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Abstract: The paper presents a phenomenon of directional change in the case of a LQR
controller applied to multivariable plants with amplitude and rate constraints imposed on
the control vector, as well as the impact of the latter on control performance, with the
indirect observation of the windup phenomenon effect via frequency of consecutive resat-
urations. The interplay of directional change of the computed control vector with control
performance has been thoroughly investigated, and it is a result of the presence of con-
straints imposed on the applied control vector for different ratios of the number of control
inputs to plant outputs. The impact of the directional change phenomenon on the control
performance (and also on the windup phenomenon) has been defined, stating that perfor-
mance deterioration is not tightly coupled with preservation of direction of the computed
control vector. This conjecture has been supported by numerous simulation results for dif-
ferent types of plants with different LQR controller parameters.
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1. Introduction

The robust control problem is widely discussed in the current references, with a group of
papers relating to measuring performance in the sense of a quadratic cost function when uncer-
tainty is taken into account, see, e.g. the references for continuous-time systems [8] or [9]. For
discrete-time closed-loop systems the reliable control, ensuring the bound of the cost, has been
discussed in [11].

Reliability means that whenever actuator failure occurs, the controller must ensure the proper
level of performance, to maintain such properties of the closed-loop system as stability or moder-
ate tracking performance. In the current paper, the approach presented in [12] is used to analyze
the interplay between directional change in controls and an actuator failure case. The actuator
failure itself is used to mimic the possible situation, when a computed control signal/vector is
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modified by a nonlinear block, here: saturation that changes the proportions between compo-
nents of the calculated control vector, resulting in the directional change phenomenon.

The real-world systems are subject to cut-off (saturation) actuator constraints limiting con-
troller outputs, which have a negative impact on the control performance, and actuator saturation,
consequently, causes lack of consistency between computed and constrained control inputs, re-
ferred as the windup phenomenon. The stability analysis results of saturated control systems may
be found in, e.g. [5, 10].

The state-feedback control law is proposed here to ensure reliability of the system with fail-
ures modeled by the scaling factors, which are used to present the uncertainty, and are depicted
as conic areas in the space of control signals on the static characteristics of the considered non-
linearity, here: a saturation function.

It is of practical importance to identify the interplay between directional change and per-
formance of the control system. This aspect of the directional change is often not present in
the literature referring to the windup phenomenon, and is virtually not addressed in papers con-
cerning multivariable control systems. Whereas, in the case of multivariable systems possible
cross-coupling and the unequal number of plant inputs and outputs are important factors. The
direction of the calculated control vector might reflect principal input direction [6, 7]/maximal
directional gain [1], but it can also be connected to possibility to decouple inputs from outputs
in dynamic states. By changing this information, the performance of the control system might
seriously deteriorate.

As an example, one can take the nonlinear chemical Van de Vusse reaction presented in [14],
where it is required to control concentration of the intermediate and final products by dilution
rate inputs, maintaining them in proportions, and in accordance to possible limits, to prevent the
system from changing its properties. Another example, could be a control regime of an UAV [2],
in which in order to keep the drone in a horizontal position when ascending or descending, thrust
forces of the motors must be kept in proportion, by ensuring equal rotational speeds of the rotors.
Possible saturations of control signals in dynamical states, require the control system to preserve
the direction of the control vector.

2. Plant and actuator failure models

The following multivariable model is taken into consideration:

xt+1 = Axt +But−d , (1)

yt = Cxt , (2)

where the left-coprime polynomial matrices:

A(q−1) = I+A1q−1 + · · ·+AnAq−nA, (3)

B(q−1) = B0 +B1q−1 + · · ·+BnBq−nB (4)

have known sizes (i = 1, . . . , nA, j = 0, . . . , nB):

Ai ∈ Rp×p, (5)
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B j ∈ Rp×m (6)

and degrees nA, nB. The output vector y ∈ Rp, the constrained control vector u ∈ Rm, the com-
puted control vector v ∈ Rm, and the state vector x ∈ Rn, which is exactly known.

The control performance index is defined as in standard LQR control laws:

J =
∞

∑
t=0

(
xT

t Qxt +uT
t Rut

)
, (7)

with weighing matrices Q ≥ 0, R ≥ 0. The actuator failure model can be defined as in [15]:

uk
t,i = (1−ρk

t,i)sat(vt,i;αi) (i = 1, 2, . . . , m, k = 1, 2, . . . , g), (8)

where ρk
t,i is an unknown constant from some range, index k denotes the k-th failure model,

and g is the total number of failure models. The expression uk
t,i refers to the i-th component of

the constrained control vector, assuming that an actuator failure takes place (in the other case,
uk

t,i = vt,i). For any actuator failure model, including the situation for constraints imposed on the
control vector, the constant ρk

t,i lies in ρk
−,t,i ≤ ρk

t,i ≤ ρk
+,t,i, and the function sat defines the method

od applying constraints (e.g. cut-off constraint).
The control vector might be modified by various functions, such as cut-off constraints, nonlin-

ear static characteristics, or by a direction-preserving (DP) saturation algorithm. The difference
between non-DP and DP cut-off functions is discussed in the paper.

If ρk
−,t,i = ρk

+,t,i = 0 holds, it means that failure (8) has not taken place, and ρk
−,t,i = ρk

+,t,i = 1
corresponds to the outage case in the k-th failure model. The failure according to the k-th model
means that 0 < ρk

−,t,i ≤ ρk
+,t,i < 1 is satisfied.

For a single model case of the failure, (8) can be transformed [12, 13, 4] to

uF
t,i = ρivt,i (i = 1, 2, . . . , m), (9)

where
0 ≤ ρ−,i ≤ ρi ≤ ρ+,i (i = 1, 2, . . . , m) (10)

with ρ−,i ≤ 1 and ρ+,i ≥ 1.
The following notation is henceforth adopted from [13, 4]:

uT
t =

[
uF

t,1, uF
t,2, . . . , uF

t,m
]T

, (11)

ρρρ+ = diag{ρ+,1, ρ+,2, . . . , ρ+,m} , (12)

ρρρ− = diag{ρ−,1, ρ−,2, . . . , ρ−,m} , (13)

ρρρ = diag{ρ1, ρ2, . . . , ρm} . (14)

3. Directional change phenomenon

The directional change might be observed in majority of cases which is presented in Fig. 1a,
in the case of cut-off saturation. Lack of the directinonal change depends on the way the satura-
tion is performed (dashed lines) for constant direction requirement, Fig. 1b.
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(a) (b)

Fig. 1. (a) Direction-changing; (b) direction-preserving saturation (left – control vector before amplitude
saturation, right – after saturation)

4. Control law

The control law of the form:
vt = Fxt , (15)

where xt is the state vector of the plant models (1), (2), it is reliable (value of the performance
index (7) is not exceeded), when it is related to the matrix P, the systems (1), (2), and if P satisfies
the inequality [4, 13]

(A+Bρρ)T P(A+Bρρ)−P+FT ρRρF+Q ≤ 0 . (16)

The closed loop system:
xt+1 = (A+Bρρ)xt (17)

is then stable, and it holds that

J =
∞

∑
t=0

xT
t
(
Q+FT ρRρF

)
xt ≤ xT

0 Px0 . (18)

When robustness issues are not taken into accoung, the optimal F in (15) is derived as the
solution of the set of equations [4]:

F =−
(
BT PB+R

)−1 BT PA , (19)

P = Q+AT PA−AT PB
(
BT PB+R

)−1 BT PA , (20)

the optimal value JF of the performance index (7), based on obtaining F according to (19) and
(20) being at the same time the upper boundary of (18), is:

JF = xT
0 Px0 . (21)

5. Optimal state-feedback matrix in the case of actuator failure

This section of the paper has been taken in extenso from [3], since it cannot be omitted here,
to ensure the paper is coherent. The below algorithm [4, 13] enabling derivation of the optimal
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state-feedback matrix F to increase the robustness of the system against actuator failure can be
adopted for both DP and non-DP functions:

1. Solve (20) with respect to P (mark the result as P∗), and choose an arbitrary diagonal
matrix R0, satisfying

R0 ≤
(
BT P∗B+R

)−1
. (22)

2. Solve
P = Q+AT PA−AT PJ0PA (23)

with respect to the stabilising P and check the condition

R0 ≤
(
BT cPB+R

)−1
, (24)

where
J0 = B

(
I−ΓΓΓ2

0
)((

BT PB+R
)(

I−ΓΓΓ2
0
)
+R−1

0 ΓΓΓ2
0
)−1 BT (25)

(matrix ΓΓΓ0 will be defined in due course of the paper).
3. If the inequality (22) is satisfied for R0 and P, increase the elements of R0 and go to step 2;

otherwise, decrease the elements of R0 and go to step 2, checking if step 4 is satisfied.
4. If the inequality (22) is satisfied for R0 and P, the stabilising matrix P satisfies Equa-

tion (23), and there is no positive-definite solution for the pair R0 and P for arbitrary R0′ , where
R0 ≤ R0′ ≤

(
BT P∗P+R

)−1, then stop the algorithm; in this case, the state-feedback matrix is
given as:

F =−ΓΓΓ−1
(

I− (X−1 −R0)
(
(I−ΓΓΓ2

0)+ΓΓΓ2
0R−1

0 X−1)−1 ΓΓΓ2
0R−1

0

)
X−1BT PA , (26)

where X = BT PB+R.
When the following notation is introduced:

ΓΓΓ = diag{γ1, γ2, . . . , γm} , (27)

ΓΓΓ0 = diag{γ0,1, γ0,2, . . . , γ0,m}, (28)

with:
γi =

ρ+,i +ρ−,i

2
, (29)

γ0,i =
ρ+,i −ρ−,i

ρ+,i +ρ−,i
, (30)

then the matrix P satisfying the equation:

P = Q+AT PA−AT PB
(
BT PB+R

)−1 BT PA (31)

(the stabilising Riccatti solution to the Ricatti equation) can be presented ensuring that all eigen-
values of the matrix A−B

(
BT PB+R

)−1 BT PA are inside the unit circle.
In addition, on the basis of (14), (27) and (28) [12]:

ρ = (I+ρρρ0)ΓΓΓ, (32)

|ρρρ0| ≤ ΓΓΓ0 ≤ I, (33)

where matirx ρρρ0 = diag{ρ0,1, ρ0,2, . . . , ρ0,m}, ρ0,i =
ρi − γi

γi
(i = 1, . . . , m), and operation of the

absolute value |ρρρ0| is elementwise for the whole matrix.
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6. Actuator failure and control subject to constraints

6.1. Actuator failure and control subject to constraints

Amplitude-constrained control, where the input signals of the actuator can saturate, may
be treated as a special case of actuator failure, thus one can model possible saturation of the
control signals as a case of actuator failure. In such a situation, it is assumed that γi = αi for
i = 1, 2, . . . , m, and i-th component of the constrained control vector becomes [4]

uF
i,t = sat

(
f T

i xt ;αi
)
, (34)

where sat is the function that imposes constraints on the i-th component of the control vector in
the span of ±αi, and f T

i is the i-th row of F. The assumed failure model can also be presented for
the whole control vector with (i = 1, 2, . . . , m), uF

i,t = sat(ρivt,i;αi), and can be easily extended
to amplitude and rate constraints either.

6.2. Simultaneous amplitude and rate constraints

Let the domain Dα of all admissible amplitude-constrained control vectors for m = 2 be
given, as well as the domain Dβ ,t of all admissible rate-constrained control vectors, and, as an
example: ut−1 = [2.2]T , vt = [3.2]T , α1 =±2, α2 =±3, β1 =±1.3, β2 =±1.3. Furthermore, let
certain uncertainty area be given (depicted as dashed in Figs. 2c, d, 3c, d) for arbitrary ΓΓΓ and ΓΓΓ0.
It is assumed that the set Dα ∩Dβ ,t is nonempty.

The method of deriving the constrained control vector is given in Fig. 2 in the situation,
when directional change is allowed. When constraints (either amplitude or rate) become active,
the control quality must degrade because of the windup phenomenon. The computed control
vector vt from Fig. 2a violates the amplitude constraint, thus according to the proposed method
of applying constraints, its components are independently cut-off, leading to the constrained
control vector as in Fig. 2b.

For the chosen levels of constraints, the cut-off action of the components of the computed
control vector from (15) is depicted in Fig. 2c for v1,t and in Fig. 2d for v2,t . As it can be ob-
served, the proportions in between its components are not always kept constant, which leads to
the directional change of the constrained control vector.

The dashed line resulting from the possible actuator failure, and the domain of admissible
constrained control vectors resulting from rate constraints only are depicted in Figs. 2c and d.
The points corresponding to the computed control vectors are also given in both the Figures.
As it can be observed, they belong to the common part of sets Dβ1,t and Dβ2,t for v1,t and v2,t ,
respectively. By taking such a constraints model into account such a situation corresponds to the
the one from Section 5.

From the analysis of Figs. 2c, d we can see that the algorithm taking robustness issues
into consideration comprises the case of cut-off saturation of amplitude or rate as long as for
i = 1, 2, . . . , m the points (vi,t , αisign(vi,t)) lie inside m cones defining failure areas.

As an example, let us assume that v1,t ≥ 0, α1 > 0, and the following holds:

α1

ρ+
≤ v1,t ≤

α1

ρ−
,
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(a) (b)

(c) (d)

Fig. 2. Directional-changing constraint as an actuator failure for m= 2 control vector
components: (a) unconstrained control vector; (b) constrained control vector; (c) v1,t

component in the uncertainty area; (d) u2,t component in the uncertainty area

thus the point drawn in (v1,t ,u1,t) plane has ordinate between extremal values resulting from
intersection of the line u1,t = α1 with u1,t = ρ−v1,t and u1,t = ρ+v1,t . A similar relation holds in
the case of the remaining m− 1 control vector components. When the computed control vector
is not in the area defining possible actuator failure, one can relax constraints, in order to apply
the presented algorithm (e.g. by changing selected hard constraints into soft constraints [9] and
perform the selection of the best constrained control vector).

To summarise, the amplitude constraint corresponds to the unbounded vertical strip, as in
Figs. 2c, d with invariant width for a time-invariant constraints. The rate constraint corresponds
to the unbounded horizontal strip with time-varying location, with respect to the previous sample
of the constrained control vector. If the lower and upper boundary of ui,t admissible with respect
to this area belong, respectively, no higher than αi and no lower than −αi, then the set of all
admissible constrained control vectors is nonempty.

Fig. 3 presents the analogous idea of computing the constrained control vector in the case
when DP requirement must hold. In order to take both constraints into account, and avoid di-
rectional change in vt , as in Fig. 3b, one has to implement the DP algorithm from [3], which is
related to the modification of at least one static characteristic to keep the direction unchanged.

In the current case, the characteristics of u2 − v2 has been modified, what has been depicted
in Fig. 3d, and constrained control vector is shown in Fig. 3b. As it can be observed, the DP re-
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(a) (b)

(c) (d)

Fig. 3. Directional-preserving constraint as an actuator failure for m = 2 control
vector components: (a) unconstrained control vector; (b) constrained control vector;
(c) v1,t component in the uncertainty area; (d) u2,t component in the uncertainty area

quirement (an additional, virtual coupling between control vector components), caused the sec-
ond static characteristics to approach the boundary of the area “covered” by the actuator-failure
robustness algorithm. Application of this algorithm is limited to the case of minor directional
change occurences, which should not be treated as an excessive limitation, because major direc-
tional changes take place only with step-like changes of, e.g. a reference vector. In the presented
case, this would take place only when the computed control vector is directed mainly to one of
the versors in the m-dimensional space of control vectors.

7. Simulation results

7.1. Plant model parameters

Three one-step delay controllable models are taken into consideration:
P1 (m = 2, p = 2)

A =


−0.80 0.10
−0.40 1.00

I

0.49 0.10
−0.10 −0.25

0

 , B =


1.0 0.3
0.5 0.8
0.0 0.0
0.0 0.0

 ,
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P2 (m = 3, p = 2)

A =


−0.80 0.10
−0.40 1.00

I

0.49 0.10
−0.10 −0.25

0

 , B =


1.0 0.2 0.3
0.5 0.3 0.8
0.0 0.0 0.0
0.0 0.0 0.0

 ,
P3 (m = 2, p = 3)

A =



0.7 0.0 −0.1
0.1 0.8 −0.2 I

−0.1 0.0 0.8
0.1 0.0 0.0
0.0 −0.1 0.0 0
0.0 0.0 −0.5

 , B =



1.0 0.1
0.2 1.0
0.5 −0.1
0.0 0.0
0.0 0.0
0.0 0.0

 .

7.2. Performance indices

In order to verify the behavior of the control system, two performance indexes have been
introduced, related to mean absolute and squared tracking errors:

J1 =
1
N

N

∑
t=0

p

∑
k=1

|rk,t − yk,t |, (35)

J2 =
1
N

N

∑
t=0

p

∑
k=1

(
rk,t − yk,t

)2
, (36)

where N denotes the simulation horizon.
In order to evaluate the directional change impact on the control performance, the following

indices have been introduced:

Jφ =
1
N

N

∑
t=0

|φ(vt)−φ(ut)| [◦], (37)

Jφ2 =
1
N

N

∑
t=0

(φ(vt)−φ(ut))
2 , (38)

where φ(vt) is an angle between the versor e1 and vt , and φ(ut) is an angle between e1 and ut .
Index Jφ is related to mean absolute directional change (in degrees), and its value increases

in proportion to the excess of the directional change. Performance index Jφ2 increases rapidly
with severe directional change, and allows one to check what is the character of these changes.

7.3. Simulation results

The tested control system is to assure tracking of the reference vector rt ∈ Rp, and the results
have been presented in Figs. 4–8 and Tables 1–3.
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(a) (b)

Fig. 4. P1, DP control law: (a) without modeled actuator failure; (b) with robustness against actuator failure

The simulations have been carried out for the following constraints imposed on the control
vector:

P1: α1 = 1.5, α2 = 2.0, β1 = 2.0, β2 = 2.0,
P2: α1 = 1.5, α2 = 0.5, α3 = 1.0, β1 = 3.0, β2 = 0.5, β3 = 2.0,
P3: α1 = 1.5, α2 = 2.0, β1 = 2.0, β2 = 2.0,

allowing asymptotic closed-loop tracking properties, except for the case when closed-loop sys-
tem becomes unstable.

Table 1. Performance indices for P1

DP DP + rob. no DP no DP + rob.

J1 2.14 1.75 2.30 1.69

J2 8.62 7.94 8.90 7.83

Jφ 0.00 0.00 11.30 2.74

Jφ2 0.00 0.00 393.46 68.26

J 24.06 21.20 23.59 20.98

On the basis of the results presented in Tables 1–3 one can see, that introduction of DP
requirement leads to increase in the performance indexes depicting control quality. Nevertheless,
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(a) (b)

Fig. 5. P1, control law with no DP: (a) without modeled actuator failure;
(b) with robustness against actuator failure

(a) (b)

Fig. 6. P2, control law with robustness against actuator failure: (a) with DP; (b) without DP algorithm
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(a) (b)

Fig. 7. P3, control law without robustness against actuator failure: (a) with DP; (b) without DP algorithm

Table 2. Performance indices for P2

DP DP + rob. no DP no DP + rob.

J1 – 4.42 – 1.69

J2 – 11.18 – 7.83

Jφ – 0.00 – 2.74

Jφ2 – 0.00 – 68.26

J – 27.11 – 20.98

in comparison to dynamical controllers, unable to desaturate the control vector in a single step
because of dynamics of the controller, it is possible to perform the desaturation in a single step.

For plants P1 and P3, introducing the robustness against actuator failure in the case when
directional change is allowed, causes all the performance indexes to decrease in comparison
to the case of a standard controller with and without DP requirement. What is interesting, the
introduction of the robustness against actuator failure for P1 with a DP-controller, enables one
to improve performance indexes, and the introduction of robustness against actuator failure to
a non-DP controller causes reduction of the mean directional change in comparison to the case
without the DP algorithm and without modeled uncertainty. It can also be readily seen that the
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(a) (b)

Fig. 8. P3, control law with robustness against actuator failure: (a) with DP; (b) without DP algorithm

Table 3. Performance indices for P3

DP DP + rob. no DP no DP + rob.

J1 2.47 2.48 2.48 2.50

J2 7.86 7.86 7.86 7.87

Jφ 0.00 0.00 0.81 0.58

Jφ2 0.00 0.00 49.22 3.55

J 19.21 18.92 18.90 18.86

control performance improvement does not have to be accompanied by excessive directional
change (third and fourth column of Table 1).

In the case of P3, because of tight cross-coupling, as well as because m < p holds, a major
reduction in angular change, i.e. keeping control direction constant, leads us only to a 1% increase
in performance indexes (J1 and J2). In such a case, the use of the DP algorithm does not cause
severe performance degradation.

In the case of P2 (unstable plant), lack of robustness introduced to the control system, with
imposed constraints, caused the control system to become unstable. When m > p holds, a simple
static controller is usually unable to stabilise the closed-loop system. Introduction of robustness
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causes the closed-loop system to stabilise. On the basis of plots from the tracking system, one
can see that robustness against actuator failure causes less frequent resaturation of the elements
of thr control vector and its rates of changes.

8. Conjectures and conclusions

The improvement in quality of control must not always, as has been here presented, be con-
nected with increase in directional change. By introducing the robustness against actuator failure
to the control system, represented as cut-off or DP nonlinearity here, it is possibile to obtain fur-
ther reduction of performance indices. The improvement in windup avoidance (visible by obser-
vation of evolution of control vectors in time) goes along with preserving (or avoiding excessive
changes) in control vector direction.

Conjecture 1

In a controllable LQR-controlled system for m ≤ p taking robustness against the actuator
failure into account improves the performance indices, and, in addition, in the m = p case with
cut-off saturation, enables further reduction of the directional change with respect to the analo-
gous case but without the robustness algorithm.

Conjecture 2

In the case of m < p, having introduced DP requirement causes neglectful increase in per-
formance indices, which creates the possibility of keeping the original control vector direction
virtually with no loss in quality in comparison with the case of cut-off saturation. Taking robust-
ness issues into account allows one to reduce the frequency of saturations of the control vectors.

References

[1] Albertos P., Sala A., Multivariable Control Systems, Springer (2002).
[2] Giernacki W., Near to Optimal Design of PIλ Dµ Fractional-Order Speed Controller (FOPID) for

Multirotor Motor-rotor Simplified Model, 17th International Conference on Unmanned Aircraft Sys-
tems, Arlington, pp. 320–326 (2016).

[3] Horla D., On directional change and anti-windup compensation in multivariable control systems,
International Journal of Applied Mathematics and Computer Science, vol. 19, no. 2, pp. 281–289
(2009).

[4] Horla D., Królikowski A., Discrete-time LQG Control with Actuator Failure, 8th International Con-
ference on Informatics in Control, Automation and Robotics, Noordwijkerhout, CD-ROM (2011).

[5] Hu T., Lin Z., Control systems with actuator saturation: Analysis and design, Birkhäuser, (2001).
[6] Maciejowski J.M., Multivariable Feedback Design, Addison-Wesley Publishing Company (1989).
[7] Maciejowski J.M., Predictive Control with Constraints, Pearson Education Limited (2002).
[8] Mahmoud M.S., Resilietn Control of Unvertain Dynamical Systems, Springer (2004).
[9] Petersen I.R., McFarlane D.C., Optimizing the guaranteed cost in the control of uncertain systems, in

Mansour M., Balemi S., Truol W. (Eds.), Robustness of dynamical systems with parameter uncertain-
ties, Brikhäuser (1992).



Vol. 67 (2018) Directional change and windup phenomena 359

[10] Tarbouriech S., Gomes da Silva, J., Synthesis of controllers for continuoustime delay systems with
saturating controls via LMIs, IEEE Transactions on Automatic Control, vol. 45, no. 1, pp. 105–111
(2000).

[11] Xie L., Soh Y.C., Guaranteed cost control of uncertain discrete-time systems, Control Theory and
Advanced Technology, vol. 10, pp. 1235–1251 (1995).

[12] Yang Y., Yang G.-H., Soh Y.C., Reliable Control of Discrete-time Systems with Actuator Failures, IEE
Proceedings – Control Theory and Applications, vol. 147, no. 4, pp. 428–432 (2000).

[13] Yang G.-H., Wang J.L., Soh Y.C., Reliable LQG Control with Sensor Failures, IEE Proceedings –
Control Theory and Applications, vol. 147, no. 4, pp. 433–439 (2000).
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