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Transmission of Elegant Laguerre-Gaussian beams

at a dielectric interface – numerical simulations
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Abstract. Behaviour of Laguerre-Gaussian beams impinged at a dielectric interface under distinct angles is discussed. For different incident
angles the beams interact with the interface differently. Two ranges of incident angles, specified by a position of a spectral cone of beam
field and related to a cross-polarization effect, are analyzed. Boundary between these two ranges is defined. Cases of critical incidence and
total internal reflection are also discussed. Paraxial beams near the lower paraxial limit are considered. Theoretical predictions are confirmed
by numerical simulations.
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1. Introduction

The subject of optical beams at a dielectric surface was under
intense studies since the beginning of the last century. Exten-
sive summary of the problems can be found in Ref. [1] togeth-
er with numerus references. We consider mainly one aspect
of the problem – behaviour of optical vortices at a dielec-
tric interface. Optical vortices are characteristic ingredients
of the Elegant Laguerre-Gaussian (ELG) beams and their the
well-defined spin and orbital angular momentum [2–5]. In this
contribution the beam-interface interactions are discussed in
the context of their dependence on an incidence angle of the
ELG beams. For different incidence angles the beams interact
with the interface differently.

In the case of normal incidence, an azimuthal index of
a reflected or transmitted ELG beam is increased or decreased
by the cross-polarization coupling in the beam component
orthogonal (opposite) to the polarization component of the
incident beam [5]. Let us call this phenomenon as the “nor-
mal” vortex excitation. The case of oblique incidence, how-
ever, appears to be different. One can consider the beam field
distribution only in the first-order approximation with respect
to an azimuthal angle defined in the interface plane [6]. The
azimuthal angle selects the spectral component of the sub-
stantial beam amplitude what entails the dependence of the
optical vortex excitation on the incident angle. A specific val-
ue of the incident angle can be associated with an upper
limit of the range where the “normal” excitation of higher-
order beam modes in the opposite component may be taken
as valid.

The transition from the normal incidence range to the
oblique incidence range may be roughly understood as the
diminishing of the “normal” vortex excitation in the opposite
beam component. For the ELG beams, the wave vectors of
the main (the most intense) spectral components form a cone
of cylindrical symmetry. One slant height of the cone repre-

sents one wave vector. The boundary between the normal and
oblique incidence ranges can be referred to the situation, when
one of the slant heights of the cone becomes normal, that is,
when this spectral component of the beam propagates perpen-
dicularly to the interface. In this case the range of azimuthal
angle corresponding to the ensemble of spectral components
of substantial amplitudes decrease twice. This finally results
in the domination of the g-o contribution in the opposite beam
component.

In Sec. 2 theoretical background of the problem is present-
ed. Transmission of the ELG beams are analyzed in Sec. 3.
In Sec. 4 conclusions are presented. Short note about vor-
tex excitation under normal incidence is given in Appen-
dix A.

2. Beams at a dielectric interface

In this section we give a few basic equations necessary for
future interpretation of numerical results. Derivation of this
equations can be found in Ref. [5]. In Subsec. 2.1 the beam-
interface interrelation described in the cylindrical polariza-
tion basis (CR, CL) is presented. Decomposition of the ELG
beams in the spectral domain is given in Subsec. 2.2. Short
analysis of the action of the interface is presented in Sub-
sec. 2.3.

2.1. Theoretical background. It is convenient to consider
the spectral components of the ELG beams as the plane waves
propagating at different azimuthal ϕ and polar ϑ angles. The
interface frame OXYZ and three Oxyz reference frames, for
the incident, transmitted and reflected beams are presented in
Fig. 1. To find amplitudes and transmission coefficients for all
spectral components in one reference frame, here in the in-
terface frame OXYZ, we need to use two rotations for each of
them: first about Y -axis by ϑ and second about Z-axis by ϕ.
Details of this computation are presented in Ref. [5] and will
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not be recalled here. Generally, we can write the beams spec-
tral components in the linear polarization basis (TM, TE) as

Ẽ
(b)

= Ẽ
(b)

X eX + Ẽ
(b)

Y eY , (1)

where eX , eY are the beam polarization vectors, Ẽ
(b)

is the
amplitude vector for the incident (b = i), transmitted (b = t)
and reflected (b = r) fields. The relation between the trans-
mitted and incident spectral components is given by

Ẽ
(t)

= t
(X,Y )

Ẽ
(i)

, (2)

where t
X,Y

is the transmission matrix. Its counterpart in cir-

cular polarization basis (CR, CL) is given by [5]

t
(R,L)

=
1

2
(ηtp + ts)

[
1 0

0 1

]
+

+
1

2
(ηtp − ts)

[
0 exp [−2iϕ]

exp [+2iϕ] 0

]
,

(3)

where η = cosΘ(t)
/
cosΘ(i) and tp ≡ tp(ϑi), ts ≡ ts(ϑi)

are the Fresnel coefficients. The two terms above are the two
2 × 2 matrices corresponding to the direct (DP ) and cross
(XP ) polarization effects, respectively.

Fig. 1. Interface OXY Z and beam Oxyz reference frames for the
incident, transmitted and reflected beams

For clarity of further considerations we can rewrite the
terms placed before the square brackets in (3) as

t(DP ) =
1

2
(ηtp + ts) ,

t(XP ) =
1

2
(ηtp − ts) .

(4)

As they are 3D counterparts of the standard (2D) Fresnel coef-
ficients, let us call them as modified spectral coefficients. Fig-
ure 2 depicts them versus normalized spectral variable k⊥/ki.

Let us now consider more closely the optical beam field
on which the transmission matrix (3) can be applied.

Fig. 2. Magnitude (top) and phase (bottom) of the 3D counterparts of
the standard (2D) Fresnel coefficients in the internal case (a critical
angle is 45◦) versus sin ϑi = k⊥/ki. Black solid curve is for tDP ,
dashed for tXP . Three values on the axis of abscissa, 0.04, 0.71,
0.82 are for “significant” (∼= 2◦, kiww = 10 · 2π, see Subsec. 3.2),
critical (45◦, Subsec. 3.3) and TIR (55◦, Subsec. 3.4) regions of the

incident angle, respectively

2.2. Elegant Laguerre-Gaussian beams in the spectral do-

main. General form of the beam field in the spectral domain
has been presented in the previous section. Here we give ex-
plicit forms of the ELG beams. The harmonic dependence
on time exp[−iωt] and a propagation distance exp[ik(b)z] are
assumed and suppressed.

In the spatial domain all higher-order modes of the ELG
beams can be derived by acting with differential operators
on fundamental Gaussian mode. Corresponding spectral op-
erators are simply the algebraic multiplication of the spectral
amplitudes instead [5, 7–9]. Then, the form of ELG beams in
the spectral domain is given by

G̃
(EL)
p,l (κ, κ̄, z) ∼ (iww)2p+l κp+lκ̄pG̃ (κ, κ̄, z) , (5)
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where κ = 2−1/2 (kx + iky) and the overbar means com-
plex conjugate. The spectral Gaussian function G̃(κ, κ̄, z) =
2π exp[−κκ̄v2] is given by the complex beam half-width (ra-
dius) v2 = w2

w

(
1 + izz−1

D

)
with the diffraction length of

a beam zD = kiw
2
w and beam (real) half-width at the waist

ww. The CR polarized ELG beam field is represented by
Ẽ = G̃

(EL)
p,l eR.

For convenience of further considerations let us look clos-
er to the spectral form of ELG beam – Eq. (5). It is easy to
predict the beam amplitude at the plane z = 0. Consider the
surface represented by |κp+lκ̄p| in spectral coordinates kx, ky .
It is described by the equality

∣∣κp+lκ̄p
∣∣ ∼= k2p+l

ro , where k2
ro =

k2
x + k2

y . If we multiply fundamental Gaussian function by
κp+lκ̄p, we will obtain one ring with finite width in amplitude
distribution. The maximum of this ring (let us call it spectral
ring) represents the ensemble of the main spectral components
(the most intense). The normalized radius of spectral ring
(krww), defined by a position of a field maximum, depends
on the order (N = 2p + l) of the ELG beam and is given by

krww =
√

N. (6)

We can build a spectral cone of the ELG beam in the similar
way as spectral cones of Bessel-Gaussian beams described
in Ref. [10]. The spectral ring forms a base of the cone.
All wave vectors of main spectral components represent the
slant heights of the cone. Longitudinal components (k(i)

z ) of
wave vectors are constant for all main components and form
a height of the cone. Direction of this height is in accordance
with direction of beam propagation. The spectral cones, for
different incident angles, are depicted in Sec. 3.

Numerical simulations consist mainly in the use of trans-
mission matrix (3). To make transposition from the spectral
domain to the spatial domain we use the fast Fourier transform
algorithm. In the next subsection the action of the interface
on the incident ELG beam is analyzed by use of transmission
matrix.

2.3. Action of the interface. Consider the ELG beam inci-
dent upon the dielectric interface. In the case of normal in-
cidence, on the grounds of Eqs. (3) and (5), we can describe
the action of the interface by [5]:
[

Ẽ
(t)
R

Ẽ
(t)
L

]

CR

= tDP

[
G̃

(EL)
p,l

0

]
+ tXP

[
0

G̃
(EL)
p−1,l+2

]
, (7)

[
Ẽ

(t)
R

Ẽ
(t)
L

]

CL

= tDP

[
0

G̃
(EL)
p,l

]
+ tXP

[
G̃

(EL)
p+1,l−2

0

]
, (8)

where the labels CR and CL indicate the type of polariza-
tion of the incident beam. The excitation and annihilation of
the optical vortices in the beam opposite component are now
clearly visible. For different polarization cases the topological
charge l changes differently. It increases (decreases) by 2 for
CR (CL) polarization of the incident beam, meanwhile the
radial index p decreases (increases) by 1.

In the case of oblique incidence a diameter of the range
of azimuthal angles decreases. It results in the geometrical

optics domination of the whole process. This aspect of beam
transmission will be discussed below.

3. Elegant Laguerre-Gaussian beam incidence

In this section we consider the beam incidence under various
incident angles. In all of them, the incident beam is ELG with
p = 1, l = 3 (Fig. 3) of CR polarization, which propagates in
the optically denser medium (the critical angle is ΘC = 45◦).
Normalized width of the beam is kiww = 10 · 2π. This is
within the paraxial range, near the lower paraxial limit. The
transverse field is defined in the plane perpendicular to the
beam propagation direction (kz = const). It results in elliptic
character of the field amplitude at the interface plane. Angles
of incident beam are special chosen. Apart from critical inci-
dence, in all other cases the spectral derivatives (∂k⊥

) of the
magnitude of the modified spectral components are close to
their zeroes, see their values on axis of abscissa in Fig. 2.

Fig. 3 (colour online). Spatial, (a)–(b), and spectral, (c)–(d), decom-
positions of the incident ELG beam, p = 1, l = 3 versus normalized
coordinates in the case of normal incidence. Note that for the case of
oblique incidence these decompositions stay valid when kX → kx,

kY → ky

It is important to note that the numerical simulations were
obtained by use of the matrix representation of the problem.
In various incident angle (Θi) cases the range of azimuthal (ϕ)
and polar (ϑ) angles is different. This entails the qualitatively
distinct action of the interface, governed by the transmission
matrix (3).

Note that in the next subsections we use some arrange-
ment of figures that show transmitted field decompositions. In
each subsection are two figures. The first depict spectral inci-
dent cone in OkXkY kZ frame and also, in the next subplot,
the spectral ring with magnitude of modified spectral compo-
nent |tXP | in the plane of the interface along kX coordinate.
For convenience the spectral cone and ring are scaled. The
spectral cone is wider, whereas the spectral ring is scaled to
have its maximum equal to 0.6. The second figure shows the
decomposition of the transmitted components with, mutual
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for each subsection, arrangement of the rows: the first two
are for the DP polarization component, the second two –
for the XP polarization component. For the beam incident
angles greater than critical, the decomposition of the transmit-
ted beam represents the evanescent field below the interface.
Note that in all presented cases of incidence, apart from that
of critical, the total amplitude distribution of the transmitted
field is similar to the DP transmitted component.

3.1. Range of normal incidence. In Subsec. 2.2 we de-
scribed the spectral cone of the ELG beam. In the normal
incidence case the height of the cone is perpendicular to the
interface. The incident reference frame Oxyz coincides with
the interface frame OXY Z . This means that the range of az-
imuthal angles, which specify main spectral components, is
equal in kx-ky and kX -kY planes and amounts |ϕ| ≤ π, see
Fig. 4a. The zero point between two peaks of the spectral ring
in Fig. 4b is exactly at zero position corresponding to normal
incidence.

a)

b)

Fig. 4 (colour online). Spectral cone under normal incidence a), and
magnitude of tXP in the spectral domain (red solid curve) with the
spectral ring of the ELG beam (blue solid curve) (b). The red lines
on (a) correspond to kx and ky, four slant heights to the wave vectors
of four main components, the black (green) circle to the spectral ring
in kx-ky (kX-kY ) plane. Note that the range of azimuthal angles is
(−π,π]. The peak positions of the spectral ring on (b) are specified
for the ELG beam, p = 1, l = 3, kiww = 10 · 2π. Peak’s hight is
scaled to 0.6. Values on the axis of abscissa have the same meaning

as in Fig. 2.

Figure 5 shows the action of the interface. Let us look
closer to the opposite component. The topological charge l
increases by 2 as shown in Eq. (7). Moreover, the radial index

p decreases by 1. But the amplitude of tXP is also dependent
on the incident angle ϑi. From the numerical simulations it
may be inferred that this dependence, in the vicinity of nor-
mal incidence, additionally increases the radial index by one.
Then it seams that the decomposition of the amplitude and
phase, (e) and (f ), may correspond to G

(EL)
p,l+2 (see Appendix A

for additional comments on this problem). Details of the nor-
mal incidence were analyzed theoretically and numerically in
Ref. 5. Our results given here confirm that analysis.

Fig. 5 (colour online). Transmitted filed components in the case of
normal incidence of the ELG beam, p = 1, l = 3, kiww = 10 · 2π,
CR (see Fig. 3). The first two rows represent the direct polarization
component. Excitation of the optical vortices and change of the topo-
logical charge are clearly visible in the opposite component in the
second row. The first and second column are respectively the ampli-
tude and phase decompositions in the spatial and spectral domains.
The third and fourth rows show the amplitude and phase of spectral
components. (a)–(d) the CR (DP ) component of transmitted beam,
(e)–(h) the CL (XP ) component of transmitted beam. The ampli-
tude of total transmitted field (is not shown here) is similar to the

DP component.
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3.2. Significant incident angle. If we increase the incident
angle enough, we will obtain a situation when one of the slant
height of the inclined cone will be normal to the interface
(see Fig. 6a).

a)

b)

Fig. 6 (colour online). Spectral cone under the “significant” inci-
dence (Θi = ΘS

∼= 2◦) (a), and magnitude of tXP in the spectral
domain (red solid curve) with the spectral ring of the incident ELG
beam p = 1, l = 3, kiww = 10 ·2π (blue solid curve) (b). Meanings
of the lines and curves are the same as in Fig. 4. Now, the cone is
inclined and the spectral ring peaks are shifted by sin ΘS . The range
of azimuthal angles has been changed into (−π/2, π/2), see blue

half-circle in (a).

In this case the range of azimuthal angles in the plane kX -
kY decreases sharply from |ϕ| ≤ π to |ϕ| ≤ π/2 (see blue
half-circle in kX -kY plane in Fig. 6a). The “significant” case
is defined as the boundary between the normal and oblique
incident ranges, as upper border of “normal” vortex excita-
tion. Note that the “significant” angle can be easily computed.
It is the angle between height and slant height of the cone.
Thus:

sin ΘS =
kr

ki
=

√
N

kiww
. (9)

The decomposition of the two orthogonal, transmitted beam
components in the spatial and spectral domain is shown in
Fig. 7. A half-moon in the spectral domain is now vivid as
the result of the one of main spectral components specified by
ϑi = 0◦. The modified spectral coefficient tXP (ϑi = 0◦) = 0.
The cross-polarization does not exist for the spectral compo-
nent normal to the interface. See the position of the spectral

ring peak for this component in Fig. 6b. It is exactly placed
at zero position. For the components that satisfy ϑi > 0◦

tXP 6= 0. It is responsible for non zero part of the half-
moon.

Fig. 7 (colour online). Transmitted components of the CR incident
ELG beam, p = 1, l = 3 (see Fig. 3) in the case of the “significant”
incidence, Θi = ΘS

∼= 2◦ for kiww = 10·2π. The two first (second)
rows show the DP (XP ) component of the transmitted beam. The
first and second column are respectively the amplitude and phase
decompositions in the spatial and spectral domains. The third and
fourth rows show the amplitude and phase of spectral components.
Values on the axis of abscissa are shown with reference to the global
shift kiww sin θi. (a)–(d) the CR (DP ) component of transmitted
beam, (e)–(h) the CL (XP ) component of the transmitted beam.
The amplitude of the total transmitted field (is not shown here) is

similar to the DP component.

3.3. Critical incidence. The case of critical incidence is rich
in different physical phenomena, e.g. the nonspecular effects
of reflection [11, 12], the presence of evanescence of the trans-
mitted field and so on. The standard Fresnel coefficients and
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their 3D counterparts (Eq. (4)) possess singularities exactly
in the critical angle. Meanwhile the critical incidence means
that roughly half of all spectral components of the 3D beams
undergo the total internal reflection, the second half of com-
ponents does not and is connected to the purely real modified
spectral coefficients (see Figs. 8b and 2).

a)

b)

Fig. 8 (colour online). Spectral cone in the case of critical inci-
dence (Θi = ΘC = 45◦) (a), and magnitude of tXP in the spectral
domain (red solid curve) with the ring of the incident ELG beam
p = 1, l = 3, kiww = 10 · 2π (blue solid curve) (b). Meanings of
the lines in (a) are the same as in Fig. 4. The cone is inclined and
the spectral ring peaks are shifted by sin(Θi = 45◦). Note that the
range of azimuthal angles is less then (−π/2,π/2), see blue circular

sector in (a).

Apart from singularities of spectral coefficients, it is also
one thing important to note. Under oblique incidence (in the
case when Θi > ΘS) the range of azimuthal angles that se-
lects substantial spectral components is less than (−π/2,π/2)
(see blue circular sector in kX -kY plane in Fig. 8a). That en-
tails domination of the geometrical optics but does not blur
strong effects caused by the critical incidence. Subsec. 3.4
presents oblique incidence when the domination of the geo-
metrical optics is clearly visible and is not distorted by the
critical incidence phenomena.

Keeping in mind the position of the spectral peaks and the
form of the modified spectral coefficients shown in Figs. 8b
and 2, see decomposition of the transmitted fields shown in
Fig. 9. Let us start our consideration from the spectral domain.
First, in the direct polarization component (c)–(d) nothing

Fig. 9 (colour online). Transmitted components of the CR incident
ELG beam p = 1, l = 3, kiww = 10 · 2π (see Fig. 3) in the case
of the critical incidence. The first two (second) rows show the DP
(XP ) component of the transmitted beam. The first and second col-
umn are respectively the amplitude and phase decompositions in the
spatial and spectral domains. The third and fourth rows show the
amplitude and phase of spectral components. Values on the axis of
abscissa are shown with reference to the global shift kiww sin θi.
(a)–(d) the CR (DP ) component of the transmitted beam, (e)–(h)
the CL (XP ) component of the transmitted beam. The amplitude of
the total transmitted field (is not shown here) is similar to the DP
component but influence of the presence of half-moon in the XP

component is also visible.

is unexpected (at first glance). Secondly, in the cross-
polarization component, the spectral ring in (g) shows its
half-part of decreased intensity, for ϑi < Θi = ΘC . This is
result of lower branch for ϑi < ΘC in |tXP |. Corresponding to
this distorted spectral field there exist deformed spatial field,
(e)–(f). In the center of the beam there are three “mini” vor-
tices. Moreover, if we look closer to the amplitude and phase
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of the direct polarization component, a) and b) respectively,
we will also see three “mini” vortices. Note that number of
the splitted vortices (in XP and DP component) is the same
as the value of topological charge of the incident beam. Still,
the total amount of the topological charge of the new vortices
is in accordance with the topological charge of the incident
beam.

3.4. Above critical incidence. We now chose specific angle
of incidence equal to 55◦. All the spectral components corre-
spond here to TIR. Moreover, the angle is chosen such that the
differentiation ∂k⊥

of |tXP | and |tDP | be ∼= 0, see Figs. 10
and 2.

a)

b)

Fig. 10 (colour online). Spectral cone in the case of oblique inci-
dence (Θi = 55◦) (a), and magnitude of tXP in the spectral domain
(red solid curve) with the ring of the incident ELG beam p = 1,
l = 3, kiww = 10 · 2π (blue solid curve) (b). Meanings of the lines
and curves are the same as in Fig. 4. The cone is inclined and the
spectral ring peaks are shifted by sin(Θi = 55◦). Note that the range
of azimuthal angles is less then (−π/2,π/2), see blue circular sector

in (a).

Under oblique incidence the action of the interface is qual-
itatively different in comparison with the action in the cases of
“normal” incidence or the “significant” incidence. The range
of the azimuthal angle is narrow enough so we can rewrite
the transmission matrix, Eq. (3), in the approximate form

tΘi>ΘS

(R,L) ≈ +tDP

[
1 0

0 1

]
+ tXP

[
0 1 − 2iϕ

1 + 2iϕ 0

]
.

(10)

Therefore Eq. (10) suggests that field decomposition in its
opposite polarization component will be of the similar shape
as that of the incident beam. Compare Fig. 11 with Fig. 3.
Domination of geometrical optics is clearly visible.

Fig. 11 (colour online). Transmitted components of the CR incident
ELG beam p = 1, l = 3, kiww = 10 · 2π (see Fig. 3) in the case
of the oblique incidence (55◦). The two first (second) rows show the
DP (XP ) component of the transmitted beam. The first and second
column are respectively the amplitude and phase decompositions in
the spatial and spectral domains. The third and fourth rows show the
amplitude and phase of the spectral components. Values on the axis
of abscissa are shown with reference to the global shift kiww sin θi.
(a)–(d) the CR (DP ) component of the transmitted beam, (e)–(h)
the CL (XP ) component of the transmitted beam, domination of
the geometrical optics is clearly visible. The amplitude of the total
transmitted field (is not shown here) is similar to the DP (or XP )

component.

4. Conclusions

In this contribution, we show that the “significant” boundary
between two ranges of incident angle exists for the ELG beam
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incidence. The first range represents roughly the normal in-
cidence with the clearly visible excitation or annihilation of
optical vortices in the opposite beam component. The second
range represents the oblique incidence with the domination of
the geometrical optics in the opposite component. The bound-
ary between two regions of incidence is specified within the
range where azimuthal angles decrease sharply. The angle of
incidence that correspond to this “significant” case is decreas-
ing with increasing of the width of the beam.

In the case of oblique incidence the range of azimuthal an-
gles are narrower than in the “significant” or “normal” cases.
Moreover, it is decreasing with growing of the incident angle
or beam width at the waist. Narrow range of azimuthal angles
finally results in the domination of the g-o contribution in the
opposite beam component. However, in the case of critical in-
cidence, 3D counterparts of the standard Fresnel coefficients
possess singularities that peculiarly distort the beam spectral
components and split the central optical vortex appeared in
the spatial domain. Still, the phenomenon of vortex splitting is
the characteristic feature of non-paraxial ELG beams incident
obliquely on the interface [13].

Appendix A.

A note about the excitation of optical vortices

in the case of normal incidence

For different polarization of the incident ELG beam, with ra-
dial p and azimuthal l indices, the excitation of optical vortices
in the opposite transmitted component is different. Change of
the topological charge l and radial index p is given by Eqs. (7),
(8). The azimuthal index l increases (decreases) by 2, whereas
radial index p decreases (increases) by 1 for CR (CL) incident
beam polarization [5].

Some hint, that makes definition of tXP more convenient,
can be inferred from the case of normal incidence. In this case
within the definitions of the ELG beams used in this paper
there is some arbitrariness in the definitions of tXP in the
term tXP G̃p∓1,l±2. We can apply as well another definition
of tXP which entails the change of the form of G̃p∓1,l±2.
In order to make the modified spectral coefficient tXP ap-
proximately constant at and near the centre of the spectrum
(kX = 0, kY = 0), we have to multiply it by some spec-
tral normalization term. Note that tDP is roughly constant in
this region, see Fig. 2. Coefficient tXP possesses dependence
∼ k2

⊥ in the centre. If we consider this, the normalization
term will be ∼ 1/k2

⊥. Note that, 2κκ̄/k2
⊥ = 1. Let put this

unity after tXP in Eqs. (7) and (8). Now, using Eq. (5) with
κκ̄ instead of κp+lκ̄p we can write:

κκ̄G̃
(EL)
p,l (κ, κ̄, Z) = −w−2

w G̃
(EL)
p+1,l+0 (κ, κ̄, Z) . (11)

Considering presence of −w−2
w the constant tXP can be gi-

ven by:
−2tXP (wwk⊥)−2 ≡ t′XP . (12)

Using last two equations above we can rewrite action of the
interface as:
[

Ẽ
(t)
R

Ẽ
(t)
L

]

CR

= tDP

[
G̃

(EL)
p,l

0

]
+ t′XP

[
0

G̃
(EL)
p+0,l+2

]
, (13)

[
Ẽ

(t)
R

Ẽ
(t)
L

]

CL

= tDP

[
0

G̃
(EL)
p,l

]
+ t′XP

[
G̃

(EL)
p+2,l−2

0

]
. (14)

Note that the identical form of t′XP can be given for the Ele-
gant Hermite-Gaussian beams analyzed in Ref. [5].
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