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THE INFLUENCE OF THE GEOMETRICAL PARAMETERS FOR
STRESS DISTRIBUTION IN WIRE RACEWAY SLEWING BEARING

This paper presents the current study of the distribution of stresses for four-
point contact wire race ball bearing. The main aim of this article is to define the
most important geometrical rules in a wire-race bearing. The results for bearings of
different geometrical parameters are presented. In the study, one also estimates the
distribution of internal pressure in particular bearing elements.

1. Introduction

The wire-race slewing bearing is a kind of slewing bearing in which a wire
plays the role of raceway. The rings can be made of light metals, like aluminum
or new materials, like composites. These bearings can be used in applications
where lightweight and inertia are important, such as aircraft, robotics and medical
aperture [1]. Wire-race slewing bearing are also backlash-free. Another advantage
are replaceable raceways, thanks to which the maintenance of big machines (like
excavators) is much easier.

In these bearings, there are two contact pairs: ball-wire andwire-ring. The ball-
wire contact pair is an example of a Hertz contact with elliptical contact surface.
The wire-ring contact is a classic contact, with larger contact area. Due to the lack
of literature on these kinds of bearings, the design rules for wire bearings are not
properly defined. The future expectations for these kinds of bearings are: further
reduction of weight, by using composites material, and improvement of reliability.

An example of a cross section of wire-race slewing bearing is presented below
(Fig. 1). In the wire-race bearing, the load is usually carried from external compo-
nents through balls or rollers and wires in four contact points to the ring and the
rest of structure. The estimation of the rings deformations is crucial in predicting
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Fig. 1. Section of wire raceway bearing [1]

the life of bearing. The cross sections of wires can have different shapes, but most
often the circular cross sections is used. [2–9].

To calculate load bearing capacity, one can use analytical methods, such as
the Ohnrich’s method, or the Matthias’s method, but these method rely on certain
assumptions. The use of the finite element method (FEM) allows for the contact
analysis and the analysis of the distribution of pressure for particular rolling ele-
ments. The results of simulations allow one to determinate certain characteristics
(e.g., stiffness characteristics of the ball-wire), and allow for making the assump-
tions in development of alternative four-point bearing models [2–10].

The aim of this study is to estimate the load distribution, pressure distribution
and stress distribution in particular pairs, and to determine the most loaded points
and characteristics describing stiffness of kinematic pairs, which can be used in
development of an alternative four-point contact bearing model.

2. Elastic contact – Hertz theory

The Hertz theory is a classical contact theory used in analysis of elastic bodies.
The main assumptions of this method are as following [2, 6–9]:

1. The size of contact is small in comparison with the radii of contacting
bodies.

2. The yield limit cannot be exceeded, the bodies can deform only in the elastic
range of material property.

3. The load is perpendicular to the contact surface and the contact is friction-
less.

4. Geometrical imperfections of surfaces are not taken into account.
In this theory, the contact that occurs between the bodies is only amathematical

contact (point contact and line contact). The contact changes its shape from a point
contact to an ellipse, due to deformation of the bodies. The curvature function of
the bodies can be calculated as follows [2, 6–9]:

F (ρ) =
(ρ11 − ρ12) + (ρ21 − ρ22)∑

ρ
(1)∑

ρ = ρ11 + ρ12 + ρ21 + ρ22 (2)
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In these equation, ρ is principal curvature of the contact object and it is defined
as a reciprocal of each radius in the bodies, respectively, with sign convention –
positive for convex surfaces, negative for concave. Assuming material properties,
like Young’s modulus of the bodies as a E1 and E2, and Poisson’s ratio as µ1 and
µ2, one can calculate the semi-axes of the contact ellipse as follows [2, 6–9, 11]:
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Maximum contact pressure can be calculated as follows [2, 6–9, 11]:

pmax =
1
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Is these formulas, a∗ and b∗ are the coefficients of axes of the contact ellipse
[2, 6–9, 11].

3. Computational model

3.1. Finite element model

In order to simulate FEA phenomena occurring in a wire-race bearing, four
bearing models with different geometric parameters are built. Furthermore, in
order to shorten calculation time of the simulation, cyclic symmetry and mirror
symmetry assumption is used, i.e., only 1/4 of a ball and segments of the rings
and wires are modeled.. In the contact area, first-order HEXA (C3D8R) elements
are used, element sizes in the contact ball-wire pair are 0.2% of ball diameter,
in the contact wire-ring pair the element size could be bigger due to the model
size and calculation time. Whereas, in other contact areas, first-order TETRA
(C3D4) elements are used. TETRA elements are connected to HEXA elements
by a linear contact “TIE”. Fig. 2 shows one of the bearing models, where white
arrows symbolize the direction of kinematic extortion. The models consist usually
of 700 000-800 000 elements and have 2 100 000-2 400 000 degrees of freedom.
The mesh size is chosen according to literature, hence mesh convergence is not
performed [2, 3, 12, 13].

The diameter of balls (d) is in the range from 14.288 [mm] to 30 [mm], the
diameter of wire (dw) is 10 [mm], the osculation ratio (s) is equal to 0.96 and
0.98. The models are constrained as follows: the wire, the ball and the ring are
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Fig. 2. Bearing model used in simulation with fixed displacement and direction of kinematic
extortion

constrained by symmetry bonding (plane XY), and the ring is constrained also in
YZ and ZX plane. (Fig. 2).

In the models, contact areas have a friction coefficient equal to f = 0.05. In
the ball-wire contact pair, the master surface is the ball surface, the slave is the
wire raceway, and in the next contact pair the master surface is the ring surface and
the slave is the wire. The contacts are based on “Surface to surface” discretization
method with finite sliding contact formulation. In normal direction, hard contact
with the Augmented Lagrange algorithm is used. In order to obtain an easier con-
vergence, one uses automatic stabilization. This stabilization is based on dissipated
energy fraction equal to 0.0002, and an adaptive stabilization with max ratio equal
to 0.05 is added. The initial step size is equal to 0.0001 and could change in the
range from 0.00001 to 1. The full Newtonmethod is used in simulations [5, 12–17].

Simulations are done in the linear range of material behavior, and the material
constants are:

• ball-steel: E = 200 GPa, ν = 0.3,
• wire-steel: E = 200 GPa, ν = 0.3,
• ring-aluminum: E = 200 GPa, ν = 0.33.
The simulation is based on displacement of a reference point inside a ball with

the resultant distance of 0.1 [mm] in the XY-plane. Next, Huber-Mises stresses
variability is assumed for the wire and the ball in the Bielajew point and at the
contact edge, whereas for the ring-only at the contact edge. The pressure charts
are made for the contact edge and for the central point in the contact area. The
distribution of particular deformation of the elements is also checked. The results
are presented in the function of ball load (pw), while the ball load is defined as:

pw =
F
d2 (6)

where: F – force acting for ball, d – ball diameter.
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An important parameter for wire-race bearings is the osculation ratio (s). The
simulations were run for two different osculation ratios (0.96 and 0.98). It is defined
as:

s =
d

2rb
(7)

where: d – ball diameter, rb – wire raceway radius.
For the purpose of this simulations, a new factor is defined, which is the fill

factor of raceway (k). The calculations are performed for three values of this factor
(0,382; 0,725; 0,987). The factor it is defined as:

k =
cw
dw

(8)

where: cw – chord of raceway, dw – wire diameter.

3.2. Results and discussion

For the displacement in which the contact occurs on the edge of a wire, the
percentage distribution of deformation is calculated for each of the elements of
bearings. The ball deforms on average by 49% of the total bearing deformation.
The wire accounts for 39% of deformation, and the ring accounts for 12%.

The relationship between maximum von Mises stress in the wires in the Biela-
jew’s point and the ball load is presented in Fig. 3. Von Mises stress reaches a
value of σHM = 3500 [MPa] for ball diameter 14.288 [mm] and the osculation
ratio equals 0.96. According to literature, higher osculation ratio is due to a lower
stress, which is observed in this figure, in which the stresses for ball diameter of
20 [mm] and 30 [mm] are similar. Higher stress for ball diameter equal to 20 [mm]
might be an effect of a difference in another geometrical factors. Stress distribution
is nonlinear, the higher osculation ratio is due to different shape of stress area. The
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Fig. 3. Comparison of maximum Von Mises stresses in wires, [MPa]
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stress in the wire is higher by approximately 9% than the stress in the ball, and
because its distribution is similar, only results for the wire are presented [2, 14].

The next figure (Fig. 4) presents the maximum von Mises stress [MPa] on
the contact edge in the wire. The simulations are performed with no fillet on the
wire edge, hence in this place there is a structural notch, which can also cause
an effect of singularity, however, higher stresses are expected in this area. For a
low value of ball loads, the stresses are also low, because the ball is not in contact
with the edge. After the contact occurs, an increase in stress is observed. In a
properly working bearing, the contact between the ball and the wire edge should
be avoided, however, this scenario should be analyzed. Edge correction (e.g., fillet
or logarithmical correction) should decrease the stress at the edge.
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Fig. 4. Comparison of maximum Von Mises stresses on the contact edge in wires, [MPa]

The results for the wire-ring contact pair indicate that, in this pair, stress
distribution is linear, due to the lack of the Hertz stress (Fig. 5 and Fig. 6). Stress
levels are significantly lower than those in the ball-wire contact pair; maximum
stress in the notch at the end of the contact surface is 760 [MPa], in the middle of
the contact surfaces the stress is, on average, lower than 30%.

The growth of stresses in the rings is linear, whereas in the balls and wires it is
nonlinear. In the case of rings, it is an effect of lack of Hertz stress, therefore, in the
rings the stress is lower, hence materials with lower yield limit could be used, such
as aluminum. In the balls and wires, a nonlinear distribution is a result of the Hertz
stress and ellipsoidal shape of the contact stress. In the rings, high contact stresses
are observed at the end of the contact area. It can be due to the influence of the
notch, or just spurious results due to numerical errors in the contact formulations.
However, if there is any yielding in the rings, it can have an influence on clearance
of parts, which may cause fatigue damage.

According to literature [4], maximum Hertz contact pressure can reach 4200-
4600 [MPa] [4, 12]. An example of the contact pressure plot and Von Mises stress
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Fig. 5. Comparison of maximum Von Mises stress on the contact end in the pair wire-ring
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Fig. 6. Comparison of maximum Von Mises stress in the middle of the contact pair wire-ring

is presented in Fig. 7. The maximum contact pressure in the middle of the contact
in this case is pmax = 1760 [MPa]. This plot is for ball load pw = 3.2 [MPa].
For this value of a ball load, the contact occurs on the wire edge. An ellipsoidal
shape of contact pressure is visible. The contact pressure plot in the case of wire is
analogical. In the second contact pair, thewire-ring contact pressure is significantly
lower in comparison to the ball-wire contact pair.

The pressure in the middle of a contact reaches the highest value only when
the ball does not reach a wire edge. For the contact of ball with a wire edge, one
can observe a significant increase in the stress and in the contact pressure. In the
wire-ring contact pair, stresses in the middle of the contact reach 550 [MPa], while
at the end of contact surfaces this stress can grow by 50%, hence it is necessary to
correct these contact surfaces. Examples of results are presented in Fig. 8 (for the
ball-wire contact pair) and Fig. 9 (for the wire-ring contact pair).



322 DOMINIK GUNIA, TADEUSZ SMOLNICKI

 

Fig. 7. Von Mises stress and contact pressure in ball
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Fig. 8. Comparison of contact pressures in the ball-wire contact pair
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Fig. 9. Comparison of contact pressures in the wire-ring contact pair
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Comparison between analytical results and finite element analysis results of
contact pressure and stress have shown that analytical method gives comparable
results for a higher value of ball diameter (Table 1). For lower balls diameters,
discrepancy between the results is very high. The analytical method of stress
calculation can be treated as a preliminary step for further calculation, however,
the results of finite element analysis are more accurate [2]. FEA simulations allows
us to include more phenomena, which are restricted for analytical models [2].

Table 1

Analytical FEA simulations
Force Pressure Von Mises Pressure Von Mises

Bearing model
[N] [MPa] stress [MPa] [MPa] stress [MPa]

d = 14, s = 0.96 200 880.44 545.87 2132.2 1053.95
d = 16, s = 0.98 640 1038.00 643.56 1419.57 597.36
d = 20, s = 0.96 1300 1003.55 622.20 1668.51 864.66
d = 30, s = 0.96 2200 1536.34 952.53 1573.74 852.07

The raceway fill factor is created to explain the difference in stress results,
e.g., the fact that Von Mises stress in the Bielajew point for the bearing with ball
diameter equal to 14.288 [mm] is 70% higher in comparison to the rest of results.
The results of stress distribution in the wire race bearing for different values of
raceway fill factor are presented in Fig. 10. Simulations have been performed for
equal geometrical parameters, such as ball diameter and osculation ratio. For a low
value of k, the contact between the ball and the wire edge occurred for low values
of ball load. At higher values of raceway fill factor, the stress at the Bielajew’s point
may decrease.

Fig. 10. Comparison of stress distribution for different values of raceway fill factor (k) in wire race
bearing

The next figures (Fig. 11 and Fig. 12) show stress distribution at the Bielajew’s
point and on wire edge. For a higher value of fill factor, the Hertz stress can
decrease (10% difference at the Bielajew’s point,almost 300% for Von Mises stress
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at the edge). On the boundary of contact edge, stress distribution changes from
three-axis compression to two-axis state of load. This situation is observed for
higher values of ball load and is dangerous, because the stress can reach yield
limit. Stress distribution at the contact edge is nonlinear, however, different types
of nonlinearity can be observed for lower and higher values of the raceway fill
factor. For k = 0.382, the distribution is initially nonlinear, for higher values of
k, the distribution is initially almost linear and then it becomes nonlinear. This
phenomenon can be explained by the fact that, for higher values of k, the ball can
deform much more.
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4. Conclusions

Four-point contact wire raceway bearings can be analyzed in a similar way
like normal slewing bearing. In the wire-ring type of pair, the maximum contact
stresses occurs at the edge of the contact (the contact stresses are about 50% higher
than those in the middle of the contact), therefore it is essential to introduce a
geometrical correction for this area.

The next critical point is the contact edge in the ball-wire pair, where it is
necessary to check this contact area according to maximum Von Mises stress and
the contact stress. It is also important to make a geometrical correction for the
contact edge, for example, curvature correction (fillet), or logarithmic correction.
However, well-designed wire race bearing should not work in this range of load.

The bearings with higher osculation ratio can reach a higher value of stresses,
hence they can be greatly loaded. However, the contact between wire edge and ball
appears for a lower value of ball load.

In well-designed wire-raceway slewing bearing, the most loaded points are
the Bielajew point (the highest Von Mises stress) and the middle of contact in the
ball-wire pair (the highest contact stress). This stresses can be calculated with an
analytical method, however, for a lower ball diameter the calculation error can be
significant. Finite element analysis is suggested instead as a reasonable method for
stress calculation.

Wire raceway bearings can be an alternative to classical slewing bearing in
the cases where weight is the priority. The most loaded parts are the balls and
the wire, hence the ring can be made of materials of lower material strength (like
aluminum).

The raceway fill factor is significant, it can reduce the load by 10% at the
Bielajew’s point and by almost 300% at the point on the wire edge. However, for a
high value of this factor, the results of these calculations may not be accurate, due
to the lack of plasticity in the material model.

The results of this kind of analyses (e.g., element stiffness) can be used in
simulations of a full model of bearing with methodology suggested in literature
[2]. Simulations with the use of virtual elements make it possible to evaluate the
behavior of a full slewing bearing model with a real carrying structure. This is a
huge advantage, especially in the case of large-diameter bearings.

Manuscript received by Editorial Board, February 11, 2017;
final version, May 03, 2017.
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