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Hyperchaos, adaptive control and synchronization
of a novel 4-D hyperchaotic system

with two quadratic nonlinearities

SUNDARAPANDIAN VAIDYANATHAN

This research work announces an eleven-term novel 4-D hyperchaotic system with two
quadratic nonlinearities. We describe the qualitative properties of the novel 4-D hyperchaotic
system and illustrate their phase portraits. We show that the novel 4-D hyperchaotic system has
two unstable equilibrium points. The novel 4-D hyperchaotic system has the Lyapunov expo-
nents L1 = 3.1575, L2 = 0.3035, L3 = 0 and L4 = −33.4180. The Kaplan-Yorke dimension
of this novel hyperchaotic system is found as DKY = 3.1026. Since the sum of the Lyapunov
exponents of the novel hyperchaotic system is negative, we deduce that the novel hyperchaotic
system is dissipative. Next, an adaptive controller is designed to stabilize the novel 4-D hyper-
chaotic system with unknown system parameters. Moreover, an adaptive controller is designed
to achieve global hyperchaos synchronization of the identical novel 4-D hyperchaotic systems
with unknown system parameters. The adaptive control results are established using Lyapunov
stability theory. MATLAB simulations are depicted to illustrate all the main results derived in
this research work.
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1. Introduction

Chaos theory describes the qualitative study of unstable aperiodic behaviour in de-
terministic nonlinear dynamical systems. For the motion of a dynamical system to be
chaotic, the system variables should contain nonlinear terms and it must satisfy three
properties: boundedness, infinite recurrence and sensitive dependence on initial condi-
tions [1, 2].

The Lyapunov exponent of a dynamical system is a quantity that characterizes the
rate of separation of infinitesimally close trajectories. The sensitive dependence on initial
conditions of a dynamical system is characterized by the presence of a positive Lyapunov
exponent. A positive Lyapunov exponent reflects a direction of stretching and folding
and along with phase-space compactness indicates the presence of chaos in a dynamical

The author is with Research and Development Centre, Vel Tech University, Avadi, Chennai- 600062,
Tamil Nadu, India. E-mail: sundarcontrol@gmail.com

Received 9.05.2016.

10.1515/acsc-2016-0026



472 SUNDARAPANDIAN VAIDYANATHAN

system. An n-dimensional dynamical system has a spectrum of n Lyapunov exponents
and the maximal Lyapunov exponent (MLE) of a chaotic system is defined as the largest
positive Lyapunov exponent of the system.

Chaos has developed over time. For example, Ruelle and Takens [3] proposed a the-
ory for the onset of turbulence in fluids, based on abstract considerations about strange
attractors. Later, May [4] found examples of chaos in iterated mappings arising in popu-
lation biology. Feigenbaum [5] discovered that there are certain universal laws governing
the transition from regular to chaotic behaviours. That is, completely different systems
can go chaotic in the same way, thus, linking chaos and phase transitions.

The first famous chaotic system was accidentally discovered by Lorenz, when he
was designing a 3-D model for atmospheric convection in 1963 [6]. Subsequently,
Rössler discovered a 3-D chaotic system in 1976 [7], which is algebraically simpler
than the Lorenz system. Indeed, Lorenz’s system is a seven-term chaotic system with
two quadratic nonlinearities, while Rössler’s system is a seven-term chaotic system with
just one quadratic nonlinearity.

Some well-known paradigms of 3-D chaotic systems are Arneodo system [8], Sprott
systems [9], Chen system [10], Lü-Chen system [11], Liu system [12], Cai system [13],
T-system [14], etc. Many new chaotic systems have been also discovered like Li system
[15], Sundarapandian systems [16, 17], Vaidyanathan systems [18, 19, 20, 21, 22, 23,
24], Pehlivan system [25], Akgul system [26], Jafari system [27], Pham system [28, 29,
30, 31], Tacha system [32], etc.

Chaos theory has applications in several fields of science and engineering such as os-
cillators [33, 34], chemical reactions [35, 36], biology [37, 38], ecology [39, 40], neural
networks [41, 42], gyros [43], Tokamak system [44, 45],neurology [46, 47, 48], cir-
cuits [49, 50], etc.

A hyperchaotic system is generally defined as a chaotic system with at least two
positive Lyapunov exponents [1, 2]. Thus, the hyperchaotic systems have more complex
dynamical behaviour and hence they have miscellaneous applications in engineering
[1, 2].

The minimum dimension for an autonomous, continuous-time, hyperchaotic system
is four. Since the discovery of a first 4-D hyperchaotic system by Rössler in 1979 [65],
many 4-D hyperchaotic systems have been found in the literature such as hyperchaotic
Lorenz system [66], hyperchaotic Lü system [67], hyperchaotic Chen system [68], hy-
perchaotic Wang system [69], hyperchaotic Newton-Leipnik system [70], hyperchaotic
Vaidyanathan system [71, 72], etc.

The study of control of a chaotic system investigates methods for designing feedback
control laws that globally or locally asymptotically stabilize or regulate the outputs of a
chaotic system [73].

Chaos synchronization problem deals with the synchronization of a couple of sys-
tems called the master or drive system and the slave or response system. To solve this
problem, control laws are designed so that the output of the slave system tracks the out-
put of the master system asymptotically with time [73, 74].
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Because of the butterfly effect, the synchronization of chaotic systems is a challeng-
ing problem in the chaos literature even when the initial conditions of the master and
slave systems are nearly identical because of the exponential divergence of the outputs
of the two systems in the absence of any control.

This research work announces an eleven-term novel 4-D hyperchaotic system with
two quadratic nonlinearities. We describe the qualitative properties of the novel 4-D
hyperchaotic system and illustrate their phase portraits. We show that the novel 4-D
hyperchaotic system has two unstable equilibrium points.

We also show that the novel 4-D hyperchaotic system has the Lyapunov exponents
L1 = 3.1575, L2 = 0.3035, L3 = 0 and L4 = −33.4180. The Kaplan-Yorke dimension
of this novel hyperchaotic system is found as DKY = 3.1026. Since the sum of the Lya-
punov exponents of the novel hyperchaotic system is negative, we deduce that the novel
hyperchaotic system is dissipative.

Next, an adaptive controller is designed to stabilize the novel 4-D hyperchaotic sys-
tem with unknown system parameters. Moreover, an adaptive controller is designed to
achieve global hyperchaos synchronization of the identical novel 4-D hyperchaotic sys-
tems with unknown system parameters. The adaptive control results are established using
Lyapunov stability theory [75]. MATLAB simulations are depicted to illustrate all the
main results derived in this research work.

2. A novel 4-D hyperchaotic system

In this work, we propose a novel 4-D hyperchaotic system given by

ẋ1 = a(x2 − x1)+ x4

ẋ2 = bx1 − x2 − x1x3

ẋ3 = −x1 − cx3 + x1x2 + x4

ẋ4 = −px2

(1)

In (1), x1,x2,x3,x4 are the states and a,b,c, p are positive, constant, parameters.
In this work, we show that the 4-D system (1) is hyperchaotic when the parameter

values are taken as
a = 24, b = 125, c = 5, p = 10 (2)

Also, for these parameter values, the Lyapunov exponents of the novel 4-D system
(1) are calculated as

L1 = 3.1575, L2 = 0.3035, L3 = 0, L4 =−33.4180 (3)

Since there are two positive Lyapunov exponents in (3), it is immediate that the
proposed novel 4-D system (1) is hyperchaotic.
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Also, the maximal Lyapunov exponent (MLE) of the system (1) is obtained as
L1 = 3.1575, which is a large number. This shows the high complexity of the novel
4-D hyperchaotic system (1).

The system (1) is dissipative, because

L1 +L2 +L3 +L4 =−29.9570 < 0 (4)

Also, the Kaplan-Yorke dimension of the 4-D hyperchaotic system (1) is found as

DKY = 3+
L1 +L2 +L3

|L4|
= 3.1036 (5)

which is fractional. Thus, the 4-D hyperchaotic system (1) has a strange attractor of
fractional Kaplan-Yorke dimension.

For numerical simulations, we take the initial state of the hyperchaotic system (1) as

x1(0) = 0.2, x2(0) = 0.2, x3(0) = 0.2, x4(0) = 0.2 (6)

Figs. 1-4 depict the 3-D phase portraits of the novel 4-D hyperchaotic system (1)
in (x1,x2,x3), (x1,x2,x4), (x1,x3,x4) and (x2,x3,x4) spaces, respectively. From these fig-
ures, it is clear the novel 4-D hyperchaotic system (1) exhibits a two-wing attractor.
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Figure 1: 3-D projection of the novel hyperchaotic system on (x1,x2,x3) space
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Figure 2: 3-D projection of the novel hyperchaotic system on (x1,x2,x4) space
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Figure 3: 3-D projection of the novel hyperchaotic system on (x1,x3,x4) space
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Figure 4: 3-D projection of the novel hyperchaotic system on (x2,x3,x4) space

3. Analysis of the novel hyperchaotic system

3.1. Dissipativity

In vector notation, the novel 4-D hyperchaotic system (1) can be expressed as

ẋxx = f (xxx) =


f1(x1,x2,x3,x4)

f2(x1,x2,x3,x4)

f3(x1,x2,x3,x4)

f4(x1,x2,x3,x4)

 , (7)

where 

f1(x1,x2,x3,x4) = a(x2 − x1)+ x4

f2(x1,x2,x3,x4) = bx1 − x2 − x1x3

f3(x1,x2,x3,x4) = −x1 − cx3 + x1x2 + x4

f4(x1,x2,x3,x4) = −px2

(8)

Let Ω be any region in ℜ4 with a smooth boundary and also, Ω(t) = Φt(Ω), where
Φt is the flow of f . Furthermore, let V (t) denote the volume of Ω(t).
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By Liouville’s theorem, we know that

V̇ (t) =
∫

Ω(t)

(∇ · f )dx1 dx2 dx3 dx4 (9)

The divergence of the novel 4-D system (1) is found as:

∇ · f =
∂ f1

∂x1
+

∂ f2

∂x2
+

∂ f3

∂x3
+

∂ f1

∂x4
=−a−1− c =−µ (10)

where µ is defined as
µ = a+1+ c (11)

For the choice of parameter values given in (2), we find that µ = 30 > 0.
Inserting the value of ∇ · f from (10) into (9), we get

V̇ (t) =
∫

Ω(t)

(−µ)dx1 dx2 dx3 dx4 =−µV (t) (12)

Integrating the first order linear differential equation (12), we get

V (t) = exp(−µt)V (0) (13)

Since µ > 0, it follows from (13) that V (t)→ 0 exponentially as t → ∞. This shows
that the novel 4-D hyperchaotic system (1) is dissipative. Hence, the system limit sets are
ultimately confined into a specific limit set of zero volume, and the asymptotic motion
of the novel 4-D hyperchaotic system (1) settles onto a strange attractor of the system.

3.2. Equilibrium Points

The equilibrium points of the novel 4-D hyperchaotic system (1) are obtained by
solving the equations

f1(x1,x2,x3,x4) = a(x2 − x1)+ x4 = 0

f2(x1,x2,x3,x4) = cx1 − x2 − x1x3 = 0

f3(x1,x2,x3,x4) = −x1 − cx3 + x1x2 + x4 = 0

f4(x1,x2,x3,x4) = −px2 = 0

(14)

We take the parameter values as in the equation (2).
Solving the system (14), we obtain two equilibrium points of the system (1) given

by

E0 =


0
0
0
0

 , E1 =


27.1739
0.0000

125.0000
652.1739

 . (15)
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The Jacobian matrix of the 4-D hyperchaotic system (1) at any point xxx ∈ ℜ4 is given
by

J (xxx) =


−a a 0 1

b− x3 −1 −x1 0

−1+ x2 x1 −c 1

0 −p 0 0

=


−24 24 0 1

125− x3 −1 −x1 0

−1+ x2 x1 −5 1

0 −10 0 0

 (16)

The Jacobian matrix of the system (1) at E0 is found as

J0 = J(E0) =


−24 24 0 1

125 −1 0 0

−1 0 −5 1

0 −10 0 0

 (17)

The eigenvalues of the matrix J0 are numerically obtained as

λ1 =−5, λ2 =−68.6290, λ3 = 0.4215, λ4 = 43.2074 (18)

Thus, the equilibrium point E0 is a saddle-point, which is unstable.
Next, the Jacobian matrix of the system (1) at E1 is found as

J1 = J(E1) =


−24 24 0 1

125 −1 0 0

−1 0 −5 1

0 −10 0 0

 (19)

The eigenvalues of the matrix J1 are numerically obtained as

λ1 = 0.3624, λ2 =−23.4294, λ3,4 =−3.4665±26.9067i (20)

Thus, the equilibrium point E1 is a saddle-focus, which is also unstable.

3.3. Symmetry

It is easy to see that the novel 4-D hyperchaotic system (1) is invariant under the
coordinates transformation

(x1,x2,x3,x4) 7→ (−x1,−x2,x3,−x4) (21)

which shows that the novel system (1) has rotation symmetry about the x3 axis. As a
consequence, it follows that any non-trivial trajectory of the system (1) must have a twin
trajectory.
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3.4. Invariance

It is easy to see that the x3-axis is invariant under the flow of the novel 4-D hyper-
chaotic system (1). The invariant motion along the x3-axis is characterized by the scalar
dynamics

ẋ3 =−cx3, (c > 0) (22)

which is globally exponentially stable.

3.5. Lyapunov exponents and Kaplan-Yorke dimension

For the parameter values given in the equation (2), the Lyapunov exponents of the
novel 4-D hyperchaotic system (1) are calculated as

L1 = 3.1575, L2 = 0.3035, L3 = 0, L4 =−33.4180 (23)

Thus, the novel 4-D hyperchaotic system (1) has two positive Lyapunov expo-
nents. Also, the maximal Lyapunov exponent (MLE) of the system (1)is obtained as
L1 = 3.1575, which is a large value. This shows the high complexity of the novel 4-D
hyperchaotic system (1).

Also, the Kaplan-Yorke dimension of the novel hyperchaotic system (1) is obtained
as

DKY = 3+
L1 +L2 +L3

|L4|
= 3.1036 (24)

which is fractional.
Since the novel 4-D hyperchaotic system (1) has two positive Lyapunov exponents,

it has a very complex dynamics and the system trajectories can expand in two different
directions.

4. Adaptive control of the novel hyperchaotic system with unknown parameters

In this section, we use adaptive control method to derive an adaptive feedback control
law for globally stabilizing the novel 4-D hyperchaotic system with unknown parame-
ters.

Thus, we consider the novel 4-D hyperchaotic system given by

ẋ1 = a(x2 − x1)+ x4 +u1

ẋ2 = bx1 − x2 − x1x3 +u2

ẋ3 = −x1 − cx3 + x1x2 + x4 +u3

ẋ4 = −px2 +u4

(25)

In (25), x1,x2,x3,x4 are the states and u1,u2,u3,u4 are the adaptive controls to be
determined using estimates â(t), b̂(t), ĉ(t), p̂(t) for the unknown parameters a,b,c, p, re-
spectively.
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We consider the adaptive feedback control law

u1 = −â(t)(x2 − x1)− x4 − k1x1

u2 = −b̂(t)x1 + x2 + x1x3 − k2x2

u3 = x1 + ĉ(t)x3 − x1x2 − x4 − k3x3

u4 = p̂(t)x2 − k4x4

(26)

where k1,k2,k3,k4 are positive gain constants.
Substituting (26) into (25), we get the closed-loop plant dynamics as

ẋ1 = [a− â(t)](x2 − x1)− k1x1

ẋ2 = [b− b̂(t)]x1 − k2x2

ẋ3 = −[c− ĉ(t)]x3 − k3x3

ẋ4 = −[p− p̂(t)]x2 − k4x4

(27)

The parameter estimation errors are defined as

ea(t) = a− â(t)

eb(t) = b− b̂(t)

ec(t) = c− ĉ(t)

ep(t) = p− p̂(t)

(28)

In view of (28), we can simplify the plant dynamics (27) as

ẋ1 = ea(x2 − x1)− k1x1

ẋ2 = ebx1 − k2x2

ẋ3 = −ecx3 − k3x3

ẋ4 = −epx2 − k4x4

(29)

Differentiating (28) with respect to t, we obtain

ėa(t) = − ˙̂a(t)

ėb(t) = − ˙̂b(t)

ėc(t) = − ˙̂c(t)

ėp(t) = − ˙̂p(t)

(30)
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We use adaptive control theory to find an update law for the parameter estimates.
We consider the quadratic candidate Lyapunov function defined by

V (xxx,ea,eb,ec,ep) =
1
2

4

∑
i=1

x2
i +

1
2
(
e2

a + e2
b + e2

c + e2
p
)

(31)

Differentiating V along the trajectories of (29) and (30), we obtain

V̇ = −k1x2
1 − k2x2

2 − k3x2
3 − k4x2

4 + ea
[
x1(x2 − x1)− ˙̂a

]
+eb

[
x1x2 − ˙̂b

]
+ ec

[
−x2

3 − ˙̂c
]
+ ep

[
−x2x4 − ˙̂p

] (32)

In view of (32), we take the parameter update law as

˙̂a(t) = x1(x2 − x1)

˙̂b(t) = x1x2

˙̂c(t) = −x2
3

˙̂p(t) = −x2x4

(33)

Next, we state and prove the main result of this section.

Theorem 1 The novel 4-D hyperchaotic system (25) with unknown system parameters is
globally and exponentially stabilized for all initial conditions by the adaptive control law
(26) and the parameter update law (33), where k1,k2,k3,k4 are positive gain constants.

Proof We prove this result by applying Lyapunov stability theory [75].
We consider the quadratic Lyapunov function defined by (31), which is clearly a

positive definite function on ℜ8.
By substituting the parameter update law (33) into (32), we obtain the time-derivative

of V as
V̇ =−k1x2

1 − k2x2
2 − k3x2

3 − k4x2
4 (34)

From (34), it is clear that V̇ is a negative semi-definite function on ℜ8.
Thus, we can conclude that the state vector xxx(t) and the parameter estimation error

are globally bounded, i.e.[
x1(t) x2(t) x3(t) x4(t) ea(t) eb(t) ec(t) ep(t)

]T
∈ L∞.

We define k = min{k1,k2,k3,k4}.
Then it follows from (34) that

V̇ ¬−k∥xxx(t)∥2 (35)
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Thus, we have
k∥xxx(t)∥2 ¬−V̇ (36)

Integrating the inequality (36) from 0 to t, we get

k
t∫

0

∥xxx(τ)∥2 dτ ¬ V (0)−V (t) (37)

From (37), it follows that xxx ∈ L2.
Using (29), we can conclude that ẋxx ∈ L∞.
Using Barbalat’s lemma [75], we conclude that xxx(t)→ 0 exponentially as t → ∞ for

all initial conditions xxx(0) ∈ ℜ4.
This completes the proof.

For the numerical simulations, the classical fourth-order Runge-Kutta method with
step size h = 10−8 is used to solve the systems (25) and (33), when the adaptive control
law (26) is applied.

The parameter values of the novel 4-D hyperchaotic system (25) are taken as in the
hyperchaotic case, viz.

a = 24, b = 125, c = 5, p = 10 (38)

We take the positive gain constants as

k1 = 5, k2 = 5, k3 = 5, k4 = 5 (39)

As initial conditions of the novel 4-D hyperchaotic system (25), we take

x1(0) = 12.7, x2(0) = 3.8, x3(0) = 9.5, x4(0) = 6.2 (40)

Also, as initial conditions of the parameter estimates, we take

â(0) = 1.5, b̂(0) = 4.9, ĉ(0) = 2.7, p̂(0) = 5.4 (41)

In Fig. 5, the exponential convergence of the controlled states of the novel 4-D hy-
perchaotic system (25) is depicted.

5. Adaptive synchronization of the novel hyperchaotic systems with unknown
parameters

In this section, we use adaptive control method to derive an adaptive feedback control
law for globally synchronizing identical novel 4-D hyperchaotic systems with unknown
parameters.
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Figure 5: Time-history of the controlled states x1(t),x2(t),x3(t),x4(t)

As the master system, we consider the novel 4-D hyperchaotic system given by

ẋ1 = a(x2 − x1)+ x4

ẋ2 = bx1 − x2 − x1x3

ẋ3 = −x1 − cx3 + x1x2 + x4

ẋ4 = −px2

(42)

In (42), x1,x2,x3,x4 are the states and a,b,c, p are unknown system parameters.
As the slave system, we consider the novel 4-D hyperchaotic system given by

ẏ1 = a(y2 − y1)+ y4 +u1

ẏ2 = by1 − y2 − y1y3 +u2

ẏ3 = −y1 − cy3 + y1y2 + y4 +u3

ẏ4 = −py2 +u4

(43)

In (43), y1,y2,y3,y4 are the states and u1,u2,u3,u4 are the adaptive controls to be
determined using estimates â(t), b̂(t), ĉ(t), p̂(t) for the unknown parameters a,b,c, p, re-
spectively.
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The synchronization error between the novel 4-D hyperchaotic systems (42) and (43)
is defined by 

e1 = y1 − x1

e2 = y2 − x2

e3 = y3 − x3

e4 = y4 − x4

(44)

Then the synchronization error dynamics is obtained as

ė1 = a(e2 − e1)+ e4 +u1

ė2 = be1 − e2 − y1y3 + x1x3 +u2

ė3 = −e1 − ce3 + e4 + y1y2 − x1x2 +u3

ė4 = −pe2 +u4

(45)

We consider the adaptive feedback control law

u1 = −â(t)(e2 − e1)− e4 − k1e1

u2 = −b̂(t)e1 + e2 + y1y3 − x1x3 − k2e2

u3 = e1 + ĉ(t)e3 − e4 − y1y2 + x1x2 − k3e3

u4 = p̂(t)e2 − k4e4

(46)

where k1,k2,k3,k4 are positive gain constants.
Substituting (26) into (45), we get the closed-loop error dynamics as

ė1 = [a− â(t)] (e2 − e1)− k1e1

ė2 =
[
b− b̂(t)

]
e1 − k2e2

ė3 = − [c− ĉ(t)]e3 − k3e3

ė4 = − [p− p̂(t)]e2 − k4e4

(47)

The parameter estimation errors are defined as

ea(t) = a− â(t)

eb(t) = b− b̂(t)

ec(t) = c− ĉ(t)

ep(t) = p− p̂(t)

(48)
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In view of (48), we can simplify the plant dynamics (47) as

ė1 = ea(e2 − e1)− k1e1

ė2 = ebe1 − k2e2

ė3 = −ece3 − k3e3

ė4 = −epe2 − k4e4

(49)

Differentiating (48) with respect to t, we obtain

ėa(t) = − ˙̂a(t)

ėb(t) = − ˙̂b(t)

ėc(t) = − ˙̂c(t)

ėp(t) = − ˙̂p(t)

(50)

We use adaptive control theory to find an update law for the parameter estimates.
We consider the quadratic candidate Lyapunov function defined by

V (eee,ea,eb,ec,ep) =
1
2

4

∑
i=1

e2
i +

1
2
(
e2

a + e2
b + e2

c + e2
p
)

(51)

Differentiating V along the trajectories of (49) and (50), we obtain

V̇ = −k1e2
1 − k2e2

2 − k3e2
3 − k4e2

4 + ea
[
e1(e2 − e1)− ˙̂a

]
+eb

[
e1e2 − ˙̂b

]
+ ec

[
−e2

3 − ˙̂c
]
+ ep

[
−e2e4 − ˙̂p

] (52)

In view of (52), we take the parameter update law as

˙̂a(t) = e1(e2 − e1)

˙̂b(t) = e1e2

˙̂c(t) = −e2
3

˙̂p(t) = −e2e4

(53)

Next, we state and prove the main result of this section.

Theorem 2 The novel 4-D hyperchaotic systems (42) and (43) with unknown system
parameters are globally and exponentially synchronized for all initial conditions by the
adaptive control law (46) and the parameter update law (53), where k1,k2,k3,k4 are
positive gain constants.
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Proof We prove this result by applying Lyapunov stability theory [75].
We consider the quadratic Lyapunov function defined by (51), which is clearly a

positive definite function on ℜ8.
By substituting the parameter update law (53) into (52), we obtain the time-derivative

of V as
V̇ =−k1e2

1 − k2e2
2 − k3e2

3 − k4e2
4 (54)

From (54), it is clear that V̇ is a negative semi-definite function on ℜ8.
Thus, we can conclude that the error vector eee(t) and the parameter estimation error

are globally bounded, i.e.[
e1(t) e2(t) e3(t) e4(t) ea(t) eb(t) ec(t) ep(t)

]T
∈ L∞.

We define k = min{k1,k2,k3,k4}.
Then it follows from (54) that

V̇ ¬−k∥eee(t)∥2 (55)

Thus, we have
k∥eee(t)∥2 ¬−V̇ (56)

Integrating the inequality (56) from 0 to t, we get

k
t∫

0

∥eee(τ)∥2 dτ ¬ V (0)−V (t) (57)

From (57), it follows that eee ∈ L2.
Using (49), we can conclude that ėee ∈ L∞.
Using Barbalat’s lemma [75], we conclude that eee(t)→ 0 exponentially as t → ∞ for

all initial conditions eee(0) ∈ ℜ4.
This completes the proof.

For the numerical simulations, the classical fourth-order Runge-Kutta method with
step size h = 10−8 is used to solve the systems (42), (43) and (53), when the adaptive
control law (46) is applied.

The parameter values of the novel 4-D hyperchaotic systems are taken as in the
hyperchaotic case, viz.

a = 24, b = 125, c = 5, p = 10 (58)

We take the positive gain constants as ki = 5 for i = 1, . . . ,4.
Furthermore, as initial conditions of the master system (42), we take

x1(0) = 5.1, x2(0) =−3.8, x3(0) = 4.8, x4(0) = 7.6
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As initial conditions of the slave system (43), we take

y1(0) =−7.4, y2(0) = 13.5, y3(0) = 9.2, y4(0) =−2.3

Also, as initial conditions of the parameter estimates, we take

â(0) = 10.1, b̂(0) = 22.4, ĉ(0) = 14.7, p̂(0) = 12.8

Figs. 6-9 describe the complete synchronization of the 4-D novel hyperchaotic sys-
tems (42) and (43), while Fig. 10 describes the time-history of the synchronization errors
e1,e2,e3,e4.
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Figure 6: Synchronization of the states x1 and y1 of the novel hyperchaotic systems

6. Conclusion

In this research work, we described an eleven-term novel 4-D hyperchaotic system
with two quadratic nonlinearities. We described the qualitative properties of the novel 4-
D hyperchaotic system and depicted their phase portraits. We pointed out that the novel
4-D hyperchaotic system has a two-wing attractor. We showed that the novel 4-D hyper-
chaotic system has two unstable equilibrium points. We calculated the Lyapunov expo-
nents and Kaplan-Yorke dimension of the novel hyperchaotic system. Next,we derived
new results for the adaptive control and synchronization of the novel hyperchaotic sys-
tem with unknown parameters. MATLAB simulations have been shown to demonstrate
all the main results derived in this research work.
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Figure 7: Synchronization of the states x2 and y2 of the novel hyperchaotic systems
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Figure 8: Synchronization of the states x3 and y3 of the novel hyperchaotic systems
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Figure 9: Synchronization of the states x4 and y4 of the novel hyperchaotic systems
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