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Lyapunov matrices approach to the parametric
optimization of a system with two delays

JOZEF DUDA

In the paper a Lyapunov matrices approach to the parametric optimization problem of
time-delay systems with two commensurate delays and a P-controller is presented. The value of
integral quadratic performance index of quality is equal to the value of the Lyapunov functional
for the initial function of time-delay system. The Lyapunov functional is determined by means
of the Lyapunov matrix.
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1. Introduction

The Lyapunov functionals are used to test the stability of systems, in calculation of
the robustness bounds for uncertain time delay systems, in computation of the exponen-
tial estimates for the solutions of time delay systems. The method of determination of
a Lyapunov functional for a time delay system with one delay, for the first time, was
presented by Repin [13]. Duda used the Repin’s method to determination of a Lyapunov
functional for a system with two delays [2], for a neutral system [3], for a system with
a time-varying delay [4,5], for a neutral system with both lumped and distributed delay
[7].

The Lyapunov quadratic functionals are also used to calculation of a value of a
quadratic performance index of quality in the process of the parametric optimization
for time delay systems. One constructs a functional for a system with a time delay with a
given time derivative whose is equal to the negatively defined quadratic form of a system
state. The value of that functional at the initial state of a time delay system is equal to
the value of a quadratic performance index of quality.

In last years a method of determination of the Lyapunov functional by means of
Lyapunov matrices is very popular, see for example [10-12,14]. Duda used a method
of determination of the Lyapunov functional by means of Lyapunov matrix in the para-
metric optimization problem to a time-delay system with one delay [6] and to a neutral
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system with one delay [8] . In this paper is presented a Lyapunov matrices approach to
the parametric optimization problem of a time-delay system with two delays. This paper
extends results of [6] to the time delay system with two delays.

2. Preliminaries

Let us consider a time-delay system
dx(t)

dt
=

m

∑
j=0

A jx(t −h j)

x(t0 +θ) = φ(θ)
(1)

for t  t0, θ ∈ [−h,0], where x(t) ∈Rn, A j ∈Rn×n, 0 = h0 < h1 < ... < hm = h, function
φ∈ PC([−h,0],Rn) - the space of piece-wise continuous vector valued functions defined
on the segment [−h,0] with the uniform norm ∥ φ ∥PC= sup

θ∈[−h,0]
∥ φ(θ) ∥.

The theorems of existence, continuous dependence and uniqueness of solutions of
equation (1) are given in [9].

Let x(t, t0,φ) be the solution of system (1) with the initial function φ.
K(t) is the fundamental matrix of system (1) if it satisfies the matrix equation

d
dt

K(t) =
m

∑
j=0

A jK(t −h j)

for t  0 and the following initial condition K(0) = In×n and K(t) = 0n×n for t < 0
where In×n is the identity n×n matrix and 0n×n is the zero n×n matrix.

Theorem 1 (Bellman & Cooke [1]). Let K(t) be the fundamental matrix of system (1),
then for t  t0

x(t, t0,φ) = K(t − t0)φ(0)+
m

∑
j=1

0∫
−h j

K(t − t0 −h j −θ)A jφ(θ)dθ (2)

The function xt(t0,φ) : [−h,0]→Rn is called a shifted restriction of x(·, t0,φ) to an
interval [t −h, t] and is defined by a formula

xt(t0,φ)(θ) := x(t +θ, t0,φ) (3)

for t  t0 and θ ∈ [−h,0].
The initial condition holds

xt0(t0,φ) = φ (4)

for θ ∈ [−h,0].



LYAPUNOV MATRICES APPROACH TO THE PARAMETRIC OPTIMIZATION
OF A SYSTEM WITH TWO DELAYS 369

3. A Lyapunov-Krasovskii functional

Given a symmetric positive definite matrix W ∈ Rn×n. We are looking for a func-
tional v : PC([−h,0],Rn)→ R such that along the solutions of system (1) the following
equality holds

d
dt

v(xt(t0,φ)) =−xT (t, t0,φ)Wx(t, t0,φ) (5)

for t  t0, where x(t, t0,φ) is a solution of system (1), with the initial function φ ∈
PC([−h,0],Rn), given by (2).

We assume that system (1) is asymptotically stable and integrate both side of Eq. (5)
from t0 to infinity. We obtain

v(xt0(t0,φ)) = v(φ) =
∞∫

t0

xT (t, t0,φ)Wx(t, t0,φ)dt (6)

Taking into account (2) we calculate the integral of the right-hand side of Eq. (6)

∞∫
t0

xT (t, t0,φ)Wx(t, t0,φ)dt = φT (0)
∞∫

0

KT (t)WK(t)dtφ(0)+

+
m

∑
j=1

0∫
−h j

2φT (0)
∞∫

0

KT (t)WK(t −h j −θ)dtA jφ(θ)dθ+

+
m

∑
j=1

m

∑
k=1

0∫
−h j

φT (θ)AT
j

0∫
−hk

∞∫
0

KT (t −h j −θ)WK(t −hk −η)dtAkφ(η)dηdθ (7)

The following relations hold

∞∫
0

KT (t −h j −θ)WK(t −hk −η)dt =
∞∫

−h j−θ

KT (ς)WK(ς+h j −hk +θ−η)dς =

=

0∫
−h j−θ

KT (ς)WK(ς+h j −hk +θ−η)dς+
∞∫

0

KT (ς)WK(ς+h j −hk +θ−η)dς =

=

∞∫
0

KT (ς)WK(ς+h j −hk +θ−η)dς
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The term
0∫

−h j−θ

KT (ς)WK(ς+h j −hk +θ−η)dς = 0

because K(ς) = 0 for ς < 0. Formula (7) takes a form

∞∫
t0

xT (t, t0,φ)Wx(t, t0,φ)dt = φT (0)
∞∫

0

KT (t)WK(t)dtφ(0)+

+
m

∑
j=1

0∫
−h j

2φT (0)
∞∫

0

KT (t)WK(t −h j −θ)dtA jφ(θ)dθ+

+
m

∑
j=1

m

∑
k=1

0∫
−h j

φT (θ)AT
j

0∫
−hk

∞∫
0

KT (ς)WK(ς+h j −hk +θ−η)dςAkφ(η)dηdθ (8)

We introduce a Lyapunov matrix

U(ξ) =
∞∫

0

KT (t)WK(t +ξ)dt (9)

for ξ  0. Using the Lyapunov matrix (9) and taking into account Eq. (6) we obtain a
formula for a functional v(φ)

v(φ) =
∞∫

t0

xT (t, t0,φ)Wx(t, t0,φ)dt = φT (0)U(0)φ(0)+

+2φT (0)
m

∑
j=1

0∫
−h j

U(−θ−h j)A jφ(θ)dθ+

+
m

∑
j=1

m

∑
k=1

0∫
−h j

0∫
−hk

φT (θ)AT
j U(h j −hk +θ−η)Akφ(η)dηdθ (10)

Theorem 2 The Lyapunov matrix (9) satisfies the following properties [14]:

Dynamic property
d
dξ

U(ξ) =
m

∑
j=0

U(ξ−h j)A j (11)

for ξ 0.
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Symmetry property

U(−ξ) =UT (ξ) (12)

for ξ 0.

Algebraic property

m

∑
j=0

[U(−h j)A j +AT
j U(h j)] =−W (13)

Formulas (11), (12), (13) enable us to calculate the Lyapunov matrix U(ξ) for ξ 0.

4. A Lyapunov matrix for a system with two commensurate delays

Let us consider the following system
dx(t)

dt
= A0x(t)+A1x(t −h)+A2x(t −2h)

x(θ) = φ(θ)
(14)

for t  0 and θ ∈ [−2h,0]. Where A0,A1,A2 ∈Rn×n and φ ∈ PC([−h,0],Rn), 0 < h ∈R.
A set of equations (11), (12), (13) for system (14) takes a form

d
dξ

U(ξ) =U(ξ)A0 +U(ξ−h)A1 +U(ξ−2h)A2 (15)

U(−ξ) =UT (ξ) (16)

U(0)A0 +U(−h)A1 +U(−2h)A2 +AT
0 U(0)+AT

1 U(h)+AT
2 U(2h) =−W (17)

for ξ ∈ [0,2h]. The relation (16) implies

U(−h) =UT (h) and U(−2h) =UT (2h)

so we can write Eq. (17) in a form

U(0)A0 +UT (h)A1 +UT (2h)A2 +AT
0 U(0)+AT

1 U(h)+AT
2 U(2h) =−W (18)

Formula (16) extends the function U defined on the segment [0,2h] to the segment
[−2h,0]. Indeed for ξ ∈ [0,2h], U(−ξ) = UT (ξ). For τ = −ξ, U(τ) = UT (−τ) and
τ ∈ [−2h,0].
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We define the functions U1(ξ), U2(ξ), Z1(ξ), Z2(ξ) for ξ ∈ [0,h]

U1(ξ) =U(ξ) (19)

U2(ξ) =U(h+ξ) (20)

Z1(ξ) =U(ξ−h) =UT (−ξ+h) (21)

Z2(ξ) =U(ξ−2h) =UT (−ξ+2h) (22)

For ξ ∈ [0,h] Eq. (15) can be written in a form

d
dξ

U1(ξ) =U1(ξ)A0 +Z1(ξ)A1 +Z2(ξ)A2 (23)

For ξ+h = ς ∈ [h,2h]

U(ς) =U(ξ+h) =U2(ξ), U(ς−h) =U(ξ) =U1(ξ), U(ς−2h) =U(ξ−h) = Z1(ξ)

and Eq. (15) can be written in a form

d
dξ

U2(ξ) =U2(ξ)A0 +U1(ξ)A1 +Z1(ξ)A2 (24)

We compute the derivative of Z1(ξ)

d
dξ

Z1(ξ) =
d
dξ

UT (−ξ+h) =
d
dτ

UT (τ)
dτ
dξ

=− d
dτ

UT (τ) =

=−AT
0 UT (τ)−AT

1 UT (τ−h)−AT
2 UT (τ−2h) =

=−AT
0 UT (−ξ+h)−AT

1 UT (−ξ)−AT
2 UT (−ξ−h) =

=−AT
0 Z1(ξ)−AT

1 U1(ξ)−AT
2 U2(ξ) (25)

where τ =−ξ+h and the derivative of Z2(ξ)

d
dξ

Z2(ξ) =
d
dξ

UT (−ξ+2h) =
d
dτ

UT (τ)
dτ
dξ

=− d
dτ

UT (τ) =

=−AT
0 UT (τ)−AT

1 UT (τ−h)−AT
2 UT (τ−2h) =

=−AT
0 UT (−ξ+2h)−AT

1 UT (−ξ+h)−AT
2 UT (−ξ) =

=−AT
2 U1(ξ)−AT

1 Z1(ξ)−AT
0 Z2(ξ) (26)

and where τ =−ξ+2h.
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We have received a set of ordinary differential equations

d
dξ

U1(ξ) =U1(ξ)A0 +Z1(ξ)A1 +Z2(ξ)A2

d
dξ

U2(ξ) =U1(ξ)A1 +U2(ξ)A0 +Z1(ξ)A2

d
dξ

Z1(ξ) =−AT
1 U1(ξ)−AT

2 U2(ξ)−AT
0 Z1(ξ)

d
dξ

Z2(ξ) =−AT
2 U1(ξ)−AT

1 Z1(ξ)−AT
0 Z2(ξ)

(27)

for ξ ∈ [0,h] with initial conditions

U1(0), U2(0), Z1(0), Z2(0)

The following relations hold

U(0) =U1(0), U(h) =U2(0), U(2h) =U2(h)

and therefore Eq. (18) takes a form

U1(0)A0 +UT
2 (0)A1 +UT

2 (h)A2 +AT
0 U1(0)+AT

1 U2(0)+AT
2 U2(h) =−W (28)

Using the Kronecker product we can express Eq. (27) in a form

d
dξ

colU1(ξ)

d
dξ

colU2(ξ)

d
dξ

colZ1(ξ)

d
dξ

colZ2(ξ)


= H


colU1(ξ)
colU2(ξ)
colZ1(ξ)
colZ2(ξ)

 (29)

for ξ ∈ [0,h] with initial conditions

colU1(0), colU2(0), colZ1(0), colZ2(0)

where

H =


AT

0 ⊗ I 0 AT
1 ⊗ I AT

2 ⊗ I
AT

1 ⊗ I AT
0 ⊗ I AT

2 ⊗ I 0
−I ⊗AT

1 −I ⊗AT
2 −I ⊗AT

0 0
−I ⊗AT

2 0 −I ⊗AT
1 −I ⊗AT

0
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Formula (28) can be expressed in a form

(AT
0 ⊗ I + I ⊗AT

0 )colU1(0)+(I ⊗AT
1 )colU2(0)+

+(AT
1 ⊗ I)colUT

2 (0)+(I ⊗AT
2 )colU2(h)+(AT

2 ⊗ I)colUT
2 (h) =−colW (30)

Solution of Eq. (29) is given in the form
colU1(ξ)
colU2(ξ)
colZ1(ξ)
colZ2(ξ)

= Φ(ξ)


colU1(0)
colU2(0)
colZ1(0)
colZ2(0)

 (31)

where a matrix

Φ(ξ) =


Φ11(ξ) Φ12(ξ) Φ13(ξ) Φ14(ξ)
Φ21(ξ) Φ22(ξ) Φ23(ξ) Φ24(ξ)
Φ31(ξ) Φ32(ξ) Φ33(ξ) Φ34(ξ)
Φ41(ξ) Φ42(ξ) Φ43(ξ) Φ44(ξ)

 (32)

is a fundamental matrix of system (29).
We determine the initial conditions

colU1(0), colU2(0), colZ1(0), colZ2(0)

From Eq. (31) we obtain

colU1(h) = colU2(0) = Φ11(h)colU1(0)+

+Φ12(h)colU2(0)+Φ13(h)colZ1(0)+Φ14(h)colZ2(0) (33)

colZ1(h) = colU1(0) = Φ31(h)colU1(0)+

+Φ32(h)colU2(0)+Φ33(h)colZ1(0)+Φ34(h)colZ2(0) (34)

colZ2(h) = colZ1(0) = Φ41(h)colU1(0)+

+Φ42(h)colU2(0)+Φ43(h)colZ1(0)+Φ44(h)colZ2(0) (35)

colU2(h) = Φ21(h)colU1(0)+Φ22(h)colU2(0)+

+Φ23(h)colZ1(0)+Φ24(h)colZ2(0) (36)

We reshape Eqs.(33), (34) and (35). In this way we attain a set of algebraic equations
which enables us to calculate the initial conditions of system (29).

Φ11(h)colU1(0)+(Φ12(h)−1)colU2(0)+Φ13(h)colZ1(0)+Φ14(h)colZ2(0) = 0 (37)
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(Φ31(h)−1)colU1(0)+Φ32(h)colU2(0)+Φ33(h)colZ1(0)+Φ34(h)colZ2(0) = 0 (38)

Φ41(h)colU1(0)+Φ42(h)colU2(0)+(Φ43(h)−1)colZ1(0)+Φ44(h)colZ2(0) = 0 (39)

colU2(h) = Φ21(h)colU1(0)+Φ22(h)colU2(0)+Φ23(h)colZ1(0)+Φ24(h)colZ2(0)
(40)

(AT
0 ⊗ I + I ⊗AT

0 )colU1(0)+(I ⊗AT
1 )colU2(0)+(AT

1 ⊗ I)colUT
2 (0)+

+(I ⊗AT
2 )colU2(h)+(AT

2 ⊗ I)colUT
2 (h) =−colW (41)

5. Formulation of the parametric optimization problem

Let us consider a time-delay system with a P-controller
dx(t)

dt
=

m

∑
j=0

A jx(t −h j)+Bu(t −h)

u(t) =−Px(t)
x(t0 +θ) = φ(θ)

(42)

for t  t0, θ∈ [−h,0], where x(t)∈Rn is the state of system (42), u(t)∈Rp is the control,
A j ∈ Rn×n, B ∈ Rn×p, P ∈ Rp×n is a P-controller gain, φ ∈ PC([−h,0],Rn) is the initial
function, 0 = h0 < h1 < ... < hm = h are delays.

System (42) can be written in an equivalent form
dx(t)

dt
=

m

∑
j=0

A jx(t −h j)−BPx(t −h)

x(t0 +θ) = φ(θ)
(43)

for t  t0, θ ∈ [−h,0].
In parametric optimization problem will be used the performance index of quality

J =

∞∫
t0

xT (t, t0,φ)Wx(t, t0,φ)dt (44)

where W ∈ Rn×n is a symmetric positive definite matrix and x(t, t0,φ) is a solution of
Eq. (43) for initial function φ.

Problem. Determine the matrix P ∈ Rp×n whose minimize an integral quadratic
performance index of quality (44).

According to Eq. (6) the value of the performance index of quality (44) is equal to the
value of the functional (10) for initial function φ. To calculate the value of the functional
(10) we need a Lyapunov matrix U(ξ). To obtain a Lyapunov matrix U(ξ) we have to
solve a system of equations (11), (12) and (13).
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6. Parametric optimization for a scalar system with two delays

Let us consider a system with two delays and a P-controller
dx(t)

dt
= ax(t)+bx(t −h)+ cx(t −2h)+u(t −2h)

u(t) =−px(t)
x(θ) = φ(θ)

(45)

t  0, x(t)∈R is the state of system (45), u(t)∈R is the control, φ(θ) for θ ∈ [−2h,0] is
the initial function, 0¬ h, 2h are time delays, the parameter p is a gain of a P-controller.

One can reshape Eq. (45) to a form{
dx(t)

dt = ax(t)+bx(t −h)+(c− p)x(t −2h)
x(θ) = φ(θ)

(46)

for t  0 and θ ∈ [−2h,0].
In parametric optimization problem we use the performance index of quality

J =

∞∫
0

wx2(t,φ)dt (47)

where w > 0 and x(t,φ) is a solution of Eq. (46) for initial function φ.
The Lyapunov functional for system (46) has a form, see formula (10)

v(φ) =U(0)φ2(0)+2bφ(0)
0∫

−h

U(−θ−h)φ(θ)dθ+

+2(c− p)φ(0)
0∫

−h

U(−θ−2h)φ(θ)dθ+b2
0∫

−h

0∫
−h

U(θ−η)φ(θ)φ(η)dηdθ+

+2b(c− p)
0∫

−h

0∫
−2h

U(−h+θ−η)φ(θ)φ(η)dηdθ+(c− p)2
0∫

−2h

0∫
−2h

U(θ−η)φ(θ)φ(η)dηdθ

(48)
The value of the performance index of quality (47) is equal to the value of the func-

tional (48) for initial function φ

J = v(φ) (49)
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To obtain the value of the performance index of quality one needs a Lyapunov ma-
trix U(ξ) for ξ ∈ [0,2h]. In Chapter 4 was presented a method of determination of the
Lyapunov matrix for a system with two delays.

System of equations (27) takes a form

d
dξ

U1(ξ)

d
dξ

U2(ξ)

d
dξ

Z1(ξ)

d
dξ

Z2(ξ)


= G


U1(ξ)
U2(ξ)
Z1(ξ)
Z2(ξ)

 (50)

where

G =


a 0 b c− p
b a c− p 0
−b −c+ p −a 0

−c+ p 0 −b −a


Initial conditions of system (50) one obtains solving the algebraic equation

Q


U1(0)
U2(0)
Z1(0)
Z2(0)

=


0
0
0
−w

 (51)

where

Q =


Φ11(h) Φ12(h)−1 Φ13(h) Φ14(h)

Φ31(h)−1 Φ32(h) Φ33(h) Φ34(h)
Φ41(h) Φ42(h) Φ43(h)−1 Φ44(h)

p41 p42 p43 p44

 (52)

and

p41 = 2a+2(c− k)Φ21(h)
p42 = 2b+2(c− k)Φ22(h)
p43 = 2(c− k)Φ23(h)
p44 = 2(c− k)Φ24(h).
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Φ(ξ) is a fundamental matrix of solutions of Eq. (50) given by (32). Let us consider the
initial function φ given by a formula

φ(θ) =

{
x0 f or θ = 0
0 f or θ ∈ [−2h,0)

(53)

where x0 ∈R is an initial state of system (46). The value of performance index of quality
is equal to the value of functional (48) for φ given by formula (53) and is given by a term

J = v(φ) =U(0)x2
0 (54)

We search for an optimal gain which minimize the index (54) for given x0 = 1,
w = 1, a =−1, b =−0.5 and c = 1. Fig. 1 shows the value of the index J(p) for a =−1,
b =−0.5, c = 1 and h = 1. You can see that there exists a critical value of the gain pcrit .
The system (46) is stable for gains less then critical one and unstable for gains grater
then critical.

0 0.5 1 1.5 2 2.5
−60

−40

−20

0

20

40

60
J(p) for a=−1, b=−0.5, c=1, h=1

Figure 1: J(p), p belongs to interval [0,p1], where p1>pcrit

Fig. 2 shows the value of the index J(p) for a =−1, b =−0.5, c = 1, h = 1 and for p
less then critical gain. You can see that the function J(p) is convex and has a minimum.

Optimization results are given in Tab. 1.
From Tab. 1 implies that a critical gain pcrit depends on the value of time delay. Fig.

3 shows the graphs of functions U1(ξ), U2(ξ), Z1(ξ) and Z2(ξ) obtained with the Matlab
code, for parameters of system (46) used in optimization process for p = 2.
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0 0.5 1 1.5 2 2.5
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
J(p) for a=−1, b=−0.5, c=1, h=1

Figure 2: J(p), p belongs to interval [0,p1], where p1<pcrit

Table 12: Optimization results

Delay h Optimal gain Critical gain Index value

0.5 1.15 3.13 0.4043

1.0 0.87 2.39 0.4578

1.5 0.90 2.17 0.4964

2.0 0.96 2.07 0.5252

2.5 1.02 2.03 0.5428

7. Conclusions

In the paper a Lyapunov matrices approach to the parametric optimization problem
of time-delay systems with two delays is presented. The value of integral quadratic per-
formance index of quality is equal to the value of the Lyapunov functional for the initial
function of time-delay system. The Lyapunov functional is determined by means of the
Lyapunov matrix. The paper can be used in determination of the value of optimal gain
which minimize ISE (Integral of Squared Error) for systems with two delays. Using for-
mulas presented in Chapter 6 and a simple Matlab code it is possible to obtain the value
of optimal gain for required parameters of system (46).
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0 0.5 1 1.5 2
−3

−2

−1

0

1

2

3

0≤ξ≤ h

a=−1, b=−0.5, c=1, p=2

 

 
U1(ξ)
U2(ξ)
Z1(ξ)
Z2(ξ)

Figure 3: U1(ξ), U2(ξ), Z1(ξ), Z2(ξ) for p=2
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