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Abstract
The paper deals with multiple soft fault diagnosis of analogue circuits. A method for diagnosis of linear
circuits is developed, belonging to the class of the fault verification techniques. The method employs a
measurement test performed in the frequency domain, leading to the nonlinear least squares problem. To
solve this problem the Powell minimization method is applied. The diagnostic method is adapted to real
circumstances, taking into account deviations of fault-free parameters and measurement uncertainty. Two
examples of electronic circuits encountered in practice demonstrate that the method is efficient for diagnosis
of middle-sized circuits. Although the method is dedicated to linear circuits it can be adapted to multiple
soft fault diagnosis of nonlinear ones. It is illustrated by an example of a CMOS circuit designed in a
sub-micrometre technology.
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1. Introduction

Fault diagnosis of analogue circuits is of great importance for design validation and has been
an active research topic leading to numerous publications, e.g. [1–38]. Generally, the diagnosis
includes detection of faulty circuits, location of faulty elements and evaluation of their param-
eters. A fault is said to be soft or parametric if a parameter value is drifted from the tolerance
range, but does not lead to some topological changes. If a fault is open or short it is called hard
or catastrophic one. Although the fault diagnosis has been of considerable interest for the past
decades, there is no all-purpose procedure for diagnosing analogue circuits.

The methods dedicated to the soft fault diagnosis usually employ the simulation-after-test
approach, where circuit simulations take place after any diagnosis. They are based on measure-
ments of the voltages at accessible nodes, enabling to create a system of equations with the
tested parameters as unknown variables. In real electronic circuits these equations are nonlinear.
A wide variety of concepts, methods, and techniques have been developed for soft fault diagnosis
of analogue circuits, e.g.: the Woodbury formula for matrix theory [27], support vector machine
[20, 25], linear programming [28], neural networks [1, 12, 16, 21], fuzzy logic approach [4, 13],
wavelet transforms [1, 3], frequency response function [22], V-transform of polynomial coeffi-
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cients [26], evolutionary algorithm [16–17], Voltera series [8], statistical methods [23]. Several
papers focused on multiple soft fault diagnosis of IC parameters, e.g. [30, 32].

In the field of fault diagnosis of analogue circuits the fault verification concept has been com-
monly used. The fault verification technique is based on the hypothesis that some of the circuit
parameters are faulty and the others are either nominal or within their tolerance ranges. Next, this
hypothesis is verified taking into account the results of measurements performed during the test
phase. The number of the measurement data points can exceed the number of the parameters. For
the last decades different fault verification techniques have been applied for soft and hard fault
diagnosis in linear and nonlinear analogue circuits, e.g. [5, 7, 24, 30, 32]. Numerous works in the
diagnosis area are devoted to the case when just one element is faulty, e.g. [6, 14, 35, 37–38].

The main result of this paper is a new verification method for the multiple soft fault diagnosis
of linear analogue circuits. Unlike many other approaches in this field, the method does not
require to know any derivatives and, in consequence, to perform sensitivity analyses of the circuit.
It is reliable and easy to implement. During the measurement test, rms values of voltages at some
nodes accessible for measurement are determined at different values of frequency. In the post-
test stage, minimization without gradients of an error function is performed using the Powell’s
algorithm [39–40]. The method is efficient for the diagnosis of middle-sized linear circuits. It
can be extended to nonlinear circuits including CMOS circuits designed in a sub-micrometre
technology.

2. Main idea of presented method

Let us consider a linear AC circuit with n parameters considered as potentially faulty, having
one input node accessible for excitation and N output nodes accessible for measurement. To
arrange the diagnostic test we apply a function generator to the input and measure the rms values
V (l)(ω), l = 1, . . . , N, of the output voltages at different values of frequency. Let us choose J
angular frequencies ω1, . . . , ωJ and read the rms values of V (l)(ωm), m = 1, . . . , J; l = 1, . . . , N,
labelled V̂ (l)

m . Since each of them depends on frequency ω and parameters p1, . . . , pn, we write:

V̂ (l)
m =V (l)(ωm, p), m = 1, . . . , J, l = 1, . . . , N, (1)

where p = [p1 · · · pn]
T and T denotes transposition. To find the parameters p1, . . . , pn fitting the

functions V (l)(ωm, p) to the measured data points V̂ (l)
m , for m = 1, . . . , J and l = 1, . . . , N, we

minimize the sum of the squares of errors between V̂ (l)
m and V (l)(ωm, p):

f (p) =
N

∑
l=1

J

∑
m=1

(
V̂ (l)

m −V (l)(ωm, p)
)2

. (2)

Several minimization methods can be used to solve this nonlinear least squares problem, in-
cluding the gradient descent method and the Gauss-Newton method. Unfortunately, the above
mentioned methods require partial derivatives (gradients) of the functions V (l)(ωm, p) with re-
spect to the parameters p1, . . . , pn. To find the derivatives the sensitivity analyses of the circuit
under test must be carried out at each iteration. This is a time-consuming task. To overcome this
drawback a minimization method without gradients should be applied and the Powell’s method
[39–40] is the one which satisfies this demand. It is an efficient technique that enables solving the
nonlinear least squares problem and does not require to know any derivatives. The main idea of
the Powell’s method is as follows. Starting from an initial guess p(0) the minimum of a function
f (p) is searched. For this purpose the next iteration p(1) is generated by proceeding successively
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along each of n base vectors. In any case f is a function of one variable and the minimization can
be performed using e.g. the Fibonacci method (see the Appendix). This method is fast, efficient
and easy to implement. The iteration is then repeated leading to a sequence p(1), p(2), . . .. While
running this procedure the direction vectors are modified and some improving steps are added.
The details are presented in Section 3.

The described approach enables to diagnose circuits in some idealized conditions. It ignores
variations of the parameters which are not tested, influence of the self-heating, and measurement
uncertainty. To adapt the method to real circumstances we replace the fixed measurement volt-
ages V̂ (l)

m , m = 1, . . . , J, l = 1, . . . , N, with some ranges around V̂ (l)
m . Next, we create M sets of

the voltages, each consisting of JN elements, by random selection from the ranges, assuming a
uniform distribution. For each of the sets the Powell method is applied, taking into account the
previous results, leading to some ranges of the parameter values. As a result intervals [p−j , p+j ],
j = 1, . . . , n of the parameter values are obtained rather than single values.

A sketch of the proposed algorithm:
1. Choose a number n of the potentially faulty elements which are to be tested, a number N

of the measurement nodes and a number J of frequencies, so that JN is much greater than
n. Pick convergence tolerances ε , µ , a number of iterations η defined in Section 3, and a
number M of sets of the voltage values.

2. Perform the diagnostic test and determine the voltage values V̂ (l)
m , m = 1, . . . , J; l =

1, . . . , N.
3. Minimize the error function f (p) using the Powell’s method, finding the parameter values

p1, . . . , pn of the tested elements.
4. Create M sets of the voltage values around V̂ (l)

m and for each of them apply the Powell
method considering the result of Step 3. Create the intervals [p−j , p+j ] for j = 1, . . . , n.

3. Minimization procedure using Powell’s method

To make the Powell’s method [39–40] efficient for the fault diagnosis some modification of
a set of the base vectors is introduced.

Let p(0) be an initial guess at the location of the minimum of the function f (p), ck = [0 · · · 0 ck
0 · · · 0]T, where ck = 0.1pnominal

k , k= 1, . . . , n, be a set of the base vectors, u1, . . . , un be direction
vectors initially equal to c1, . . . , cn, respectively, and i = 0. A vector p(0) consists of nominal
values of the parameters.
Step 1
Set q0 = p(i).
Step 2
For k = 1, . . . , n find the value of λk that minimizes f (qk−1 +λkuk) and set qk = qk−1 +λkuk.
Step 3
Let ∆ fk = f (qk)− f (qk−1) for k = 1, . . . , n. Find the subscript r so that |∆ fr|= max(|∆ fk|) and
ur is the direction of the maximum decrease over all the direction vectors in Step 2.
Step 4
Set i := i+1.
Step 5
If f (2qn −q0)≥ f (q0) or
2( f (q0)−2 f (qn)+ f (2qn −q0))( f (q0)− f (qn)−|∆ fr|)2 ≥ |∆ fr|( f (q0)− f (2qn −q0))

2 ,
then set p(i) = qn and return to Step 1. Otherwise, proceed to Step 6.
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Step 6
Set ur = qn −q0.
Step 7
Find λ that minimizes f (q0 +λur) and set p(i) = q0 +λur.
Step 8
Repeat Steps 1 through 7.

Stopping criteria are:

√√√√√ n

∑
j=1

 p(i)j − p(i−1)
j

p(i)j

2

≤ ε and

∣∣∣ f (p(i))− f (p(i−1))
∣∣∣

f (p(i))+ f (p(i−1))
≤ µ , where ε and

µ are convergence tolerances. If the number of iterations exceeds the maximum value β , the
process is terminated.

Note: while running the Powell’s method numerous functions of one variable are minimized.
This task can be efficiently solved using the Fibonacci method whose short description is pre-
sented in the Appendix.

4. Numerical examples

To illustrate the method described in Sections 2 and 3 we consider two numerical examples.
The diagnosed circuits are shown in Figs. 1 and 2, where nominal values of the parameters are
shown. All the operational amplifiers included in the circuits are characterized by a linear model
consisting of an input resistor 100 kΩ, an output resistor 100 Ω, and a voltage-controlled current
source with a magnification coefficient equal to 1000 A/V. The computations were executed on a
PC with an Intel (R) Core (TM) i7-6700 processor. The diagnostic procedure was implemented
in the DELPHI programming environment.

Example 1
Let us consider the benchmark Sallen-Key bandpass filter [9] shown in Fig. 1. The circuit

was built using a general-purpose operational amplifier LM741 operating in the dual supply
mode and was laboratory tested using the measurement system consisting of a digital multi-
meter and a Tektronix AFG3022 function generator. In the fault-free circuit the actual values of
parameters were as follows: R1 = 10.06 kΩ, R2 = 19.97 kΩ, R3 = 10.04 kΩ, R4 = 10.03 kΩ,
R5 = 10.01 kΩ, C1 = 150.3 nF, C2 = 150.3 nF. We took into account 15 sets of n = 3 param-
eters: {R1, R2, R3}, {R1, R2, C1}, {R1, R2, C2}, {R1, R3, C1}, {R2, R3, C1}, {R3, C1, C2},

Fig. 1. A Sallen-Key bandpass filter.
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{R1, R2, R5}, {R1, R3, R5}, {R1, R4,C1}, {R1, R5,C1}, {R2, R3, R4}, {R2, R3, R5}, {R2, R4,C2},
{R3, R4, C2}, {R3, R5, C2}, which according to the testability analysis [9] could be unam-
biguously diagnosed. For each of the sets two combinations of the parameter values were as-
sumed. Thus, the total number of diagnoses was 30. We set a fixed rms value of the input
voltage ((Vgen)rms = 1 V) and measured, with an accuracy equal to 10 mV, the rms values of
the output voltage V (1) (N = 1) at twelve frequencies (J = 12) arbitrarily assuming an equal
distance between successive frequencies: 50, 59, 68, 77, 86, 95, 105, 114, 123, 132, 141, 150,
all in Hz.

To estimate the parameter values the method proposed in this paper was used with the con-
stants: ε = 10−4, µ = 0.5 ·10−5, β = 200. The ranges around V̂ (1)

m (m = 1, . . . , 12) were chosen
assuming the maximum deviation equal to ±1% of the actual value V̂ (1)

m . Next, M = 100 sets of
the voltage values were created by random selection from the ranges assuming a uniform distri-
bution. Every time the minimization procedure was applied it led to the ranges [p−j , p+j ]. Having

p−j and p+j the average value pav
j was calculated and the relative error η j =

∣∣∣∣∣ pactual
j − pav

j

pactual
j

∣∣∣∣∣ 100%

was determined. In all the considered cases the method led to correct results. The results of three
representative cases are summarized in Tables 1–3. The average time of the diagnosis process
was 1 s.

Table 1. Diagnosis of the set of parameters {R1, R2, R3} using the laboratory test.

Parameters Nominal Actual value Lower limit Upper limit Average value Relative error
p j value pac

j p−j p+j pav
j η j [%]

p1 = R1 [Ω] 10000 7177 6969 7339 7154 0.32

p2 = R2 [Ω] 20000 22210 22164 22430 22297 0.39

p3 = R3 [Ω] 10000 8237 8163 8277 8220 0.21

Table 2. Diagnosis of the set of parameters {R2, R3, C1} using the laboratory test.

Parameters Nominal Actual value Lower limit Upper limit Average value Relative error
p j value pac

j p−j p+j pav
j η j [%]

p1 = R2 [Ω] 20000 22210 22051 22367 22209 0.00

p2 = R3 [Ω] 10000 9082 8876 9134 9005 0.85

p3 =C1 [nF] 150 115.0 114.3 119.1 116.7 1.48

Table 3. Diagnosis of the set of parameters {R3, C1, C2} using the laboratory test.

Parameters Nominal Actual value Lower limit Upper limit Average value Relative error
p j value pac

j p−j p+j pav
j η j [%]

p1 = R3 [Ω] 10000 8237 8123 8283 8203 0.41

p2 =C1 [nF] 150 180.0 178.6 183.1 180.9 0.47

p3 =C2 [nF] 150 180.2 178.7 181.9 180.3 0.06

The parameter deviations considered in the performed 30 diagnoses range from (−40)% to
76%. The statistical results based on the diagnoses are as follows. In 70% the error η j does not
exceed 1%. The maximum error is 2.7%.
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Example 2
In the low pass filter [9] with the parameter values indicated in Fig. 2 we considered ten

sets of parameters {R8, R17, C1, C3, C4}, {R8, C1, C2, C3, C4}, {R4, R8, R17, C3, C4},
{R4, R8, R9, R17, R21}, {R4, R8, R17, R22, C1}, {R4, R8, R17, C1, C3}, {R4, R7, R8, R17, R22},
{R4, R8, C2, C3, C4}, {R4, R6, R8, R17, R19}, and {R4, R6, R8, R17, C4} as potentially faulty.
According to the testability analysis [9], they could be unambiguously diagnosed. To perform the
diagnosis the method presented in this paper was applied using the tests simulated numerically.
We set a fixed rms value of the input voltage ((Vgen)rms = 2 V) and measured the rms values of the
output voltage V (1)

m (N = 1), with an accuracy equal to 100 µV, at twenty frequencies (J = 20)
located at the same distance on a linear scale, with the lower frequency equal to 300 Hz and
the upper one equal to 2 kHz. To estimate the parameter values we used the method proposed
in this paper with the constants: ε = 10−4, µ = 0.5 · 10−6, β = 500. The ranges around V̂ (1)

m
(m = 1, . . . , 20) were chosen assuming the maximum deviation equal to ±0.5% of the actual
value V̂ (1)

m . Next M = 60 sets of the voltage values were created by random selection from the
ranges assuming a uniform distribution leading to the ranges [p−j , p+j ], the average values pav

j ,
and the relative errors η j. In all the considered cases the method led to correct results, but in two

Fig. 2. A low-pass filter.
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cases (one of them is shown in Table 6) the obtained intervals for some parameters were rather
wide, due to small sensitivity of the output voltage to changes of some parameters. The results of
three exemplary cases are summarized in Tables 4–6. The average time of the diagnosis process
was 50 s.

Table 4. Diagnosis of the set of parameters {R8, C1, C2, C3, C4} using the numerical test.

Parameters Nominal Actual value Lower limit Upper limit Average value Relative error
p j value pac

j p−j p+j pav
j η j [%]

p1 = R8 [Ω] 1600 2600 2579 2642 2610 0.40

p2 =C1 [nF] 100.0 92.0 88.64 94.44 91.5 0.50

p3 =C2 [nF] 100.0 150.0 144.60 157.10 150.8 0.57

p4 =C3 [nF] 100.0 120.0 116.42 123.50 119.9 0.03

p5 =C4 [nF] 100.0 120.0 115.54 123.76 119.6 0.29

Table 5. Diagnosis of the set of parameters {R4, R8, R9, R17, R21} using the numerical test.

Parameters Nominal Actual value Lower limit Upper limit Average value Relative error
p j value pac

j p−j p+j pav
j η j [%]

p1 = R4 [Ω] 3300 2480 2350 2593 2471 0.34

p2 = R8 [Ω] 1600 1890 1873 1907 1890 0.00

p3 = R9 [Ω] 1600 1200 1180 1216 1198 0.17

p4 = R17 [Ω] 3600 2780 2736 2817 2776 0.13

p5 = R21 [Ω] 10000 12000 11845 12201 12023 0.19

Table 6. Diagnosis of the set of parameters {R8, R17, C1, C3,C4} using the numerical test.

Parameters Nominal Actual value Lower limit Upper limit Average value Relative error
p j value pac

j p−j p+j pav
j η j [%]

p1 = R8 [Ω] 1600 2200 2137 2229 2183 0.77

p2 = R17 [Ω] 3600 2300 2100 2575 2337 1.63

p3 =C1 [nF] 100.0 150.0 148.08 151.45 149.8 0.16

p4 =C3 [nF] 100.0 120.0 100.71 134.99 117.8 1.79

p5 =C4 [nF] 100.0 80.0 72.42 91.86 82.1 2.67

The absolute values of parameter deviations, considered in the performed 10 diagnoses, range
from (−36)% to 60%. The statistical results based on the performed diagnoses are as follows. In
80% the error η j does not exceed 1%. The maximum error is 3.55%.

The assumed deviations of the output voltages in the chosen circuits correspond to low tol-
erances of the circuit components. It is justified because the active filters shown in Figs. 1 and 2
can achieve good accuracy, provided that low-tolerance resistors and capacitors are used. Monte
Carlo analyses of the circuit depicted in Fig. 1 show that ±1% tolerances cause the output voltage
deviations of up to ±4%. Assuming such deviations the obtained diagnostic results are less accu-
rate but quite satisfactory. E.g., for the cases presented in Tables 1, 2, 3 the results obtained with
the method with ±4% deviations of the output voltage are summarized in Tables A1, A2, A3,
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respectively. Also, in Example 2, an increase of the voltage deviations from ±0.5% to ±1.5%
leads to quite good results illustrated in Table A4 corresponding to Table 4.

Table A1. Diagnosis of the set of parameters {R1, R2, R3} using the laboratory test.

Parameters Nominal Actual value Lower limit Upper limit Average value Relative error
p j value pac

j p−j p+j pav
j η j [%]

p1 = R1 [Ω] 10000 7177 6311 7857 7084 1.30

p2 = R2 [Ω] 20000 22210 21851 22748 22299 0.40

p3 = R3 [Ω] 10000 8237 8001 8400 8200 0.44

Table A2. Diagnosis of the set of parameters {R2, R3, C1} using the laboratory test.

Parameters Nominal Actual value Lower limit Upper limit Average value Relative error
p j value pac

j p−j p+j pav
j η j [%]

p1 = R2 [Ω] 20000 22210 21603 22367 21985 1.01

p2 = R3 [Ω] 10000 9082 8469 9437 8948 1.47

p3 =C1 [nF] 150 115.0 102.8 129.0 115.9 0.78

Table A3. Diagnosis of the set of parameters {R3, C1, C2} using the laboratory test.

Parameters Nominal Actual value Lower limit Upper limit Average value Relative error
p j value pac

j p−j p+j pav
j η j [%]

p1 = R3 [Ω] 10000 8237 7781 8502 8141 1.16

p2 =C1 [nF] 150 180.0 173.3 192.5 182.9 1.61

p3 =C2 [nF] 150 180.2 174.9 184.1 179.5 0.39

Table A4. Diagnosis of the set of parameters {R8, C1, C2, C3, C4} using the numerical test.

Parameters Nominal Actual value Lower limit Upper limit Average value Relative error
p j value pac

j p−j p+j pav
j η j [%]

p1 = R8 [Ω] 1600 2600 2513 2678 2595 0.17

p2 =C1 [nF] 100.0 92.0 77.75 106.02 91.9 0.12

p3 =C2 [nF] 100.0 150.0 136.71 171.26 154.0 2.66

p4 =C3 [nF] 100.0 120.0 108.70 127.55 118.1 1.56

p5 =C4 [nF] 100.0 120.0 110.11 133.10 121.6 1.34

5. Comparison of results

The methods for fault diagnosis of analogue circuits are based on measurement tests per-
formed in the DC, AC or transient states. Most of them exploit DC or AC state. Numerous
results in the parametric diagnosis area relate to circuits with single, double or triple faults with
the parameter deviations not exceeding 30% of the nominal values. For example, the references
[6, 14, 35, 37–38] are dedicated to soft fault diagnosis of single faults. The references [18, 28–29,
34] bring methods for single-, double-, and triple-fault diagnosis. For this purpose the simplex
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method is used in [28] and the Woodbury formula in the matrix theory is applied in [29]. A draw-
back of these methods is the required access to many nodes during the test phase. In the reference
[34] the Fisher information measure is exploited, whereas the reference [18] presents an approach
based on the intelligent information processing technology.

The multiple-fault diagnosis, not limited only to double or triple faults and small parameter
deviations, is more complex and insufficiently resolved. Some results of the general multiple
soft fault diagnosis are presented in the references [15] and [36]. They employ a measurement
test performed in the DC or AC state and some computational techniques. Unfortunately, the ap-
proach proposed in [36] requires higher-order sensitivity analyses what is a very time-consuming
task. In consequence, the application of this method is limited to small-sized circuits. The method
proposed in [15] relates to larger and more complex circuits and is compared below, head to head,
with the method presented in this paper. For the sake of comparison the method presented in this
paper is labelled MA, whereas the method used in the reference [15] is labelled MB.

In order to compare MA and MB we reconsider the low pass filter shown in Fig. 2 and
take into account elements of the set {C1, C2, C3, C4, R4, R8, R17, R21} as possibly faulty.
Let us create eleven sets of the parameters: {R8, C1, C2, C3, C4}, {R8, R17, C1, C3, C4},
{R4, R8, R17,C3,C4}, {R8, R21,C3,C4}, {R4, R17,C3,C4}, {R4, R8, R17, R21}, {R8,C1,C2,C4},
{C1, C2, C3}, {R4, R8, R17}, {R4, R21, C1}, and {R4, R8, C3}. To arrange the diagnostic test
we set a fixed rms value of the input voltage ((Vgen)rms = 2V) and find the output voltage V (1)

m
(N = 1), with an accuracy equal to 100 µV at twenty frequencies (J = 20), as in Example 2.
The constants used by MA are: ε = 10−4, µ = 0.5 · 10−6, β = 500. The comparison has been
performed under the following assumptions.

(i) The sets of parameters are diagnosed assuming nominal values of other parameters and
fixed measurement data. In consequence, the methods give points rather than ranges of the
parameter values.

(ii) Since the MA method requires rms values of the measured voltages and the MB method
requires phasor values, the number of data points exploited by MB is twice as large as the
number of points exploited by MA. Hence, the number of diagnostic equations used by
MA is 20 while by MB is 40.

(iii) The parameter variations selected for the purpose of comparison range from 2.8% to 65%
of their nominal values.

On the basis of eleven carried out diagnoses the following conclusions can be drawn. The
MA method leads to correct results in all the cases, whereas the MB method fails in three cases.
MA works with a smaller number of diagnostic equations than MB and it does not require the
time-consuming sensitivity analyses. In consequence, the MA method is easier to implement and
involves simpler computational analysis. Usually, the parameter values provided by MA are more
accurate than those of MB. The results of four chosen diagnoses carried out using MA and MB
methods are summarized in Tables 7–10.

Table 7. Diagnosis of the set of parameters {R8, C1, C2, C3, C4} using the numerical test.

Parameters Nominal Actual values pac
j Method A Method Bp j values (Deviation in %)

p1 = R8 [Ω] 1600 2600 (62.5%) 2600

p2 =C1 [nF] 100.0 92.0 (−8.0%) 92.06

p3 =C2 [nF] 100.0 150.0 (50.0%) 149.94 Fail

p4 =C3 [nF] 100.0 120.0 (20.0%) 120.02

p5 =C4 [nF] 100.0 120.0 (20.0%) 120.01
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Table 8. Diagnosis of the set of parameters {R4, R8, R17, C3, C4} using the numerical test.

Parameters Nominal Actual values pac
j Method A Method B

p j values (Deviation in %)

p1 = R4 [Ω] 3300 3420 (3.6%) 3427 3409

p2 = R8 [Ω] 1600 1420 (−11.3%) 1420 1420

p3 = R17 [Ω] 3600 3850 (6.9%) 3855 3855

p4 =C3 [nF] 100.0 120.0 (20.0%) 119.85 120.50

p5 =C4 [nF] 100.0 82.00 (−18.0%) 82.12 82.98

Table 9. Diagnosis of the set of parameters {R8, R21, C1, C2} using the numerical test.

Parameters Nominal Actual values pac
j Method A Method B

p j values (Deviation in %)

p1 = R8 [Ω] 1600 2040 (27.5%) 2040

Failp2 = R21 [Ω] 10000 8200 (−18.0%) 8199

p3 =C1 [nF] 100.0 150.0 (50.0%) 150.03

p4 =C2 [nF] 100.0 103.0 (3.0%) 102.95

Table 10. Diagnosis of the set of parameters {R8, R21, C1, C2} using the numerical test.

Parameters Nominal Actual values pac
j Method A Method B

p j values (Deviation in %)

p1 = R8 [Ω] 1600 2040 (27.5%) 2040 2040

p2 = R21 [Ω] 10000 9800 (−2.0%) 9801 10230

p3 =C1 [nF] 100.0 115.0 (15.0%) 114.94 114.88

p4 =C2 [nF] 100.0 103.0 (3.0%) 103.04 103.28

6. Possibility of extension of presented method to nonlinear circuits

Although the method presented in Sections 2 and 3 is dedicated to linear circuits, it can be
applied to the multiple soft fault diagnosis of nonlinear ones, including CMOS circuits designed
in a sub-micrometre technology. This section explains how the diagnostic method is extended
to nonlinear CMOS circuits with soft faults being variations of channel lengths L. The proposed
diagnostic method estimates values of the parameters (channel lengths L) belonging to predefined
sets of parameters. Comparing them with the nominal or drawn values we can select the ones
which can be considered as faulty. Let us consider a circuit having one or more input nodes
accessible for excitation and one output node accessible for measurement. To apply the diagnostic
method leading to n parameter values p1, . . . , pn we connect J > n sets of DC voltage sources to
the input nodes and measure the corresponding DC values of the output voltage V̂1, . . . , V̂J . Each
of the voltage values depends on the parameter values p1, . . . , pn, Vm(p), where p = [p1 · · · pn]

T,
m = 1, . . . , J. Hence, in order to find p1, . . . , pn, the function:

g(p) =
J

∑
m=1

(
V̂m −Vm(p)

)2
(3)
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is minimized using the Powell method, as described in Section 3. Since functions Vm(p) cannot
be presented in the explicit analytical form, their values are found numerically, by the DC circuit
analysis, for given values of the parameters.

For the fault diagnosis of CMOS circuits designed in a sub-micrometre technology the pro-
posed method has been implemented in the DELPHI, whereas the required analyses of the cir-
cuits for different sets of parameter values are carried out applying the IsSPICE 4 program [41].
Both environments have been joined. The analyses are very complex, because the MOS model
BSIM 4.6 is very complicated and described by several hundred equations. In consequence, the
total CPU time consumed by the procedure is long. Most of the time is spent on communication
between both environments, including the process of creating new input files and deleting old
input files for IsSPICE, searching output files, opening and closing the windows.

Example 3
Consider the rail-to-rail input buffer [42] shown in Fig. 3 designed in a nanometre tech-

nology. The transistors are characterized by the BSIM 4.6 model implemented in IsSPICE 4,
Level 14 [41].

Fig. 3. A rail-to-rail input buffer.

We consider the soft faults of the following parameters:
(i) The channel lengths in PMOS transistors M1, M2, M3, M4, M5.

(ii) The channel lengths in NMOS transistors M6, M7, M8, M9, M10.
The diagnostic test in this example is simulated numerically. For this purpose ten sets (J =

10) of the input DC voltages VS1 , VS2 and VS3 , presented in Table 11, are chosen and every time
the output voltage Vo is found with an accuracy of 10 µV. To illustrate the method, six sets of
faults were diagnosed. The results of two representative cases are summarized in Tables 12–13.

Note: the component deviations considered in this example do not exceed 20%. However, the
method works even if the deviations are much greater. Several other cases were diagnosed with
the deviations of the order of (30–65)% and the obtained results are quite satisfactory. One of
them is summarized in Table 14.
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Table 11. Example 3 – Sets of input voltages exploited in the DC diagnostic tests.

No
Values of the input voltages in volts

VS1 VS2 VS3

1 1.00 0.50 0.35

2 1.00 0.50 0.40

3 1.00 0.50 0.42

4 1.00 0.65 0.35

5 1.00 0.65 0.40

6 1.30 0.65 0.42

7 1.30 0.65 0.46

8 1.30 0.80 0.60

9 1.30 0.80 0.70

10 1.30 0.80 0.72

Table 12. Example 3 – Results of the fault diagnosis of channel lengths in PMOS transistors M1, M2, M3, M4, M5
(computational time 615 s).

Symbols of the PMOS transistors M1 M2 M3 M4 M5

The nominal value of L in nm 100.000 100.000 100.000 100.000 100.000

The actual value of L in nm 120.000 108.000 120.000 108.000 107.000

The values provided by the method in nm 119.775 108.007 119.955 108.300 107.195

Relative error η j in % 0.19 0.01 0.04 0.28 0.18

Table 13. Example 3 – Results of the fault diagnosis of channel lengths in NMOS transistors M6, M7, M8, M9, M10
(computational time 201 s).

Symbols of the NMOS transistors M6 M7 M8 M9 M10

The nominal value of L in nm 100.000 100.000 100.000 100.000 100.000

The actual value of L in nm 113.000 103.000 106.000 113.000 111.000

The values provided by the method in nm 113.176 103.156 106.042 113.779 111.014

Relative error η j in % 0.16 0.15 0.04 0.69 0.01

Table 14. Example 3 – Results of the fault diagnosis of channel lengths in NMOS transistors M6, M7, M8, M9, M10
(computational time 628 s).

Symbols of the NMOS transistors M6 M7 M8 M9 M10

The nominal value of L in nm 100.000 100.000 100.000 100.000 100.000

The actual value of L in nm 106.500 165.000 135.000 145.000 107.000

The values provided by the method in nm 106.718 164.966 134.806 144.812 106.920

Relative error η j in % 0.20 0.02 0.14 0.13 0.07
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7. Conclusion

The verification method presented in this paper enables to efficiently diagnose multiple soft
faults in middle-sized linear circuits. It is general and is not limited only to double or triple faults
with small parameter deviations. The proposed approach is based on the Powell’s minimization
method without gradients. In consequence, no sensitivity analysis of a circuit under test is re-
quired, what considerably simplifies its implementation and improves the diagnostic process.
The method employs the measured output voltage at several frequencies, but the measurements
are simple and use standard instrumentation. The minimization procedure based on the Powell’s
method is fast and does not require great computing power. It is easy to implement and reliable.
In all considered cases, where the set of the tested elements did not contain a subset of elements
creating an ambiguity group, the proposed method gave correct results. The sets of parameters
which are unambiguously diagnosed can be selected on the basis of the testability analysis. The
method fails if the deviations of the diagnosed parameters do not influence noticeably the tested
voltages, measured with an assumed accuracy. Although the method is dedicated to linear cir-
cuits, it can be adapted to multiple soft fault diagnosis of nonlinear ones including CMOS circuits
designed in a sub-micrometre technology. In this case the computational complexity of the mini-
mization procedure, implemented in DELPHI, is similar to the complexity of the procedure used
in linear circuits. However, the circuit analyses required by the diagnostic method are more com-
plex because the MOS transistor model BSIM 4.6 is very intricate. These analyses are carried
out using IsSPICE 4 and the communication between the DELPHI and IsSPICE environments
is very time-consuming. Thus, the method enables to diagnose small- and middle-sized CMOS
circuits designed in a sub-micrometre technology, but it is more difficult to implement and less
efficient.
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Appendix

A sketch of the Fibonacci method

The Fibonacci method is a procedure for finding the minimum of a variable function f̂ (λ )
within the range (λ−, λ+) by narrowing this range in a systematic way. The method is described
in detail in the reference [39]. The main idea of this method is as follows.

The method minimizes the function f̂ (λ ) over the range (λ−, λ+), where f̂ (λ ) is unimodal.
Let L0 be a length of the range (λ−, λ+). To find λ = λ̃ that minimizes the function the internal

points λ1 and λ2 are selected so that λ1 = λ− +

(
L0 − L0

ρ

)
, λ2 = λ− +

L0

ρ
(see Fig. A.1),

where ρ ∼= 1.618 [39]. If f̂ (λ1)> f̂ (λ2), as in Fig. A.1, λ̃ must lie in the range (λ1, λ+) whose
length is labelled L1. Otherwise, it must lie between λ−, λ2, creating the range (λ−, λ2). For
an appropriate range the internal points λ3 and λ4 are selected similarly to λ1 and λ2 in the
range (λ−, λ+). The procedure is repeated leading to a sequence of intervals L0, L1, L2, . . .,
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so that
L j

L j+1 = ρ = 1.618 and each of the intervals includes λ̃ . Thus, after k steps the obtained

interval Lk = L0ρ−k and λ̃ ∈ Lk. The procedure is terminated once the length of Lk is less than
the required accuracy of λ̃ .

Fig. A.1. Illustration of the Fibonacci method.
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