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FAULT DIAGNOSIS OF THREE PHASE INDUCTION MOTOR USING CURRENT SIGNAL, MSAF-RATIO15 
AND SELECTED CLASSIFIERS 

A degradation of metallurgical equipment is normal process depended on time. Some factors such as: operation process, fric-
tion, high temperature can accelerate the degradation process of metallurgical equipment. In this paper the authors analyzed three 
phase induction motors. These motors are common used in the metallurgy industry, for example in conveyor belt. The diagnostics 
of such motors is essential. An early detection of faults prevents financial loss and downtimes. The authors proposed a technique 
of fault diagnosis based on recognition of currents. The authors analyzed 4 states of three phase induction motor: healthy three 
phase induction motor, three phase induction motor with 1 faulty rotor bar, three phase induction motor with 2 faulty rotor bars, 
three phase induction motor with faulty ring of squirrel-cage. An analysis was carried out for original method of feature extraction 
called MSAF-RATIO15 (Method of Selection of Amplitudes of Frequencies – Ratio 15% of maximum of amplitude). A classifica-
tion of feature vectors was performed by Bayes classifier, Linear Discriminant Analysis (LDA) and Nearest Neighbour classifier. 
The proposed technique of fault diagnosis can be used for protection of three phase induction motors and other rotating electrical 
machines. In the near future the authors will analyze other motors and faults. There is also idea to use thermal, acoustic, electrical, 
vibration signal together.
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1. Introduction

A degradation of metallurgical equipment is normal process 
depended on time. Some factors such as: operation process, 
friction, high temperature can accelerate the degradation pro-
cess of metallurgical equipment. Three phase induction motors 
are common used in the metallurgy industry, for example in 
conveyor belt. The diagnostics of such motors is essential. The 
early detection of faults prevents financial loss and downtimes. 
In the literature researchers developed methods of fault detec-
tion based on acoustic [1-13], thermal [14-20] and vibration 
signals [21-29]. An acoustic signal is difficult to process because 
microphone records many sounds from environment. Measure-
ments of temperature are possible when motor is hot. Electrical 
signals are very good for a recognition for example MCSA (Mo-
tor Current Signature Analysis). These kinds of signals do not 
have many disturbances. The recognition of electrical signals 
of motors was also described in the literature [30-40]. However 
more analyses are needed in this topic, to develop more effi-

cient methods of fault diagnosis . There are also possibility to 
diagnose materials such as steel [41] or properties of materials 
[42]. In this paper the authors analyzed 4 three phase induction 
motors (Fig. 1).

Fig. 1. Four analyzed three phase induction motors
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The authors proposed a technique of fault diagnosis based 
on recognition of currents.

2. Technique of fault diagnosis based on recognition 
of current signal

The proposed technique of fault diagnosis was based on 
recognition of current signal. It included a pattern creation pro-
cess and identification process (Fig. 2).

Fig. 2. Technique of fault diagnosis based on recognition of current 
signal with the use of MSAF-RATIO15 and Bayes classifier, LDA, 
Nearest Neighbour classifier

Both processes were similar. At the beginning of both 
processes an electrical (current) signal was recorded. This was 
done by data acquisition card and a computer. Next obtained 
signals were divided, converted through windowing (windows 
size 20000) and the FFT method. Next feature extraction with 
the use of MSAF-RATIO15 was performed for pattern creation 
process. The last step of pattern creation process was formulation 
of patterns – feature vectors. Performing of MSAF-RATIO15 was 
not necessary for identification process, because all frequencies 
were calculated in pattern creation process. A test sample was 
processed and new feature vector was obtained. This vector was 
compared with patterns with the use of Bayes classifier, Linear 
Discriminant Analysis (LDA) and Nearest Neighbour classifier.

2.1. Method of selection of amplitudes of frequencies 
MSAF-RATIO15

MSAF-RATIO15 (Method of Selection of Amplitudes 
of Frequencies – Ratio 15% of maximum of amplitude) was 
an original feature extraction method. Figure 3 showed block 
diagram of MSAF-RATIO15.

Fig. 3. Block diagram of MSAF-RATIO30-EXPANDED

Specific steps of MSAF-RATIO15 were following:
1) Calculate the frequency spectrum of current signal for each 

state of three phase induction motor. Frequency spectrum of 
current signal of healthy three phase induction motor was 
a vector htpim=[htpim1, htpim2, ..., htpim16384]. Frequency 
spectrum of current signal of three phase induction motor 
with 1 faulty rotor bar was the vector tpim1frb=[tpim1frb1, 
tpim1frb2, ..., tpim1frb16384]. Frequency spectrum of current 
signal of three phase induction motor with 2 faulty rotor 
bars was the vector tpim2frb=[tpim2frb1, tpim2frb2, ..., 
 tpim2frb 16384]. Frequency spectrum of current signal of 
three phase induction motor with faulty ring of squirrel-cage 
was the vector tpimfrsc=[tpimfrsc1, tpimfrsc 2, ..., tpimfrsc 

16384].
2) Calculate differences between frequencies spectra of states 

of three phase induction motor: |htpim – tpim1frb|, |htpim 
– tpim2frb|, |htpim – tpimfrsc|, |tpim1frb – tpim2frb|, 
|tpim1frb – tpimfrsc|, |tpim2frb – tpimfrsc|.

3) Calculate ratio R for each spectrum of frequency. The ratio 
was expressed by formula (1):

 R = (100%)Ai /Amax, (1)

where Ai, Amax were based on differences between frequency 
spectra of training samples, Ai – amplitude of frequency 
with index i, Amax – maximum amplitude in the spectrum 
of frequency, R =15% for MSAF-RATIO15.

4) Select amplitudes of frequencies for ratio R greater than 
(15%)Amax. Next select common amplitudes of frequencies 
for all analyzed differences.

5) Form a feature vector.
Differences of frequencies spectra of current signals of three 

phase induction motor |htpim – tpim1frb|, |htpim – tpim2frb|, 
|htpim – tpimfrsc|, |tpim1frb – tpim2frb|, |tpim1frb – tpim-
frsc|, |tpim2frb – tpimfrsc| were showed in (Figs. 4-9) (rotor 
speed 1400 rpm).

Selected amplitudes of frequencies formed feature vectors. 
These vectors contained frequencies 26, 51, 76 Hz. Next obtained 
vectors were used for classification.
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Fig. 4. Difference between spectra of frequencies of current signal of 
healthy three phase induction motor and three phase induction motor 
with 1 faulty rotor bar (|htpim – tpim1frb|)

Fig. 5. Difference between spectra of frequencies of current signal of 
healthy three phase induction motor and three phase induction motor 
with 2 faulty rotor bars (|htpim – tpim2frb|)

Fig. 6. Difference between spectra of frequencies of current signal of 
healthy three phase induction motor and three phase induction motor 
with faulty ring of squirrel-cage (|htpim – tpimfrsc|)

Fig. 7. Difference between spectra of frequencies of current signal of 
three phase induction motor with 2 faulty rotor bars and three phase 
induction motor with 1 faulty rotor bar (|tpim2frb – tpim1frb|)

Fig. 8. Difference between spectra of frequencies of current signal of 
three phase induction motor with 2 faulty rotor bars and three phase 
induction motor with faulty ring of squirrel-cage (|tpim2frb – tpimfrsc|)

Fig. 9. Difference between spectra of frequencies of current signal of 
three phase induction motor with 1 faulty rotor bar and three phase 
induction motor with faulty ring of squirrel-cage (|tpim1frb – tpimfrsc|)
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2.2. Bayes classifier

Classification methods were discussed in many articles 
by many researchers [43-52]. Neural networks were often used 
for classification problems [53-58]. Statistical data analysis 
was also described [59]. One of classification methods was 
Naive Bayes classifier. It was well described in the literature 
[48,60]. This classifier used a posterior probability, which was 
expressed by (2):
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  (2)

where p(vj) – probability of occurrence of class vj, p(z) – prob-
ability of instance z, p(z | vj) – probability of generating instance z 
given class vj, p(vj | z) – probability of instance z being in class vj.

Classifier calculated the posterior probability for all training 
feature vectors (patterns) and marked patterns with respect to 
their category. Next it classified test feature vectors (test samples) 
according to the higher probability p(vj | z).

2.3. Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) was a classification 
method. It was well described in the literature [61,62]. LDA 
maximized the component axes for class-separation and created 
the best hyperplane between training points (training feature 
vectors). After performance of pattern creation process new 
test samples were classified. The result of classification was 
depended on distance between new feature vector and the cal-
culated hyperplane. More information about LDA was available 
in the literature [61,62].

2.4. Nearest Neighbour classifier

The Nearest Neighbour classifier was common used clas-
sification method [48,63,64]. It was used in many applications 
such as: robotics, pattern recognition, databases, coding theory, 
plagiarism detection, spell checking. The application of such 
classifier for fault detection of three phase induction motor was 
interesting. The Nearest Neighbour classifier used training and 
test samples. After performance of pattern creation process new 
test samples were classified by distance function. The authors 
decided to use Manhattan distance (3):
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where feature vectors htpim=[htpim26, htpim51, htpim76] and 
tpim1frb=[tpim1frb26, tpim1frb51, tpim1frb76]. The calcula-
tions were performed for 4 feature vectors: htpim, tpim1frb, 
tpim2frb, tpimfrsc.

There was a possibility of use other distance functions 
such as: Euclidean, Minkowski, Chebyshev, cosine, Jacquard. 

The results of mentioned distance functions were very similar. 
More information about the Nearest Neighbour classifier was 
available in the literature [48,63,64].

3. Analysis of proposed technique

Measurements of current signals were performed by data 
acquisition card and computer. Each of four three phase induction 
motor had power 550W and rotor speed rs = 1400 rpm.

Fig. 10. Squirrel-cage of three-phase induction motor with two faulty 
rotor bars

The authors analyzed 4 states of three phase induction mo-
tor: healthy three phase induction motor, three phase induction 
motor with 1 faulty rotor bar, three phase induction motor with 
2 faulty rotor bars (Fig. 10), three phase induction motor with 
faulty ring of squirrel-cage.

Feature vectors contained amplitudes of frequencies 26, 
51, 76 Hz (see section 2.1). The training set had 12 one-second 
samples (vectors). The test set had 40 one-second samples. Ef-
ficiency of current signal recognition was defined as (4):

    100% ip
C

a

N
E

N
 (4)

where: EC – efficiency of current signal recognition, Nip – num-
ber of test samples identified properly, Na – number of all test 
samples.

The authors analyzed 3 classifiers: Bayes classifier, LDA 
and Nearest Neighbour classifier. The results of all classifiers 
were the same. Efficiency of current signal recognition was 
equaled 100% for 4 states of three phase induction motor (Tab. 1).

TABLE 1
Results of current signal recognition of three phase induction motor 

with the application of MSAF-RATIO15

Type of current signal Effi ciency of current signal 
recognition [%]

Healthy three phase induction motor 100
three phase induction motor with 1 

faulty rotor bar 100

three phase induction motor with 2 
faulty rotor bars 100

three phase induction motor with 
faulty ring of squirrel-cage 100
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4. Conclusions

The technique of current signal recognition was presented 
for three phase induction motor. This technique used the original 
method of feature extraction MSAF10. The authors analyzed 
3 classifiers: Bayes classifier, LDA and the Nearest Neighbour 
classifier. The results of all classifiers were very good (100%). 
The proposed technique of fault diagnosis can be used for 
protection of three phase induction motors and other rotating 
electrical machines. It is essential for metallurgy industry. In 
the near future the authors will analyze other motors and faults. 
There is also idea to use thermal, acoustic, electrical, vibration 
signals together.
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