)
model has a reasonable fit. Iteratively, we increase the sample size to mk, with k > 0
and mk > mk−1, which defines a longer interval I(k)

t = [t−mk, t). Note that at this
moment, I(k−1)

t = [t−mk−1, t) has been accepted as an interval of homogeneity. We
then check for any deviation from homogeneity with a likelihood ratio:

T
(k)
t = L(I(k)

t , θ̂
(k−1)
t )− L(I(k)

t , θ̂
(k)
t ),

where θ̂(k−1)
t = argmaxθ∈ΘL(I(k−1)

t , θ),

θ̂
(k)
t = argmaxθ∈ΘL(I(k)

t , θ).

Note that θ̂(k−1)
t is an accepted estimate under local homogeneity in the interval

I
(k−1)
t . If the difference is small, indicating that the larger data sample displays
similar patterns to the smaller sample, then we accept the longer interval for an
improved accuracy of estimation. On the contrary, if the difference is large, it implies
modeling changes. We terminate the procedure to avoid substantial modeling bias.
The lastly-accepted interval would be the optimal choice. We continue this way until
either a change is suspected or the possibly longest interval is screened. Chen et al.
(2010) have a test to measure the significance level of the difference. We refer readers
to their work for further details.

4 Simulation
The proposed forecasting method involves two parts, extracting factors via FPCA
and forecasting in an LAR framework. In this section we investigate the performances
of the FPCA method in a practical simulation. For the performances of the time-
varying coefficient model, we refer to the work of Chen, Hardle, Pigorsch (2010). More
specifically, we study the describability of the FPCA method in two scenarios: 1) The
U.S. scenario where the yield curves are driven by NS exponential factor loadings, and
2) The China scenario where the empirical loadings (obtained by FPCA) are the true
data generating process. Both the FPCA and DNS methods are applied. The root
mean square error (RMSE) is used to assess the estimation accuracy for the estimated
yield curves.
In the U.S. scenario, yield curves are generated based on the monthly U.S. Treasury
from January 1985 to December 2000, following a DNS modeling framework:

xt(τ) = β1t + β2t

(
1− e−λtτ

λtτ

)
+ β3t

(
1− e−λtτ

λtτ
− e−λtτ

)
+ εt(τ), (5)

where λt = 0.0609 that maximizes the curvature loading at a medium maturity of 30
months, see Diebold and Li (2006). The factors βjt with j = 1, 2, 3 are the ordinary
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least squares (OLS) estimates and represent the level, slope and curvature of the
U.S. yield curves. In the simulation, we generate yield curves containing 17 yields
at maturities of 3 months to 10 years for t = 1, · · · , 192. The values of the factors
are considered to be known and the stochastic innovations εt(τ) are i.i.d. normal
random variables, with mean and standard deviations as calculated in Equation (5).
We repeat the process 500 times.
Analogously, the China scenario is designed according to the yield curves of China
Treasury from March 2003 to October 2011. The data consist of 104 monthly
observations with 11 maturities from 3 months to 10 years. The demeaned yield
curves are estimated via FPCA as

xt(τ) = f1tξ1(τ) + f2tξ2(τ) + f3tξ3(τ) + εt(τ),

where fjt refers to the resulting factor and ξj(τ) refers to the empirical factor loadings,
with j = 1, 2, 3. Again, the error term εt(τ) is assumed to be normally distributed.
The empirical factor loadings are depicted in Figure 1. In the simulation, we generate
104 curves, each including 11 interest rates. The process is also repeated 500 times.
Both the FPCA and DNS methods are used to extract factors. In the DNS modeling,
3 factors are extracted. In the FPCA, we also select 3 dominant factors, as they
explain more than 99% of the total variation for each case. The average values of
the accumulated proportion of the variance are 94.2%, 99.7% and 99.9% for the U.S.
scenario and 89.3%, 98.8% and 99.3% for the China scenario. The DNS exponential
factor loadings are fixed yet fail to represent the underlying structure of the data
in the China scenario. The FPCA loadings differ among different data sets. This
data-driven method adapts according to the actual dependence structure of the data.
In the U.S. scenario, the factor loadings replicate the exponential curves well, though
with different magnitudes. The scaling deviation is due to the demeaning process
and it has no impact on the yield curve forecasts as the mean process is added
back. In the China scenario, the empirical factor loadings are good proxies of the
underlying curves. As an illustration, we depict the FPCA factor loadings of one
randomly selected process for each of the scenarios in Figure 6. The results for the
other generated data processes behave in a similar way, and for space considerations
are omitted here.
The RMSEs of the fitted yield curves are computed. The smaller the value, the
higher the accuracy. Table 1 reports the average value of the RMSEs of the discrete
interest rates at various maturities. It reveals that the FPCA method is, indeed,
superior to the DNS model for most maturities. In the China scenario, the FPCA
works well for maturities between 1 and 10 years. Even in the U.S. scenario, the
FPCA performs better for 15 of the 17 maturities, with the 3-month and 10-year
maturities the exceptions. In relative terms, the FPCA method improves estimation
accuracy by approximately 16% in the U.S. scenario and 29% in the China scenario.
There is relatively poor forecasting accuracy for both the shortest and the longest
maturities (3 months and 120 months) due to the boundary effect of smoothing,
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a consequence of converting the original, but discrete, high dimensional data to
functional data. Without sufficient observations at the boundaries, we have low
accuracy in estimation at the boundary maturities. However, the results show that
overall FPCA performs better in both scenarios. It not only improves accuracy
but also captures the underlying pattern of data, whereas the alternative method
encounters mis-specification in the China scenario.

Table 1: Simulation results
U.S. scenario China scenario

Maturity DNS FPCA DNS FPCA
3 0.05 0.08 0.08 0.12
6 0.05 0.04 0.09 0.10
9 0.06 0.05 – –
12 0.07 0.07 0.09 0.06
15 0.08 0.05 – –
18 0.06 0.04 – –
21 0.04 0.04 – –
24 0.05 0.04 0.11 0.06
30 0.04 0.04 – –
36 0.06 0.04 0.08 0.08
48 0.06 0.05 0.09 0.08
60 0.08 0.05 0.10 0.03
72 0.07 0.07 – –
84 0.06 0.05 0.07 0.04
96 0.05 0.04 0.06 0.06
108 0.06 0.04 0.06 0.03
120 0.06 0.07 0.08 0.06

The average value of RMSEs for the fitted and actual interest rates are reported for the two scenarios.
Both the DNS and FPCA methods are used. The results with smaller errors are marked in bold to
highlight better accuracy.

5 Real data analysis

In this section, we implement the FPCA-LAR method to forecast the yield curves
of the U.S. Treasury and China Treasury. We investigate the performance of the
adaptive method relative to its natural competitor, the DNS model with an AR(1)
specification (Diebold and Li, 2006). Does the proposed forecasting method benefit
from using data-driven factor extraction and adaptive modeling? We assess the out-
of-sample forecasting accuracy of both methods to determine an answer. To forecast
yield curves using FPCA-LAR, at each time t, we apply FPCA to extract factors and
fit an LAR(1) model over the selected optimal intervals. The h−step ahead forecasts
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Figure 6: One realization of the FPCA factor loadings for both simulation scenarios
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In the U.S. scenario, the factor loadings well represent the underlying NS exponential curves (upper). In
the China scenario, the factor loadings are good proxies of the underlying curves displayed in Fig 1.

of the factors as well as the yield curves are

x̂t+h(τ) =
p∑
j=1

f̂j,t+hξj(τ),

where f̂j,t+h = θ̂0jt + θ̂1jtfj,t.
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To forecast using DNS, we first obtain the NS factors by Equation (5), for which the
parameters of the AR(1) model are estimated by using all the data available. The
h−step ahead forecasts are thus

x̂t+h(τ) = β̂1,t+h + β̂2,t+h

(
1− e−λtτ

λtτ

)
+ β̂3,t+h

(
1− e−λtτ

λtτ
− e−λtτ

)
,

where β̂j,t+h = θ̂0jt + θ̂1jtβj,t. We compute the 1-, 6- and 12-month ahead forecasts

Table 2: RMSFE: The average values of the out-of-sample forecast errors for the
forecasting horizons, h, of 1-, 6- and 12-month ahead for various maturities, τ , from
3 months to 10 years.

U.S. yield curves China yield curves
h 1-month 6-month 12-month 1-month 6-month 12-month
τ DNS F-L DNS F-L DNS F-L DNS F-L DNS F-L DNS F-L
3 0.17 0.24 0.56 0.38 0.87 0.48 0.29 0.31 0.99 0.74 1.11 0.68
6 0.20 0.23 0.61 0.44 0.86 0.54 0.28 0.30 0.99 0.75 1.11 0.69
9 0.22 0.24 0.64 0.49 0.86 0.57 - - - - - -
12 0.24 0.27 0.67 0.53 0.87 0.59 0.28 0.28 0.95 0.74 1.06 0.69
15 0.25 0.30 0.69 0.55 0.88 0.59 - - - - - -
18 0.26 0.31 0.71 0.57 0.90 0.60 - - - - - -
21 0.27 0.33 0.73 0.59 0.93 0.61 - - - - - -
24 0.28 0.34 0.76 0.60 0.97 0.62 0.28 0.25 0.89 0.75 0.96 0.68
30 0.28 0.38 0.76 0.61 1.00 0.62 - - - - - -
36 0.28 0.40 0.77 0.62 1.03 0.63 0.25 0.24 0.78 0.67 0.81 0.58
48 0.28 0.47 0.77 0.65 1.08 0.66 0.23 0.25 0.67 0.60 0.69 0.51
60 0.29 0.52 0.81 0.69 1.16 0.72 0.25 0.28 0.63 0.58 0.63 0.51
72 0.27 0.56 0.78 0.71 1.16 0.74 - - - - - -
84 0.27 0.56 0.77 0.71 1.17 0.75 0.23 0.29 0.57 0.56 0.57 0.48
96 0.26 0.59 0.74 0.73 1.15 0.78 0.21 0.29 0.54 0.55 0.53 0.45
108 0.25 0.61 0.74 0.75 1.17 0.81 0.19 0.28 0.50 0.52 0.51 0.41
120 0.26 0.62 0.76 0.75 1.22 0.82 0.19 0.30 0.46 0.49 0.47 0.39

The DNS model and the FPCA-LAR (F-L) method are employed.

for each of the U.S. curves from January 1994 to December 2000 and for China
from January 2008 to October 2011. We then perform recursive forecasting with an
extending window always starting from the first month. Take the U.S. data as an
example. We use the yield curves from January 1985 to December 1993 to obtain the
1-month ahead forecast for January 1994, and the data from January 1985 to July
1993 to get the 6-month ahead forecast for January 1994, and so on. We move forward
one period at a time and repeat the forecast until reaching the end of the sample.
Therefore, in order to obtain the 1-month (6-month) ahead forecast for February
1994, data curves from January 1985 to January 1994 (January 1985 to August 1993)
are utilized. In Figure 7 we depict the 1-, 6- and 12-month ahead out-of-sample
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forecasts against some maturities in July 1994 (U.S.) and in April 2010 (China).
For these two months, the yield curves display typical shapes in the market, e.g., a
double-humped shape in the China market. This illustrates that for both data sets
the FPCA-LAR method performs well for 6- and 12-month ahead forecasts, whereas
the DNS model provides accurate results only in the immediate forecast horizon. To

Figure 7: Out-of-sample forecasts
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The actual discrete interest rates (dotted), the DNS forecast (right) and the FPCA-LAR forecast (left) for
1-, 6- and 12-month-ahead horizons on dates July 1994 for U.S. market and April 2010 for China market.

measure forecast accuracy, we compute the root mean squared forecast error(RMSFE)
between the forecasts and the actual values. Table 2 reports the average values at
various maturities. The results also support the superiority of the proposed FPCA-
LAR model to the DNS model in the 6- and 12-month ahead forecasts, as shown by
the smaller forecasting error values.
The out-of-sample forecasting shows that the proposed FPCA-LAR method attains
overall better results than the DNS model. It demonstrates that forecasting yield
curves using the adaptive method is more flexible and accurate than the accepted
alternative. For some yield curves, particularly those from markets whose underlying
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data generation process deviates from exponential basis functions, the FPCA factors
are a better choice.

6 Conclusions
When forecasting yield curves, Diebold and Li (2006) propose the DNS model, which
performs well for U.S. yield curves. However, its accuracy depends on the NS factor
loadings, which are fixed and may misrepresent the underlying structure of the yield
curves. It is also observed that the NS factors are persistent, what the stationary
AR(1) process is unable to replicate. To counter these inadequacies, we propose the
FPCA-LAR model, which is data-driven and able to account for non-stationarity in
yield curves. For yield curves in U.S. and China markets, a simulation study and real
data analysis illustrate the good performance of the FPCA-LAR model in comparison
to the DNS model. In particular, the FPCA-LAR model improves the accuracy of
the 6-month ahead and 12-month ahead forecasts. The analysis also reveals that
FPCA-LAR is a flexible and adaptive approach, capable of capturing the underlying
structure of any type of yield curves in different markets. Especially, for data with a
data structure deviating from the exponential basis functions, the proposed method
is a better choice for forecasting.
In our study, we developed adaptive forecasting technique on the factors obtained
via FPCA. The technique can be also implemented for the factors based on the
DNS model, where forecasts are constructed by using NS-LAR combinations. For
the implementation, see Chen and Niu (2012). Moreover, we individually forecast
the U.S. Treasury and China Treasury yield curves, respectively, ignoring any cross
dependence between the two sovereign countries. Nevertheless, the cross dependence
is also of great interest to study. Among others, Benko, Härdle and Kneip (2009)
outline a common FPCA (CFPCA) method for modeling two or more time series of
functional data, a useful reference for future study.
Although we have focused extensively on forecasting yield curves, the proposed
method can be easily implemented in other economic research, such as forecasting
electricity prices (Weron, 2006), where there is an increasing availability of data, not
only large in size, but also in complexity.
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