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Abstract

We investigate the problem of setting revenue sharing rules in a team produc-

tion environment with a principal and two agents. We assume that the project

output is binary and that the principal can observe the level of agents' actual

e�ort, but does not know the production function. Identifying conditions that

ensure the e�ciency of the revenue sharing rule, we show that the rule of equal

percentage markups can lead to in�ation of project costs. This result provides

an explanation for project cost overruns other than untruthful cost reporting.
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1 Introduction

While revenue sharing in team production has been extensively studied since Holm-
strom's seminal work (1982), setting revenue sharing rules for project team production
has received less research attention. Project teams di�er from other types of produc-
tion teams in one key respect: they either succeed and �create a unique product,
service or result� (PMBOK 2004) or fail and yield nothing. The binary production
function of project teams is in stark contrast with one in Holmstrom (1982) that
is strictly increasing and concave in team members' e�orts. Whereas Holmstrom's
assumptions can explain e�ort undersupply by production team members, empirical
evidence suggests that project teams are often plagued with cost overruns (Flyvbjerg,
Holm, Buhl 2002; Yeo 2002). This phenomenon is explained by overstatement of ac-
tual e�ort by team members (Gensemer and Kanagaretnam 2004) or ine�ciency of
project execution.
In this paper we show how setting revenue sharing rules in projects in�uences the e�-
ciency of project execution. We argue that inappropriate incentive schemes motivate
project team members to not only overstate but actually exert higher e�ort than the
minimal required for the project to succeed. Such a behavior is called squandering
by Courtney and Marschak (2006) who analyze it in a non-project team production
setting.
Our framework consists of one principal and two team members as agents. This set-
ting replicates a business scenario where a two-division �rm is engaged in a project
with the �rm's CEO acting as the principal and the two divisions � the agents.
The principal is interested in maximizing total pro�ts and sets a rule for sharing the
project revenue between the agents. Each agent wants to maximize its pro�t and
decides how much e�ort to contribute to the project. This scenario implies that the
principal sets a revenue sharing rule before any project is formulated. Central and
a priori setting of revenue sharing rules enjoys a twofold rationale. First, setting a
�xed sharing rule eliminates the need for inter-team negotiation every time a new
project is undertaken, reducing contractual costs. Second, it ascertains procedural
justice (Robbins 1998) in the organization; therefore, ensuring the long term stability
of the �rm. Additionally, we measure e�ort as project expenses of each division and
assume that the �rm can compel both its divisions to report project costs truthfully
in order to focus on the oversupply of e�ort rather than overstatement of e�ort by
project team members.
The project succeeds if both agents provide some predetermined minimal e�ort that
is possibly di�erent for each agent. This assumption is valid in environments with
strong complementarity in agents' skills where project objectives can be achieved
with certainty. For example, a �rm needs two types of complementary expertise to
implement a new IT system: business skills to analyze processes, provide end-user
training and manage the organizational change, and technical skills to implement
the IT solution and guarantee its functionality, scalability and security; see Soejarto,
Goldman, Adams (2007). These two types of complementary expertise are usually
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supplied by di�erent project team members. The second condition � that project ob-
jectives are certainly achievable � is plausible under most circumstances (Yeo 2002).
However, the probability of the successful execution of a project also depends on the
industry and the task at hand. For instance, the risk of project failure is high in
cutting-edge research in the pharmaceutical industry. In such a setting a stochastic
framework with binary production functions is more appropriate (Kobayashi 2008;
Williams and Radner 1988).
We assume that the minimal e�ort thresholds are known to the agents but not to the
principal who can only observe the agents' e�orts and the �nal project output. The
information asymmetry inherent in our approach o�ers a new perspective for analyz-
ing production functions, compared with the standard contract theory in which the
principal knows the production function and is able to observe the project result, but
is unable to verify the agents' e�orts (Salanie 2005). A situation when only agents
know the minimal e�ort thresholds is encountered when (1) the principal (for exam-
ple, a CFO or CMO managing an IT project or an investor overseeing a construction
project) cannot assess the thresholds from past experiences and (2) the principal can-
not estimate threshold e�orts from the project value, because the project revenue is
driven by business bene�t, not by production cost. This happens when a project is
assigned to a team without a tender and in public sector projects when the level of
funding is decided by an election or when the project budget is assembled by obtain-
ing �nancing from many independent sources; see Flyvbjerg, Holm, Buhl (2002).
We consider only budget-balancing revenue sharing rules that guarantee that the
agents' revenue shares add up to 1. This assumption translates into the rule that
all project revenues must be allocated to lines of business. The principal wishes to
choose such a budget-balancing sharing rules that discourage agents from in�ating
project costs, further called e�cient rules. However, he also wishes to ensure equity
in dividing project revenues; see Ray (2007), Gensemer and Kanagaretnam (2004),
Fehr and Schmidt (1999), Fehr, Klein, Schmidt (2005). The most prevalent rule for
sharing revenues among project teams that produce joint output is called stand-alone
revenue-allocation according to which project revenues should be allocated to teams
in proportion to each team's incurred cost; see Horngren, Datar, Foster (2005). Sup-
ported by the equity theory (Robbins 1998), stand-alone revenue-allocation leads to
the equality of percentage markups among agents or relative equity. Equity can also
be shared in equal absolute markups or absolute equity (Gensemer and Kanagaretnam
2004).
The paper is organized as follows. In Section 2 we introduce a formal model of revenue
sharing in project teams. In Section 3 we identify the conditions for the e�ciency
of revenue sharing rules, analyze the properties of relative and absolute equity shar-
ing rules and prove that it is impossible to simultaneously achieve relative equity
and e�ciency. Section 4 relaxes some of the model assumptions and analyzes two
alternatives. First, we search for an e�cient sharing rule that best approximates rel-
ative equity. Second, we allow agents to do pre-project signaling. In Section 5 we
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summarize the results and provide practical recommendations for project managers.
Appendix A contains all proofs.

2 The model of project team production

Consider agents 1 and 2 who maximize their respective pro�ts Z1 and Z2 and a
principal who maximizes total pro�t Z1 + Z2. This setting re�ects the fact that
agents belong to the organization managed by the principal. Therefore in this case
principal maximizes his revenue net of costs generated by agents when sum of pro�ts
yielded by agents is maximized.
Assume that both the principal and the agents have pro�t reservation levels of zero.
The agents are engaged in a project that will either succeed and generate positive
revenue, normalized to 1, or fail and produce no revenue. In order for the project
to succeed, each agent's actual e�ort ni, i = 1, 2, must be greater than the minimal
e�ort pi > 0. Project revenue is [n1 ≥ p1][n2 ≥ p2], where [A] = 1 if A is true and 0
if it is false.
The game is played in two stages. First the principal sets a revenue sharing function
si(n1, n2) for each agent i without being able to observe any of the agent's minimal
costs pi. Next i-th agent learns both minimal e�ort thresholds p1 and p2 and chooses
its e�ort level ni. In the second step both agents play simultaneously.
The value of the function si(n1, n2) indicates the share of the project revenue allocated
to i-th agent, whose pro�t can be calculated as:

Zi = [n1 ≥ p1][n2 ≥ p2]si(n1, n2)− ni (1)

and the principal's pro�t is

Z1 + Z2 = [n1 ≥ p1][n2 ≥ p2]− n1 − n2. (2)

We assume that any revenue sharing functions s1(·) and s2(·) meet three conditions:

A1) si(·) is invariant to permutation of players: s1(a, b) = s2(b, a);

A2) all project revenue is shared: s1(a, b) + s2(a, b) = 1;

A3) si(·) guarantees pro�tability: s1(a, b) ≥ a ∧ s2(a, b) ≥ b.

We are interested in functions si(·) that guarantee that the principal's pro�t Z1 +Z2

is maximized and we will call such functions e�cient.

Corollary 1. A revenue sharing rule is e�cient i� in equilibrium:

(n1, n2) =
{

(p1, p2) for p1 + p2 ≤ 1
(0, 0) for p1 + p2 > 1

. (3)
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First notice that (n1, n2) = (0, 0) is always an equilibrium in the game. If one of the
players decides not to put any e�ort then the other player's best response is also to
set his e�ort level to 0. Therefore subsequently we will analyze only equilibria that
are di�erent from (0, 0).
Notice however, that under any budget-balancing sharing rule, i.e. meeting condition
A2, if p1 + p2 > 1 then (0, 0) is the only equilibrium. To see this assume that
(n1, n2) 6= (0, 0) is an equilibrium of the game. If n1 < p1 or n2 < p2 then project
would fail and at least one player would incur a loss, thus he would prefer to switch
to no-e�ort option. However if we assume that n1 ≥ p1 and n2 ≥ p2 then n1 +n2 > 1.
But this means that, due to budget balance restriction at least one Zi would be
negative, so again this player would switch to no e�ort.
Following Corollary 1 we will call a revenue sharing rule ine�cient if it is not e�cient.
Additionally when only one agent chooses minimal cost in the equilibrium (i.e. if for
some i we have ni = pi and n−i 6= p−i) we will call such a rule semi-e�cient.
The notion of sharing rule e�ciency leads us to the rationale behind assumption A3.
It implies that the point (n1, n2) = (p1, p2) can be an equilibrium in the game (later,
we show that it does not guarantee that it is an equilibrium). Taking into account
the e�ciency condition stated above, condition A3 must be met only for a + b ≤ 1.
However, as we have shown if a+b > 1 then the only equilibrium in the game is (0, 0),
so without loss of generality the condition a+ b ≤ 1 is omitted in A3.
Under A1-A3, we show that in fact the principal chooses a single revenue sharing
function s(ni, n−i) for both agents. The value of s(ni, n−i) indicates the share of the
project revenue allocated to i-th agent if his actual cost was ni and the other agent's
actual cost was n−i.

Theorem 1. Under the assumptions A1-A3 there exists a function s : [0; 1]2 → [0; 1]
such that si(n1, n2) = s(ni, n−i). Function s(·) has the following properties:

C1) s(a, b) + s(b, a) = 1;

C2) s(a, b) ≥ a;

C3) s(a, a) = 1
2 ;

C4) s(a, 1− a) = a;

C5) Its domain is the triangle {(a, b) : a, b > 0 ∧ a+ b ≤ 1}.

Under assumption of s(·) e�ciency we consider two equity criteria:

◦ Absolute equity of pro�ts Zi;

◦ Relative equity of percentage markups Zi/ni.

Equity is the principal's secondary objective; he strives to achieve it only after he
has reached e�ciency. Hence, in equilibrium Z1 + Z2 remains �xed. Without loss
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of generality, absolute and relative equity objectives can be de�ned as maximizing
min{Z1, Z2} and min{Z1/n1, Z2/n2}, respectively.
We analyze two additional properties of revenue sharing functions. A revenue sharing
function is sequence-proof if it yields the same equilibrium even when one agent moves
�rst. For example, Strausz (1996) shows that Holmstrom's (1982) results directly
depend on the assumption that agents act simultaneously. Similarly, a revenue sharing
function is knowledge-proof if an agent's optimal strategy does not depend on knowing
either the minimal cost or the e�ort level of the other agent. Knowledge-proof revenue
sharing functions are sequence-proof; the opposite is not true.

3 E�ciency of equity-assuring sharing rules

Let us de�ne the conditions for s(·) to guarantee e�ciency.

Theorem 2. A sharing function s(·) guarantees e�ciency for all admissible values
of p1, p2 i�

∀n1 ∈]p1; 1− p2] :
s(n1, p2)− s(p1, p2)

n1 − p1
≤ 1 (4)

∀n2 ∈]p2; 1− p1] :
s(p1, n2)− s(p1, p2)

n2 − p2
≥ −1 (5)

where one condition implies the other. Such a revenue sharing function is knowledge-
proof.

By Theorem 2, if a revenue sharing function is e�cient then the assumption about
symmetric information between agents is unnecessary. Therefore, an agent does not
need to know the other agent's minimal costs and we do not need to assume simulta-
neous acting for the subsequent results about e�cient revenue sharing rules to hold.
However, as shown later in Theorem 5, an agent's knowledge of the other agent's p−i

in�uences his strategy under ine�cient sharing functions.
Theorem 2 directly leads to the following conclusion:

Corollary 2. Di�erentiable sharing functions are e�cient i�

∂s

∂ni
≤ 1 and

∂s

∂n−i
≥ −1.

Additionally:

Theorem 3. If a sharing function s(·) guarantees e�ciency for all admissible values
of p1, p2 then:

n1 ≥ n2 ⇒ s(n1, n2) ≤
1
2

+ n1 − n2. (6)
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Applying the symmetry of sharing functions to Theorem 3 yields that if n1 ≤ n2 then
s(n1, n2) ≥ 1

2 + n1 − n2. This result forms the necessary condition for testing the
e�ciency of revenue sharing function.
The properties of revenue sharing rules that guarantee either absolute or relative
equity are summarized in the following theorems:

Theorem 4. Only s(ni, n−i) = 1
2 − (n−i − ni)/2 guarantees absolute equity. It is an

e�cient revenue sharing function, is knowledge-proof and is the only sharing function
linear with respect to its arguments.

Theorem 5. Only s(ni, n−i) = ni/(ni + n−i) guarantees relative equity. It leads to
the following equilibria in regions E, S1, S2 and I on Figure 1:

E�cient (E): ∀i : ni = pi when ∀i : pi ≥
√
p−i − p−i;

Semi-e�cient (Si): ni = pi ∧ n−i =
√
pi − pi when pi >

1
4 ∧ p−i <

√
pi − pi;

Ine�cient (I): ∀i : ni = 1
4 when ∀i : pi ≤ 1

4 .

It is sequence-proof, but not knowledge-proof.

We have shown that the absolute equity assumption guarantees e�cient outcomes.
Conversely, the relative equity sharing rule can lead to ine�ciency when minimal cost
of at least one agent is less than 1

4 of the project revenue. In the next section, we
will identify e�cient sharing rules that minimize deviations from the relative equity
requirement. We will also verify if changing the basic setup of the model can lead to
e�ciency of relative equity sharing rules.

Figure 1: Types of equilibria resulting from relative equity sharing rule

0 1

1

1
4

1
4

p1

p2

I

ES2

S1

Note: p1 and p2 denote minimal e�orts of agents, E denotes region of e�ciency of the sharing rule,

S1 and S2 denote regions of semi-e�ciency and I denotes region of ine�ciency.
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4 Relative equity approximation

Using Theorem 5 we can identify a simple rule guaranteeing e�ciency of relative
equity sharing rule:

Corollary 3. If pi ≥ 1
4 then relative equity revenue sharing function is e�cient and

knowledge-proof.

This �nding has an important implication for cost allocation regimes in �rms, espe-
cially for consulting �rms that achieve relatively high markups in their projects. In
order to avoid the in�ation of e�orts, the direct costs of the project should be aug-
mented with all possible indirect project costs. For example, project teams should
pay not only for wages of the project members, but also for the use of o�ce space and
general and administrative expenses. Such a policy increases individual pi, reducing
the risk of ine�ciency.
Reversing the problem, an optimal e�cient sharing rule that minimizes deviations
from relative equity also exists:

Theorem 6. An e�cient sharing function that ensures relative equity on area E and
maximizes relative equity outside of E has the following form:

s(n1, n2) =


n1

n1+n2
for (n1, n2) ∈ E

2
√
n1 − n1 − n2 for (n1, n2) ∈ S1

1 + n1 − 2
√
n2 + n2 for (n1, n2) ∈ S2

1
2 + n1 − n2 for (n1, n2) ∈ I

(7)

This function is knowledge-proof.

We have proven that within the basic setup for relative equity no e�cient sharing
function exists. Let's abandon the basic setup and verify if changing assumptions on
players' information sets and game dynamics can guarantee e�ciency of a relative
equity sharing rule. If the principal knows pi and abandons assumption A1, the
problem of relative equity can be readily solved.

Theorem 7. A revenue sharing function si(n1, n2) that guarantees relative equity
and e�ciency for all admissible values of p1, p2 assuming that the principal knows pi

has the form:

si(n1, n2) =
pi

p1 + p2
(1− n1 − n2) + ni. (8)

It does not meet assumption A1.

Notice that the above sharing function preserves budget balance even if agents would
not choose equilibrium actions.
A natural question arises if the principal can force agents to reveal their pi. Assume
that the agents play the game in two stages. In the �rst stage they are allowed to
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send a signal chosen from their communication set. For example they could inform
the principal about their expected costs. In this case their signal is a real number and
communication set is a set of nonnegative numbers. In the second stage they incur
the cost. Further we will denote the communication set of agent i is Ai (the set is
not restricted to any prede�ned type of signals).
The following impossibility theorem holds for a generalized revenue sharing function
g(ai, a−i, ni, n−i), where ai ∈ Ai, that ful�lls the budget balancing condition:

Theorem 8. No e�cient, budget-balancing generalized revenue sharing function g(·)
exists that guarantees relative equity in equilibrium for all admissible values of p1, p2.

This implies that the principal cannot extract any information about pi from agents
if the budget balancing condition holds. In other words signals ai have no credibility.
Nevertheless, note that the required revenue sharing functions exist when budget
breaking is allowed:

Theorem 9. The generalized revenue sharing function g(ai, a−i, ni, n−i) =
ni

n1 + n2
[ai = n−i][a−i = ni], ai ∈ [0; 1] guarantees relative equity and e�ciency.

The result from Theorem 9 implies that agents audit each other. Unfortunately, this
sharing function is very sensitive to audit errors. Even a minute misestimation of the
other agent's p−i will directly lead to zero revenues for both agents.

5 Concluding remarks

We have investigated the problem of revenue sharing in project teams in a principal-
multiagent setting where the principal can observe the agents' e�ort, but does not
know minimal costs that agents have to incur in order for a project to succeed. This is
an alternative approach to the standard contract theory where production function is
assumed known, but agents' e�orts are unobservable. Theorem 2 provides the neces-
sary and su�cient conditions for a revenue sharing rule to motivate agents to provide
socially optimal e�orts. We found that under e�cient revenue sharing functions, it
is irrelevant whether agents act sequentially or whether they know each other's mini-
mal costs. Theorem 4 characterizes unique sharing function that guarantees absolute
equity. It is e�cient and knowledge-proof. According to Theorem 5 there also exists
unique sharing function that guarantees relative equity. It is sequence-proof but it is
not e�cient.
Ine�cient revenue sharing rules can lead to in�ation of project costs. Such ine�cien-
cies in project execution complement untruthful cost reporting as explanations for
project costs overruns. We have shown that absolute equity guarantees e�ciency. On
the other hand, relative equity can lead to cost overruns if at least one of the agents
has a low e�ort threshold. Theorem 6 identi�es an e�cient revenue sharing function
that best approximates the relative equity rule. If the principal knows the production
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function, he can guarantee both relative equity and e�ciency. Nevertheless, no pre-
project signaling scheme enables the principal to learn the production function from
agents so long as budget balancing and relative equity are assumed. If the budget
balancing requirement is removed, such a solution exists and can yield relative equity
and e�ciency at the same time.
Our research has following managerial implications. First, it shows how inadequate
motivation schemes can contribute to cost overruns in projects. Second, for managers
who desire relative equity, high-margin projects all indirect costs should be added to
the direct cost of the project. This increases minimal e�ort thresholds and reduces
the incentive to squander. Last, as we show that contractual only arrangements are
in general insu�cient, managers should try to approximate the project production
function by gaining expertise in the project �eld, by using independent auditors or
by running tenders.

Appendix A

Proof of Theorem 1. By de�nition, s(a, b) = s1(a, b) and s(a, b) = s2(b, a). Using
property A1, we get s1(a, b) = s2(b, a), so s(·) is properly de�ned. Let us now verify
the properties C1-C5:

C1) s(a, b) + s(b, a) = s1(a, b) + s2(a, b) = 1;

C2) s(a, b) = s1(a, b) ≥ a;

C3) s(a, a) = s(a,a)+s(a,a)
2 = 1

2 ;

C4) Combining s(a, 1− a) = 1− s(1− a, a) ≤ a with the condition s(a, 1− a) ≥ a,
we get s(a, 1− a) = a;

C5) Combining 1 = s(a, b) + s(b, a) ≥ a + b with the assumption that a, b > 0, we
get the required domain;

Proof of Theorem 2. First, we will show that it is a necessary condition. Assume that
for some p1, n1, p2 meeting the criteria from the theorem, the inequality does not hold.
Assume that the �rst player has minimal cost p1 and second player cost p2. Consider
that �rst player compares option to either show cost p1 or some higher cost n1.
Because n1 > p1 and by assumption s(·) is e�cient, we must have s(p1, p2) − p1 ≥
s(n1, p2)− n1. By rearranging terms we get s(n1,p2)−s(p1,p2)

n1−p1
≤ 1. A contradiction to

the assumption. So the condition from the theorem is necessary.
Similar argument works for showing the su�ciency. Assume that the �rst player has
minimal cost p1 and second player cost p2. Consider any n1 > p1. By the assumption
s(n1,p2)−s(p1,p2)

n1−p1
≤ 1, hence s(p1, p2) − p1 ≥ s(n1, p2) − n1 and the �rst player shall
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choose p1 in this game. The condition is su�cient.
By substituting s(a, b) = 1− s(b, a) we directly get the second equation.
Notice that in the derivation of the equilibrium, no assumption on the values of p2 or
n2 was made. Therefore, such a revenue sharing function is knowledge-proof.

Proof of Theorem 3. We have s(n2, n2) = 1
2 . Substitute this into the inequality in

the Theorem 2, getting
s(n1,n2)− 1

2
n1−n2

≤ 1. After rearrangement, this yields the required
condition.

Proof of Theorem 4. Let us check if it is a proper revenue sharing function:

C1) s(n1, n2) + s(n2, n1) = 1
2 −

n2−n1
2 + 1

2 −
n1−n2

2 = 1;

C2) 1 ≥ n1 + n2 ⇔ 1
2 −

n2−n1
2 ≥ n1 ⇔ s(n1, n2) ≥ n1;

C3) s(n1, n1) = 1
2 −

n1−n1
2 = 1

2 ;

C4) s(n1, 1− n1) = 1
2 −

1−n1−n1
2 = n1.

The total pro�t from the project is 1− (n1 + n2) and the pro�t of i-th player is:

s(ni, n−i)− ni =
(

1
2
− n−i − ni

2

)
− ni =

1
2
− n−i + ni

2
(9)

it is exactly a half of total pro�t. Observe that:

s(n1, p2)− s(p1, p2)
n1 − p1

=
1
2 −

p2−n1
2 − 1

2 + p2−p1
2

n1 − p1
=

1
2
≤ 1 (10)

thus the revenue sharing function is e�cient and knowledge-proof, by the Theorem 2.
Lastly, we demonstrate that this is the only revenue sharing function linear with
respect to its arguments.
Consider a revenue sharing function s(a, b) = α + β1a + β2b. Because s(a, a) = 1

2
we get α + (β1 + β2)a = 1

2 . Rearranging, we get β2 = −β1 and α = 1
2 . This

yields s(a, b) = 1
2 + β1(a − b) and s(a, 1 − a) = 1

2 + β1(a − (1 − a)) = a. Hence,
1
2 − β1 = a(1− 2β1). Which yields desired result β1 = 1

2 .

Proof of Theorem 5. Let us check that it is a proper revenue sharing function:

C1) s(n1, n2) + s(n2, n1) = n1
n1+n2

+ n2
n1+n2

= 1;

C2) n1 + n2 ≤ 1⇒ s(ni, n−i) = ni

n1+n2
≥ ni;

C3) s(ni, ni) = ni

ni+ni
= 1

2 ;

C4) s(ni, 1− ni) = ni

ni+1−ni
= ni.
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The margin Zi/ni is equal for each player:

Zi

ni
=
s(ni, n−i)− ni

ni
=

ni

ni+n−i
− ni

ni
=

1
ni + n−i

− 1. (11)

Consider the optimization problem of the i-th player:

Zi = ni

ni+n−i
− ni → max

subject to

ni ≥ pi

(12)

The FOC in this problem is n−i = (ni + n−i)2. Solving this, we get that ni =√
n−i−n−i (notice that it is a maximum). Taking into account the budget balancing

constraint, we get ni = max{pi;
√
n−i − n−i}. Notice that

√
n−i − n−i ≤ 1

4 .
In the equilibrium we get: {

n1 = max{p1;
√
n2 − n2}

n2 = max{p2;
√
n1 − n1}

(13)

If pi ≥ 1
4 then: {

ni = pi

n−i = max{p−i;
√
pi − pi}

(14)

Thus the solution is unique. It is e�cient if and only if p−i ≥
√
pi − pi.

Now assume that max{p1, p2} < 1
4 . Under this assumption

√
pi − pi > pi. First

we will show that ni > pi. Assume the converse, ie. ni = pi. Then we get that
pi ≥

√
n−i−n−i. But n−i = max{p−i,

√
pi−pi} ≥ max{p−i, pi} ≥ pi, so pi ≥

√
pi−pi.

A contradiction. Thus ni > pi. This leaves us with the equations:{
n1 =

√
n2 − n2

n2 =
√
n1 − n1

(15)

By adding them we get n1 = n2, so ni = 1
4 .

The strategy of the i-th player depends on the knowledge of the minimum cost of
player −i. Therefore, this revenue sharing function is not knowledge proof. It is
sequence proof, though.
Without loss of generality, we can assume that the agent 1 moves �rst. From the
earlier analysis, we see that the agent 2's response will be n2 = max{p2,

√
n1 − n1}.

Therefore, agent 1 will face following optimization problem:

n1
n1+max{p2,

√
n1−n1} − n1 → max

subject to

n1 ≥ p1

(16)
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If p2 ≥ 1
4 we get n2 = p2. In this case, we get exactly the same result as in the

simultaneous game. If p2 <
1
4 and p1 ≥ 1

4 we get n1 = p1. This leads to the same
equilibrium. Lastly, assume that pi <

1
4 :

n1

n1 + max{p2,
√
n1 − n1}

− n1 ≤
n1

n1 +
√
n1 − n1

− n1 =
√
n1 − n1 ≤

1
4
.

The equality above holds only for n1 = 1
4 . Hence, in equilibrium n1 = n2 = 1

4 , which
is the same solution as in simultaneous game.

Proof of Theorem 6. In the region E relative equity must be ensured, so ∀(n1, n2) ∈
E : s(n1, n2) = n1

n1+n2
.

The proof will be done in two steps. Firstly, we will separately �nd revenue sharing
rules that maximize relative equity and meet necessary conditions for e�ciency in
regions I and Si. Secondly, we will show that taken together, they form a revenue
sharing rule that guarantees e�ciency.
Let us analyze possible values revenue sharing function in I with assumption n1 ≥ n2.
By Theorem 3, we get the that necessary condition for e�ciency, s(n1, n2) ≤ 1

2 +n1−
n2, must be met. Take α ≥ 0:

min
{
Z1

n1
,
Z2

n2

}
= min

{ 1
2 − n2 − α

n1
,

1
2 − n1 + α

n2

}
=

=
1
2 − n2 − α

n1
+ min

{
0,

(n1 − n2)( 1
2 − n1 − n2) + α(n1 + n2)

n1n2

}
.

In region I, we have n1 + n2 ≤ 1
2 and the relative equality is maximized when α = 0.

Therefore, in this area s(n1, n2) = 1
2 + n1 − n2 minimizes inequality. For area I,

with assumption n1 ≤ n2, we have s(n1, n2) = 1 − s(n2, n1), such that s(n1, n2) =
1
2 + n1 − n2.
Now take an arbitrary point (n1, n2) ∈ S1. It must meet conditions n1 > 1

4 and
n2 <

1
4 . The point (n1, n̂2) = (n1,

√
n1 − n1) ∈ E lies on the boundary of region S1.

By Theorem 2, we get:

s(n1, n̂2)− s(n1, n2)
n̂2 − n2

≥ −1⇒ s(n1, n2) ≤ 2
√
n1 − n1 − n2.

For α ≥ 0:

min
{
Z1

n1
,
Z2

n2

}
= min

{
2
√
n1 − 2n1 − n2 − α

n1
,
1− 2

√
n1 + n1 + α

n2

}
=

=
2
√
n1 − 2n1 − n2 − α

n1
+ min

{
0,

(n1 + n2 −
√
n1)2 + α(n1 + n2)
n1n2

}
.
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The relative equity is maximized when α = 0. Thus in region S1, the relative equity
maximizing revenue sharing function has the form s(n1, n2) = 2

√
n1 − n1 − n2.

Next, notice that if (n1, n2) ∈ S2 then (n2, n1) ∈ S1 and s(n1, n2) = 1 − s(n2, n1) =
1 + n1 − 2

√
n2 + n2.

We have identi�ed the formulas for the revenue sharing function in regions E, I,
S1 and S2. Let us show, that the resulting function is an e�cient revenue sharing
function.
The veri�cation of conditions C1, C2 for regions E and I, C3, C4 and C5 is immediate.
In order to �nish the proving, that the proposed function is a proper revenue sharing
function, let us notice that condition C2 is met for region S1:

2
√
n1 − n1 − n2 ≥ 2

√
n1 − n1 − (

√
n1 − n1) =

√
n1 ≥ n1

and S2:
1 + n1 − 2

√
n2 + n2 ≥ 1−

√
n2 + n1 ≥ n1.

By Corollary 2, in order to show that the function is e�cient, it is enough to check two
conditions: continuity and derivative with respect to n1. Continuity of the function
on junction between E and Si regions is guaranteed by the construction. Continuity
on junction between regions I and S1 is readily veri�ed as both formulas yield 3

4 −n2

there. Similarly, on I and S2 junction we get 1
4 + n1.

To �nish the proof, we have to verify that the derivative over n1 in each region is less
or equal to 1. We get:

∂s(n1, n2)
∂n1

=


n2

(n1+n2)2
for (n1, n2) ∈ E

1√
n1
− 1 for (n1, n2) ∈ S1

1 for (n1, n2) ∈ S2

1 for (n1, n2) ∈ I

.

In regions I and S2 the condition is trivially met. In region S1 the derivative is less
than 1√

1
4

− 1 = 1. In region E we have n1 ≥
√
n2 − n2 thus:

n2

(n1 + n2)2
≤ n2

(
√
n2 − n2 + n2)2

= 1.

By Theorem 2, the function is knowledge-proof.

Proof of Theorem 7. Notice that ∂si

∂ni
= 1− p1

p1+p2
≤ 1 and the function is e�cient.

In the equilibrium, we get si(p1, p2) = p1
p1+p2

(1 − (p1 + p2)) + p1 = p1
p1+p2

and the
relative equity is assured.
However, in general s1(n1, n2) 6= s2(n2, n1), so assumption A1 is not met.

Proof of Theorem 8. Assume that such a function exists. Consider two (p1, p2) pa-
rameter settings: (0.1, 0.3) and (0.2, 0.3).
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Denote the equilibrium for the �rst pair as (ϑ1, ϑ2, 0.1, 0.3) and for the sec-
ond pair as (σ1, σ2, 0.2, 0.3). Because of the relative equity assumption, we get:
Z1(ϑ1, ϑ2, 0.1, 0.3) = 0.15 and Z2(σ1, σ2, 0.2, 0.3) = 0.3.
As (σ1, σ2, 0.2, 0.3) is an equilibrium, we must have ∀γ ∈ A2 : Z2(σ1, γ, 0.2, 0.3) ≤ 0.3.
By budget-balancing condition, we get ∀γ ∈ A2 : Z1(σ1, γ, 0.2, 0.3) ≥ 0.2. This im-
plies that by choosing σ1 player 1 guarantees himself Z1 ≥ 0.2 no matter what player
2 does and no matter what his p1 is. However, then (ϑ1, ϑ2, 0.1, 0.3) cannot be an
equilibrium. A contradiction.

Proof of Theorem 9. First analyze a subgame for a1 ≥ p2 and a2 ≥ p1 �xed. We get
that the optimal play is ni = a−i. Notice that a−i

ai+a−i
is maximized when ai = p−i,

so in equilibrium ni = a−i = pi.

Acknowledgements

The useful comments from the anonymous referee are gratefully acknowledged.

References

[1] Courtney D., T. Marschak (2006), Shirking and Squandering in Sharing Games,
Topics in Theoretical Economics, Vol. 6 (1), pp. 1-33

[2] Gensemer S., K. Kanagaretnam (2004), Alliances and Cost Declaration, Man-
agerial and Decision Economics, Vol. 25 (3), pp. 121-136

[3] Fehr E., K.M. Schmidt (1999), A Theory of Fairness, Competition, and Cooper-
ation, The Quarterly Journal of Economics, Vol. 114 (3), pp. 817-868

[4] Fehr E., A. Klein, K.M. Schmidt (2005), Fairness and Contract Design, GESY
Discussion Paper No. 67

[5] Flyvbjerg B., M.S. Holm, S. Buhl (2002), Underestimating Costs in Public Works
Projects, Error or Lie, Journal of the American Planning Association, Vol. 68
(2), pp. 279-295

[6] Holmstrom B. (1982), Moral Hazard in Teams, The Bell Journal of Economics,
Vol. 13 (2), pp. 324-340

[7] Horngren C.T., S.M. Datar, G. Foster (2005), Cost Accounting: A Managerial
Emphasis, Pearson Prentice Hall

[8] Kobayashi H., K. Ohta, T. Sekiguchi (2008), Optimal Sharing Rules in Repeated
Partnerships, Discussion Paper No. 650, Kyoto Institute of Economic Research

15 Bogumiª Kami«ski, Maciej �atek
CEJEME 2: 1-16 (2010)



Bogumiª Kami«ski, Maciej �atek

[9] PMBOK (2004), A guide to the project management body of knowledge: PMBOK
guide, 3rd ed., Project Management Institute Inc.

[10] Ray D. (2007), Inequality and Ine�ciency in Joint Projects, The Economic Jour-
nal, Vol. 117 (522), pp. 922-935

[11] Robbins S.P. (1998), Organizational behavior: concepts, controversies, applica-
tions, 8th ed., Prentice-Hall

[12] Soejarto A., M. Goldman, C. Adams (2007), Key Issues for Consulting and So-
lution Implementation Services, Gartner Inc., ID Number: G00147425

[13] Salanie B. (2005), The Economics of Contracts, The MIT Press

[14] Strausz R. (1996), Moral Hazard in Sequential Teams, Discussion paper No.
1996/27, FU-Berlin

[15] Williams S.R., R. Radner (1988), E�ciency in Partnership when the Joint Out-
put is Uncertain, AT&T Labs Discussion Paper No. 760

[16] Yeo K.T. (2002), Critical failure factors in information system projects, Interna-
tional Journal of Project Management, Vol. 20 (3), pp. 241-246

Bogumiª Kami«ski, Maciej �atek
CEJEME 2: 1-16 (2010)

16


	Introduction
	The model of project team production
	Efficiency of equity-assuring sharing rules
	Relative equity approximation
	Concluding remarks

