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Abstract The purpose of this paper is to study the thermoviscoelas-
tic interactions in a homogeneous, isotropic semi-infinite solid under two-
temperature theory with heat source. The Kelvin-Voigt model of linear vis-
coelasticity which describes the viscoelastic nature of the material is used.
The bounding plane surface of the medium is subjected to a non-Gaussian
laser pulse. The generalized thermoelasticity theory with dual phase lags
model is used to solve this problem. Laplace transform technique is used to
obtain the general solution for a suitable set of boundary conditions. Some
comparisons have been shown in figures to estimate the effects of the phase
lags, viscosity, temperature discrepancy, laser-pulse and the laser intensity
parameters on all the studied fields. A comparison was also made with the
results obtained in the case of one temperature thermoelasticity theory.
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Nomenclature

b – temperature discrepancy factor

c1 =
√

(λe + 2µe)/ρ – longitudinal wave speed
CE – specific heat at uniform strain
eij – linear strain tensor
k = K/ρCE – thermal diffusivity
K – thermal conductivity
L0 – laser intensity
qi – components of heat flux vector
Q – intensity of heat source
Ra – surface reflectivity
tp – characteristic time of the laser pulse
t0 – mechanical relaxation time due to the viscosity
T0 – environment temperature
T – absolute temperature of the medium
u,w – displacement components
(x, y, x) – Cartesian coordinates system

Greek symbols

α1, α2 – thermoviscoelastic relaxation times
αt – thermal expansion coefficient
δij – Kronecker delta function
δ1 – absorption depth of heating energy
η = ρCE/K – thermal viscosity
θ = T − T0 – temperature change
λe, µe – Lameñs constant
ρ – material density
σij – mechanical stress components
τq – phase lag of the heat flux
τθ – phase lag of gradient of temperature
ϕ – conductive temperature

1 Introduction

The theory of thermoelasticity deals with the effects of mechanical and
thermal disturbances on elastic body. Biot has introduced a theory of cou-
pled thermoelasticity to overcome the first shortcoming [1]. The governing
equations for this theory are coupled, eliminating the first paradox of the
classical theory. However, this theory shares the second shortcoming since
the heat equation for the coupled theory is based on Fourier’s law of heat
conduction and is also parabolic. Henceforth, two styles of generalized the-
ories of thermoelasticity presented by Lord and Shulman [2] and Green
and Lindsay [3], which admit the finite speed of the thermal signal, have
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been the center of interest of active research during the last three decades.
The third generalization to the coupled theory is known as the dual phase
lag (DPL) thermoelasticity, proposed by Tzou [4], in which Fourier’s law
is replaced by an approximation to a modification of Fourier law with two
different translations for the heat flux and the temperature gradient. These
theories remove the paradox of the infinite speed of heat propagation that is
inherent in the conventional coupled dynamical theory of thermoelasticity,
which was introduced by Biot [1]. In the generalized theories, a modified
heat conduction law, which includes both the heat flux and its time deriva-
tive, replaced the conventional Fourier law.

Chen and Gurtin [5] and Chen et al. [6,7] have formulated a theory
of heat conduction in deformable bodies, which depends upon two distinct
temperatures, the conductive and thermodynamic temperatures. For time-
independent situations, the difference between these two temperatures is
proportional to the heat supply, and in the absence of any heat supply, the
two temperatures are identical. For time-dependent problems, however,
and for wave propagation problems in particular, the two temperatures are
in general different regardless of the presence of heat supply. The two tem-
peratures and the strain are found to have representations in the form of
a traveling wave plus a response, which occurs instantaneously throughout
the body [8]. Warren and Chen have investigated the wave propagation
in the two-temperature theory of thermoelasticity (2TT) [9]. Youssef has
extended this theory in the context of the generalized theory of thermoe-
lasticity [10].

Pulsed laser irradiation is employed over a wide spectrum of materi-
als processing applications, including surface hardening, alloying, curing,
synthesis of compound and superconductor films. An extensive review of
pulsed laser processing of semiconductors is given in [11]. Very rapid ther-
mal processes, under the action of an ultrashort laser pulse, are interesting
from the standpoint of thermoelasticity, since they require an analysis of
the coupled temperature and deformation fields as in [12]. This mechanism
has attracted considerable attention due to extensive application of pulsed
laser technologies in material processing and nondestructive detection and
characterization as in [13]. The so-called ultrashort lasers are those with
pulse duration ranging from nanoseconds to femtoseconds in general. The
non-Fourier effect of heat conduction takes into account the effect of mean
free time in the energy carrier’s collision process, which can eliminate this
contradiction. Wang and Xu studied the stress wave induced by nano-,
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pico-, and femto-second laser pulses in a semi-infinite solid [13]. The solu-
tion takes into account the non-Fourier effect in heat conduction and the
coupling effect between temperature and strain rate. It is known that char-
acteristic elastic waveforms are generated when a pulsed laser irradiates a
metal surface. McDonald studied the importance of thermal diffusion to
the thermoelastic wave generation [14]. Allam and Abouelregal have dis-
cussed the thermoelastic waves induced by pulsed laser and varying heat of
nonhomogeneous microscale beam resonators [15]. Othman et al. studied
the effect of rotation on a semiconducting medium with two-temperature
under L-S theory. The effect of internal friction on the propagation of plane
waves in an elastic medium may also be considered owing to the fact that
dissipation accompanies vibrations in solid media due to the conversion of
elastic energy to heat energy [16].

The effect of internal friction on the propagation of plane waves in an
elastic medium may also be considered owing to the fact that dissipation
accompanies vibrations in solid media due to the conversion of elastic en-
ergy to heat energy.

The viscoelastic nature of a medium has special significance in wave
propagation in a solid medium. The Kelvin-Voigt model is one of the
macroscopic mechanical models often used to describe the viscoelastic be-
havior of a material. This model represents the delayed elastic response
subjected to stress when the deformation is time dependent but recover-
able. The dynamical interaction of thermal and mechanical fields in solids
has a number of significant practical applications in modern aeronautics,
astronautics, nuclear reactors, and high energy particle accelerators, for
example. Abd-alla and Abo-Dahab [17,18] investigated the reflection of
the generalized magneto-thermo-viscoelastic plane waves. Mukhopadhyay
studied the thermal relaxation effects and compared the various theories of
generalized thermoelasticity for thermo-viscoelastic interactions in an in-
finite viscoelastic solid of Kelvin-Voigt type with a spherical cavity [19].
Mukhopadhyay and Bera investigated the effect of distributed instanta-
neous continuous heat sources in an infinite conducting magneto-thermo-
viscoelastic solid with relaxation time [20]. Ezzat et al. introduced the
state-space approach for the two-dimensional model of generalized thermo-
viscoelasticity with two relaxation times [21].

Othman and Song studied the effect of rotation on plane waves of
the generalized electromagneto-thermo-viscoelasticity with two relaxation
times [22]. Othman and Fekry explain the effect of magnetic field on gen-
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eralized thermo-viscoelastic diffusion medium with voids [23].
The objective of the present investigation is to determine the com-

ponents of displacement, stress, conductive temperature, thermodynamic
temperature distributions and strain in an isotropic homogeneous viscoelas-
tic half space. The governing equations are derived in the context of two-
temperature generalized thermoelasticity with phase lags. The bounding
plane surface is heated by a non-Gaussian laser beam. An exact solution
of the problem is first obtained in the Laplace transform space. The in-
version of the Laplace transform will be computed numerically by using a
method based on Fourier expansion technique. The derived expressions are
computed numerically for copper and the results are presented in graphical
form. The effects of the two-temperature parameter, the laser-pulse, the
laser intensity and viscosity parameters are estimated.

2 Governing equation of two-temperature
thermoelasticity with phase lags

The basic governing equations of motion and heat conduction, in the con-
text of the generalized theory of thermoelasticity, in the absence of body
forces are given in [19].

The equations of motion without body forces take the forms

µ′ui,jj + (λ′ + µ′)uj,ij − β′θ,i = ρ
∂2ui

∂t2
. (1)

The constitutive equations take the forms

σij = 2µ′eij + δij
(

λ′ekk − β′θ
)

, (2)

where σij is the stress tensor and δij is Kronecker’s delta function, ui are
the components of the displacement vector, t is the time, eij is the strain,
θ = T−T0, T is the absolute temperature of the medium, T0 is the reference
uniform temperature of the body chosen such |θ/T0| << 1, ρ is the density.
In the above equations, a prime symbol refers to spatial derivative, a dot
refers to temporal derivative and summation convention is used.

The parameters λ′, µ′ and β′ are defined as [19]

λ′ = λe

(

1 + α1
∂

∂t

)

, µ′ = µe

(

1 + α2
∂

∂t

)

, β′ = βe

(

1 + β
∂

∂t

)

,

βe = (3λe + 2µe)αt, β = (3λeα1 + 2µeα2)
αt

βe
, (3)
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where λe, µe being Lamé constants, α1, α2 are the thermoviscoelastic re-
laxation times, and αt is the coefficients of linear thermal expansion.

Fourier’s law states that the heat flow is proportional to the temperature
gradient. The constant of proportionality depends, among other things, on
a material parameter known as the thermal conductivity of the material.
For heat conduction to occur there must be temperature differences be-
tween neighboring points. The classical thermoelasticity is based on the
principles of the classical theory of heat conductivity, specifically on the
classical Fourier law, which relates the heat flux vector qi to the tempera-
ture gradient as follows:

qi = −K θ,i , (4)

where K is the thermal conductivity of a solid and θ = T −T0, T is the ab-
solute temperature of the medium, T0 is the reference uniform temperature
of the body chosen such |θ /T0| << 1, which together with the energy equa-
tion yields the heat conduction equation or the parabolic heat conduction
equation and is diffusive with the notion of infinite speed of propagation of
thermal disturbances

ρCE
∂θ

∂t
+ β′ T0

∂

∂t
ui,i = − qi,i + Q , (5)

where CE is the specific heat and Q is the intensity of heat source.
The modified form of classical thermoelasticity model is given by Tzou

theory in which the Fourier law is replaced by an approximation of the
equation [22]

qi(x, t+ τq) = −K θ,i(x, t+ τθ) , (6)

where τθ is the phase lag of the heat flux, and τq is phase lag of gradient of
temperature. The above equation may be approximated by [22]

(

1 + τq
∂

∂t

)

qi = − K
(

1 + τθ
∂

∂t

)

θ,i . (7)

In classification of real material into simple and nonsimple materials Chen
and Gurtin [5] have proposed a theory of nonsimple materials for which
thermodynamics and conductive temperatures are not identical unlike sim-
ple materials for which they are identical. This theory was further extended
to deformable bodies by Chen et al. [6,7]. They have shown that the equa-
tion of heat conduction for such materials contains an additional term in-
volving the time derivative of the Laplacian of the conductive temperature;
the equation of motion also includes terms involving the space derivatives
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of the Lapalcian of conductive temperature, Considering isotropy and the
linearity, for such materials, they have shown that the two temperatures
are related by the relation [7]

ϕ− θ = bϕ,ii , (8)

where ϕ is the conductive temperature, θ is thermodynamic temperature,
and b > 0 is the temperature discrepancy factor.

Now, we assume a new generalized heat conduction equation of the form

(

1 + τq
∂

∂t

)

qi = −K
(

1 + τθ
∂

∂t

)

ϕ,i , (9)

taking the divergence of both sides of the above equation, one gets

(

1 + τq
∂

∂t

)

qi,i = −K
(

1 + τθ
∂

∂t

)

ϕ,ii . (10)

The generalized equation of heat conduction with two temperatures in the
case of nonsimple medium using Eqs. (2) and (8) takes the form [22]

K
(

1 + τθ
∂

∂t

)

ϕ =
(

1 + τq
∂

∂t

)

[

ρCE
∂θ

∂t
+ β′T0

∂

∂t
ui,i −Q

]

. (11)

The above equation may be considered as the generalized heat conduction
equation in isotropic, thermoelastic solids with two temperatures. The
key element that sets the two-temperature thermoelasticity theory apart
from the classical theory is the material parameter b. Specifically, in the
limit as b → 0, ϕ → θ, the classical theory (one-temperature generalized
thermoelasticity theory 1TT) is recovered.

3 Statement of the problem

We consider a homogenous isotropic thermoviscoelastic half space occupy-
ing a half-space x ≥ 0 and initially undisturbed and at uniform temperature
T0. The Kelvin-Voigt model of linear viscoelasticity which describes the vis-
coelastic nature of the material has been employed to study the problem.
So, the initial conditions for all field variables are homogeneous. This half-
space is irradiated uniformly the bounding plane (x = 0) by a laser pulse
with the non-Gaussian temporal profile. The system is initially quiescent
where all the state functions are depending only on the variable x and the
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time t.
The displacement components for a one-dimensional medium have the

forms ux = u(x, t) and uy = uz = 0. The relation between the strain
and displacement can be expressed as e = exx = ∂u/∂x. The constitutive
equation will be

σxx = σ = (λ′ + 2µ′)e− β′θ . (12)

The equation of motion takes the form

(λ′ + 2µ′)
∂2u

∂x2
− β′

∂θ

∂x
= ρüi (13)

where the double dot refers to second derivative with respect to time or
may be written in the form

∂2σ

∂x2
= ρ

∂2e

∂t2
. (14)

The relation between the heat conduction and the thermodynamic heat
takes the form

ϕ− θ = b
∂2ϕ

∂x2
. (15)

The heat conduction equation (10) is given by

K
(

1 + τθ
∂

∂t

)∂2ϕ

∂x2
=
(

1 + τq
∂

∂t
)

[

ρCE
∂

∂t

(

ϕ− b
∂2ϕ

∂x2

)

+ β′T0
∂e

∂t
−Q

]

. (16)

Let’s introduce the following nondimensional parameters:

(

x′, u′
)

= c1η (x, u) ,
(

t′, τ ′

q, τ
′

θ, β
′

1, α
′

2, α
′

1

)

= c2
1η
(

t′, τ ′

q, τ
′

θ, β
′

1, α
′

2, α
′

1

)

,

θ′ =
βeθ

ρc2
1

, ϕ′ =
βeϕ

ρc2
1

, σ′ =
σ

ρc2
1

, Q′ =
Q

Kc2
1η

2T0
, (17)

where c1 =
√

(λe + 2µe)/ρ is the longitudinal wave speed and η = ρCE/K
is the thermal viscosity. Then, Eqs. (12) and (14)–(16) can be transformed
into the dimensionless forms

σ =
(

1 + δ1
∂

∂t

)

e−
(

1 + β
∂

∂t

)

θ , (18)

∂2σ

∂x2
=
∂2e

∂t2
, (19)
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ϕ− θ = ω
∂2ϕ

∂x2
, (20)

(

1 + τθ
∂

∂t

)∂2ϕ

∂x2
=
(

1 + τq
∂

∂t

)

[

∂θ

∂t
+ ε

(

1 + β
∂

∂t

)∂e

∂t
−Q

]

, (21)

where ε = β2
eT0/ρ

2CEc
2
1, ω = bc2

1η
2, δ =

c2
2

c2
1

, c2
2 = λeα1+2µeα2

ρ .

Now, let us consider the medium is uniformly heated by a laser pulse
with the non-Gaussian form temporal profile [25] as

I(t) =
L0t

t2p
e−t/tp , (22)

where tp is a characteristic time (measured by picoseconds) of the laser-
pulse (the time duration of a laser pulse), L0 is the laser intensity which
is defined as the total energy carried by a laser pulse per unit area of the
laser beam. The conduction heat transfer in the medium can be modeled
as a one dimensional problem with the energy source, Q(x, t), near the
surface:

Q(x, t) =
Ra

δ1
e(x−h/2)/δ1I(t) =

RaL0

δ1t2p
te(x−h/2)/δ1−t/tp , (23)

where δ1 is the absorption depth of heating energy and Ra is the surface
reflectivity [25]. Note that the laser pulse may lie on the surface of the
medium (x = 0). In this case, the energy source takes the form

Q(t) =
RaL0

δ1t2p
te−h/(2δ1)−t/tp . (24)

4 Initial and boundary conditions

The problem is solved under proper initial and boundary conditions:

θ(x, t) = ϕ(x, t) = u(x, t) = 0 at t = 0 ,

∂θ(x, t)

∂t
=
∂ϕ(x, t)

∂t
=
∂u(x, t)

∂t
= 0 at t = 0 . (25)

The thermal and mechanical boundary conditions on the bounding plane,
x = 0, of the assumed half-space are given as follows:
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• Thermal boundary condition:
The boundary plane x = 0 is subjected to a thermal shock as follows:

θ(0, t) = θ0H(t) , (26)

where H(t) is called the Heaviside unit step function and θ0 is a con-
stant.

• Mechanical boundary condition:
The boundary plane x = 0 is considered to be friction free,

σ(0, t) = 0 . (27)

5 Solution of the problem in the Laplace
transform domain

Applying Laplace transform with respect to variable t for Eqs. (18)–(21),
one can get the system of differential equations in the transformed domain
as follows:

σ̄ = (1 + δ1s) ē− (1 + βs) θ̄ , (28)

d2σ̄

dx2
= s2ē , (29)

θ̄ = ϕ̄− ω
d2ϕ̄

dx2
, (30)

d2ϕ̄

dx2
= α0

[

θ̄ + ε (1 + βs) ē
]

− Ḡ(s) , (31)

where

Ḡ(s) =
RaL0e

−h/2δ1

t2pc1δ1(1 + τθs)

[

tpτq

1 + stp
+

t2p − tpτq

(1 + stp)2

]

, α0 =
s(1 + τqs)

1 + τθs
. (32)

Eliminating θ̄ and ē from Eqs. (28)–(31), one obtains

[

d4

dx4
−A

d2

dx2
+B

]

ϕ̄ = q2Ḡ(s) , (33)

where

A =
α0ω + q1α0 + q2q3

α0εω(1 + βs) + q1q3
, B =

q2α0

α0εω(1 + βs) + q1q3
,
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q1 =
1 + δ1s

(1 + βs)
, q2 =

s2

(1 + βs)
, q3 = 1 + α1ω . (34)

The solution of Eq. (33) takes the following form:

ϕ̄ = A1e
−m1x +A2e

−m2x + F̄1(s) , (35)

where A1 and A2 are parameters of s.
The solution of ϕ̄ is used in Eq. (30) to get the solution of θ̄

θ̄ = (1 − βm2
1)A1e

−m1x + (1 − β m2
2)A2e

−m2x + F̄1(s) . (36)

The above two solutions are used in Eq. (31) to get the solution of ē as

ē =
Ḡ(s)

εα0(1 + βs)
+
[ q3

εα0(1 + βs)
D2 − α1

εα0(1 + βs)

]

ϕ̄

= F̄2(s) + Ω1A1e
−m1x + Ω2A2e

−m2x , (37)

where

F̄1(s) = q2Ḡ(s)/B, F̄2(s) =

[

B − α0q2

Bεα0(1 + βs)

]

Ḡ(s) , Ωi =
q3m

2
i − α0

εα0(1 + βs)
,

(38)
i = 1, 2 .

and substituting Eqs. (36) and (37) into Eq. (28), one obtains

σ̄ = F̄ (s) + Γ1A1e
−m1x + Γ2A2e

−m2x , (39)

where: F̄ (s) = F̄2(s) (1 + δ1s) − (1 + βs) F̄1(s),
Γi = Ω1 (1 + δ1s) − (1 + βs) (1 − βm2

i ), i = 1, 2 .

From Eq. (14) and by using the non-dimensional variables and place-
Laplace transforms, one obtains the displacement in the following form:

ū =
1

s2

∂σ̄

∂x
= −m1Γ1A1e

−m1x −m2Γ2A2e
−m2x . (40)

In addition, the thermal and mechanical boundary conditions in the Laplace
domain θ̄(0, s) = θ0/s and σ̄(0, s) = 0 with the aid of Eqs. (36) and (39),
gives

A1 =
s F̄ (s)

(

βm2
2 − 1

)

+ F̄ (s)
(

s F̄1(s) − θ0

)

s[Γ1 − Γ2 + β(Γ2m2
1 − Γ1m2

2)]
,

A2 = −
s F̄ (s)

(

βm2
1 − 1

)

+ F̄ (s)
(

s F̄1(s) − θ0

)

s[Γ1 − Γ2 + β(Γ2m2
1 − Γ1m2

2)]
. (41)

This completes the solution in the Laplace transform domain.
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6 Special cases

6.1 Generalized thermoelastic theory with two-temperature
(2TTE)

Neglecting viscous effect by taking α1 = α2 = 0, we obtain the expressions
for the displacement components, stresses and temperature field in the
generalized magneto-thermoelastic heat conduction equation with diffusion.

6.2 Generalized thermoelastic theory with one-temperature
(1TTE)

Neglecting viscous effect by taking α1 = α2 = 0 and ω → 0, we obtain
the expressions for the displacement components, stresses and temperature
field in the generalized thermoelastic with theory one-temperature.

6.3 Generalized thermoviscoelastic theory with
one-temperature (1TTVE)

The generalized thermoviscoelastic theory with one-temperature can be
deduced by setting the two-temperature parameter ω → 0.

7 Numerical inversion of the Laplace transform

In order to determine the conductive and thermal temperature, displace-
ment and stress distributions in the time domain, we adopt a numerical
inversion method based on a Fourier series expansion [26]. In this method,
the inverse f(t) of the Laplace transform f̄(s) is approximated by the re-
lation

f(t) =
eζ t

t1

{

1
2 f̄(ζ) +Re

[

N
∑

k=0

f̄

(

ζ +
ikπ

t1

)

eikπ t/t1

]}

, 0 ≤ t ≤ t1 , (42)

where Re is the real part and i is imaginary number unit, and N is a suf-
ficiently large integer representing the number of terms in the truncated
infinite Fourier series. It must be chosen such that

eζ teiNπ t/t1Re

[

f̄

(

ζ +
iNπ

t1

)]

≤ ε1 , (43)
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where ε1 is a persecuted small positive number that corresponds to the
degree of accuracy to be achieved. The parameter ζ is a positive free pa-
rameter that must be greater than the real parts of all singularities of f̄(s).
The optimal choice of ζ was obtained according to the criteria described
in [26].

8 Numerical results and discussion

With the aim to illustrate the theoretical results obtained in the preceding
sections, we now present some numerical results. Material chosen for this
purpose is copper, featuring the following the physical data:

K = 368 N/Ks, αt = 1.78 × 10−5 K−1, CE = 383.1 m2/K,

ρ = 8954 kg/m3 , λe = 7.76 × 1010 N/m2,

µe = 3.86 × 1010 N/m2, T0 = 293 K, α1 = 0.06 s , α2 = 0.09 s .

The computations were carried out for a wide range of x (0 ≤ x ≤ 1) at
small value of time t = 0.15. The physical quantities are plotted in Figs. 1–
15. For all numerical calculations one takes δ1 = 0.01, τ0 = 0.02, Ra = 0.5,
and h = 0.1. The field quantities such as the conductive temperature, dy-
namical temperature, stress, strain, and displacement distributions depend
not only on the time t and space coordinate x, but also depend on the two-
temperature parameter ω and the laser intensity L0. The laser intensity
L0 is assumed to be of the form L0 = ξ× 1011 J/m2 where ξ is the laser in-
tensity parameter. Using these values, nondimensional field variables have
been evaluated and results are presented in the form of graphs. In order to
analyze the effects of different parameters, such as, heat source, viscosity,
two-temperature on displacement, temperatures and stress, we have con-
sidered their graphical representations into three categories.

In the first case, Figs. 1–4 plot the displacement u, thermodynamic
temperature θ, conductive temperature ϕ and the stress σ distributions
with different values of the two-temperature parameter ω to stand for the
effect of this parameter on all the studied fields. The value of ω = 0
indicates the old situation (one temperature thermoviscoelasticity theory
1TTVE) while ω = 0.02 or 0.04 indicates the two-temperature thermo-
viscoelasticity theory (2TTVE). In this case one takes τq = 0.2, τθ = 0.1,
ξ = 1, and tp = 2. The wave-amplitude of the displacement u decreases as
ω increases. For x > 0.1, the thermodynamic temperature θ increases as ω
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Figure 1: Dependence of displacement u on the two temperature parameter ω along
distance x.

Figure 2: Dependence of thermodynamical temperature θ on the two temperature pa-
rameter ω along distance x.
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Figure 3: Dependence of conductive temperature ϕ on the two temperature parameter ω
along distance x.

Figure 4: Dependence of the thermal stress σ on the two temperature parameter ω along
distance x.
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increases. Also, as ω increases the conductive temperature ϕ decreases in
the interval 0 < x < 0.1. In most positions, the stress σ increases as ω in-
creases in the intervals 0 < x < 0.37 and 0.6 < x < 0.1 while it decreases
in the interval 0.37 < x < 0.6 and decreases in the interval 0.28 < x < 1.

This shows the difference between the one temperature viscothermoelas-
ticity model with phase lags 1TTVE (when ω = 0) and the two-temperature
generalized viscothermoelasticity 2TTVE (when ω = 0.02 or 0.04). The
figures show that this parameter has a significant effect on all the fields.
The waves reach the steady state depending on the value of temperature
discrepancy ω. Also these figures indicate that, the two-temperature gen-
eralized theory of thermoelasticity describes the behavior of the particles
of an elastic body more realistically than the one-temperature theory of
generalized thermoelasticity. From Fig. 4, the stress at x = 0 is zero as
shown, which agrees with the boundary condition prescribed. This coin-
cided with the mechanical boundary condition that the medium surface is
friction free. In general, the amplitude of the wave of the displacement
u is decreasing along the distance x. The thermodynamically θ and the
conductive ϕ temperatures are directly decreasing along the distance x.

In the second case, Figs. 5–8 plot field quantities for different values of
the laser intensity parameter ξ to stand for the effect of this parameter.
It is found that this parameter has significant effects with fixed values of
ω = 0.02 and tp = 2. It is observed that the nature of variations of all field
variables for laser intensity parameter ξ is significantly different. All fields
increase when the value of ξ increases.

In the last case, different values of the dual phase lag (DPL) of the heat
flux and the temperature gradient τq and τθ, respectively, are considered.
The graphs in Figs. 9-12 represent the curves predicted by three different
theories of thermoelasticity obtained as special cases of the present DPL
model. The computations were performed for various values of the param-
eters τq and τθ to obtain the coupled theory (CTE) (τq = τθ = 0), the
Lord-Shulman (LS) theory (τθ = 0, τq = 0.2), and the generalized theory
of thermoelasticity proposed by Tzou (DPL) (τq = 0.2, τθ = 0.1).

It can be observed that the PLs parameters have a great effect on the
distribution of field quantities. The mechanical distributions indicate that
the wave propagates as a wave with finite velocity in medium. The values
in classical theory of thermoelasticity (CTE model) are different compared
to those of other theories. The fact that in generalized thermoelasticity
theories (DPL and LS), the waves propagate with finite speeds is evident
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Figure 5: Dependence of displacement u on the laser intensity ξ along distance x.

Figure 6: Dependence of thermodynamical temperature θ on the laser intensity ξ along
distance x.
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Figure 7: Dependence of conductive temperature ϕ on the time of the laser intensity ξ
along distance x.

Figure 8: Dependence of the thermal stress σ on the laser intensity ξ along distance x.
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in all these figures. The behavior of the three theories is generally quite
similar.

9 Concluding remarks

In this paper, the theory of two-temperature thermoviscoelasticity with
phase lags was constructed and applied to a specific problem of a semi-
infinite solid. The effect of the laser intensity and phase lags of the heat
flux and phase lage of gradient of temperatureand τq as well as the two-
temperature parameter on the field variables has been investigated.

The results concluded from the above analysis can be summarized as
follows:

1. The presence of phase lags parameters play a significant role in all
physical quantities.

2. It is seen that the values of all field variables are significantly depen-
dent on the two-temperature parameter.

3. According to the theory of thermoviscoelasticity with two-tempera-
tures, we have to construct a new classification for materials where
this parameter becomes a new indicator of its ability to conduct heat
under the effect of thermoelastic properties.

4. It is also observed that the theories of coupled thermoelasticity and
generalized thermoelasticity with one relaxation time can be obtained
as limited cases.

5. From our results, we can consider the theory of two-temperature gen-
eralized thermoviscoelasticity as an improvement on studying elastic
materials.

6. The properties of a body depend largely on the laser intensity of
applied source. Therefore, the presence of the non-Gaussian laser
pulse in the current model is of significance.

Received 15 April 2017
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Figure 9: The displacement distribution u with distance x for different theories of ther-
moelasticity.

Figure 10: The thermodynamical temperature θ with distance x for different theories of
thermoelasticity.



The effect of pulsed laser radiation on a thermoviscoelastic. . . 97

Figure 11: The conductive temperature ϕ with distance x for different theories of ther-
moelasticity.

Figure 12: The thermal stress σ with distance x for different theories of thermoelasticity.
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