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Application of uncertain variables to production planning

in a class of manufacturing systems
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Abstract. A production planning problem is addressed in the paper. It consists in the determination of a production plan of products to
maximize a total utility connected with their manufacture taking into account a limited amount of resources of different types which are
necessary for the production. An uncertain version of the problem is considered when an amount of the resources are not precisely known.
The formalism of uncertain variables is proposed in the paper to solve this problem. The solution algorithms for two versions of the uncertain
production planning problem are presented. It turned out possible to replace the uncertain problems by their deterministic counterparts.
A simple numerical example illustrates the solution algorithms.
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1. Introduction

A production planning is an important matter of concern both
in decision science (in particular in operations research) and
in economics (in particular in production management). The
problems investigated by decision makers concern mainly pro-
cedures for finding a production plan, while economists are
mostly interested in making a good plan.

There are a variety of particular production planning prob-
lems considered and represented in literature, see e.g. [1–3].
Apart from the basic ones which deal with the determination
of an amount of products taking into account the consumption
of a restricted amount of resources needed, the more complex
their versions, closer to real-world applications, have been for-
mulated and solved. This research direction is connected with
the development of manufacturing systems, on the one hand,
as well as of tools for solving corresponding decision making
problems, on the other hand. A supply chain management can
be mentioned as an example. For a supply chain, being a com-
plex structure of individual companies (or manufacturing
functions) having its own objectives, finding the optimum sup-
ply chain management strategy is a very hard problem. It con-
cerns also corresponding production planning problems where
decisions deal with not only a production but also a transporta-
tion of raw materials and products as well as a management of
inventories and even employment. Such an approach, which
allows for a better utilization of the human and equipment re-
sources of a company to meet some anticipated consumer de-
mand, is called an aggregate production planning, see e.g. [2].

1.1. Production planning under uncertainty. Another fac-
tor which forces the necessity to investigate a new production
planning problems is an uncertainty in data of these problems.
Among many factors involved in practical decision making
problems in manufacturing enterprises such as the random-
ness of arriving orders, the uncertainty in a competitive en-

vironment, the crucial role plays the imprecise information
of available resources. Decision makers employ different ap-
proaches for modeling the uncertainty in manufacturing sys-
tems, in particular, when solving different production planning
problems. The most popular and grounded is the stochastic
approach where an uncertain parameter (e.g. total amount of
resources) is assumed to be the realization of a random vari-
able, e.g. [4]. For this approach, it is assumed that a certain
probability distribution exists over the space of all the possi-
ble realizations (scenarios) of all the random parameters of
the problem and the objective is to determine a solution that
fulfils a selected probabilistic performance index. Assigning
probabilities or determining probability distributions is most-
ly a difficult task. In many cases, it is difficult to express the
future realizations of variables in terms of probabilities. This
particularly applies to production planning problems where
a few factors (such as products and resources) determine the
uncertainty of many parameters. The most serious drawback
of the stochastic approach is its inability to recognize that
depending on what parameter scenario is actually realized,
a whole distribution of outcomes is associated with every de-
cision, and, so, any approach that evaluates decisions using
only one parameter realization (either the expected one or the
most likely one) is bound to fail.

The cost of a production or its profit are generally op-
timized. For the stochastic approach, typically, a decision
which maximizes (minimizes) an expected performance mea-
sure (with the expectation taken over the assumed probabil-
ity distribution) should be generated. The issues mentioned
have motivated many researchers to develop other approaches
which would cope with the uncertainty of parameters more
adequately without using any probability distribution as the
description of a parameter uncertainty. A fuzzy system and
possibilistic approaches are often used, e.g. [5]. Realistic so-
lutions in a production planning are dealt with in [6] and [7]
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when the amount of resources are not completely known, but
they are specified in terms of uncertain intervals using fuzzy
sets. A multi-product multi-period production planning prob-
lem is addressed in [8] where some cost coefficients in a per-
formance index are assumed to be represented by fuzzy vari-
ables. The discrete version of a production planning problem
with interval values of the resource quantities is investigat-
ed in [9]. The important feature of this approach consists in
the fact that no other information about uncertainty is giv-
en besides of bounds of intervals. Some L-class enumeration
algorithms are proposed to solve the problem.

A formalism of the uncertain variables [10] is used in the
paper to model an uncertainty of a manufacturing enterprise.
It is assumed that the quantity of resources are only values
of the uncertain variables. Non-standard version of the objec-
tive function is used. A total utility function being a sum of
the local utilities connected with a manufacture of individual
products serves as a performance index to be maximized. The
utility functions are often used as criteria for different decision
making problems in manufacturing systems, e.g. [11–13].

Till now, the approach based on the uncertain variables
was applied e.g. for stability analysis and stabilization in con-
trol systems [14] as well as for rate allocation and admission
control in computer networks [15], task allocation in multi-
processor systems [16], and joint transportation and produc-
tion problem [17–18]. The paper continues this series for the
production planning problem. The basic information of the
uncertain variables are presented in the next sub-section.

1.2. Uncertain variables . Let us consider an universal set
Ω, ω ∈ Ω, a set of real valued vectors B ⊆ Rk as well as
a function g : Ω → B, i.e. b = g(ω) , x(ω). The function g
determines the value of a certain numerical feature assigned to
the element ω. The existence of this function makes the main
difference among an uncertain variables approach and oth-
er approaches which can describe the parameter uncertainty,
e.g. probabilistic or fuzzy approaches. A crisp property P (b)
is introduced being the logic proposition in a two-valued log-
ic. On the other hand, the property P (b) and the function g
define a crisp property Ψ(ω, P ): “For value b assigned to ω
the crisp property P is fulfilled”. This sentence is a propo-
sition in a two-valued logic which means that a logic value
of Ψ(ω, P ) is equal to 0 or 1, i.e. w[Ψ(ω, P )] ∈ {0, 1}. Let
us introduce now a soft property Gω(b) = “b(ω) ∼= b” for
b ∈ B ⊆ B which means that “b is approximately equal to b”
or “b is an approximate value of b”. The properties P and Gω

generate a new soft property Ψ(ω, P ) in Ω: “an approximate
value b(ω) fulfills P ”, i.e.

Ψ(ω, P ) = “b(ω)∈̃Db”, Db = {b ∈ B : P (b)},

which means that “b approximately belongs to Db” or “an
approximate value of b belongs to Db”. For given ω, it is im-
possible to say whether Gω, Ψ are true (their logic values are
equal to 1) or false (their logic values are equal to 0). There-
fore, a multi-valued logic is proposed, i.e. w[Gω(b)] ∈ [0, 1]
and w[Ψ(ω, P )] ∈ [0, 1] where w denotes a logic value of
the property. There exist different interpretations of the logic

value in multi-valued logic. For the uncertain variable ap-
proach, it is assumed that w[Gω(b)] and w[Ψ(ω, P )] denote
a degree of an expert’s certainty that for fixed b the property
Gω and Ψ are satisfied, respectively. The logic value of Gω

will be denoted by hω(b) or v[Gω(b)] which is called a cer-

tainty index of the soft property Gω. Analogously, v[Ψ(ω, P )]
is a certainty index (logic value) of Ψ. Namely,

w [Gω(x)] = w [b ∼= b] , v [b ∼= b] = hω(b),

where hω(b) ∈ [0, 1] and

w[Ψ(ω, P )] = w[b(ω)∈̃Db] , v[b(ω)∈̃Db] =

=

{
max
b∈Db

hω(b), for Db 6= ∅,

0, for Db = ∅.

The function hω(b) is given by an expert which can ob-
serve an element ω, collect any information concerning b and
use them for a numerical evaluation of his opinion that b ∼= b.
The expert, on the basis of the information on ω collected and
his (her) experience, can, for example, give different approxi-
mate values b1, b2, ..., bm of b(ω) and for each of them can
present the degree of certainty v[b(ω) ∼= bi] = hω(bi).

The variable b for fixed ω is called the uncertain vari-
able and is defined by the set of values B, the function
h(b) , hω(b) = v[b ∼= b], ω ∈ Ω, (i.e. certainty distribu-

tion given by the expert; for simplicity hω(b) is denoted as
h(b)) and the following definitions

v (b∈̃Db) =

{
max
b∈Db

h(b), for Db 6= ∅,

0, for Db = ∅,
(1)

v
(
b /̃∈Db

)
= 1 − v

(
b∈̃Db

)
, (2)

v (b∈̃D1 ∨ b∈̃D2) = max{v (b∈̃D1), v (b∈̃D2)}, (3)

v (b∈̃D1 ∧ b∈̃D2) =

=

{
min{v(b∈̃D1), v(b∈̃D2)} for D1 ∩ D2 6= ∅,

0 for D1 ∩ D2 = ∅.

(4)

For given ω, it is not possible to state whether the crisp
property “b ∈ Db” is true or false because the function g and
consequently the value of b corresponding to ω are unknown.
The exact information i.e. the knowledge of the function g,
which enables us to calculate b(ω), is replaced by the certainty
distribution hω(b) , h(b) which for given ω characterizes the
different possible approximate values of b(ω). The expert, giv-
ing the function h(b) in this way, determines for the different
values b his (her) degree of the certainty that b is approximate-
ly equal to b. The certainty index may be given directly by the
expert or may be determined when b is a known function of
an uncertain variable e described by a certainty distribution
he(e) given by the expert. Usually, the certainty distribution
is characterized by: two parameters b∗ and db which values
indicate respectively the most certain value of the unknown
parameter according to the expert and the range of possible
values of the unknown parameter (i.e., [b∗ − db, b

∗ + db]) as
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well as by the shape which illustrates the degree of certainty
for possible values of an unknown parameter.

For the uncertain variable, one can define a mean value
M(b) in a similar way as an expected value for a random
variable, i.e.

M(b) =

∫

B

bh(b)db



∫

B

h(b)db



−1

,

M(b) =

m∑

i=1

bih(bi)

[
m∑

i=1

h(bi)

]−1

,

for continuous, discrete case, respectively. A joint certainty
distribution for a pair of uncertain variables as well as cor-
responding marginal certainty distributions are also defined
[19], [20].

It is interesting to compare uncertain variables with ran-
dom and fuzzy variables. The formal part of the definition
of a random variable b̃, a fuzzy number b̂ and an uncertain
variable b is the same and can be expressed using a pair
〈B, µ(b)〉 where µ : B → R1 and µ(b) ≥ 0, b ∈ B. The ran-
dom variable b̃ is defined by B and probability distribution
µ(b) = F (b) (probabilities pi(bi) for a discrete case). The
function F (b) is an objective characteristics of Ω as a whole

while h(b) is a subjective characteristics given by an expert
and describes his (her) individual opinion of the fixed partic-

ular ω. Moreover, for the random variables the property of
additivity is required (e.g. when B = {b1, b2, ..., bm} then
m∑

i=1

µ(bi) = 1). The definition of the fuzzy variable is more

general then the definition of the uncertain variable. For the
case of the fuzzy number, b̂(ω) (µ(b) = µ̂(b)) is a member-
ship function which is a logic value (degree of possibility) of
the soft property “it is possible that the value b is assigned to
ω”. In the case of uncertain variables, there exists a function
b = g(ω), the value b is determined for the fixed ω but is
unknown to an expert who formulates the degree of certainty
that b(ω) ∼= b for different values b ∈ B. In the case of b̂(ω),
the function g may not exist. Instead, a property of the type
“it is possible that the value b is assigned to ω” is assumed.
Then, µ̂(b) for fixed ω means the degree of possibility for
different values b ∈ B given by an expert.

The presentation in the paper is organized as follows.
The production planning problem considered is formulated
in Sec. 2 both for the deterministic and the uncertain case.
The solution algorithms for the two versions of the uncertain
problem are described in Sec. 3. Section 4 provides a simple
numerical example. Final remarks complete the paper.

2. Problem formulation

2.1. Deterministic case. Let us consider a manufacturing
system with a set of n types of products (production tasks) to
be produced with the utilization of m types of resources (raw
materials). It means that different resources are necessary to
manufacture the products. The resources may include labor,
raw material, pollution allowance, etc. The problem consists

in finding a production plan x = [x1, x2, ..., xj , ..., xn]T

with real non-negative components which maximizes a total
utility (profit) under resource constraints, e.g. [3]. The total
utility is composed of local utilities, to be reached when in-
dividual products are manufactured, described by functions
fj(xj , aj) where aj = [a

(1)
j , a

(2)
j , ..., a

(kj)
j ]T is a vector of

kj parameters characterizing function fj . It is assumed that
functions fj are increasing, strictly concave and continuously
differentiable with respect to xj . A linear form of functions fj

is mostly considered in literature. However, non-linear func-
tions reflect better the utility for the real-world applications.
The following their form can be presented as an example

fj(xj , aj)=





(
1 − a

(1)
j

)−1

x

�
1−a

(1)
j

�
j ,

ln(xj + 1),

0 < a
(1)
j < 1,

a
(1)
j = 1,

(5)

i.e. kj = 1. The total utility for all products is a composition
of the utility functions for individual products. In general,
the total utility function can be expressed in the form of the
mapping F (f1(x1, a1), f2(x2, a2), .., fn(xn, an)) , F (x). In
particular, F is the sum

F (x) =
n∑

j=1

fj(xj , aj). (6)

Consequently, the manufacturing system with the set of
products and the set of resources can be treated as an input-
output decision making plant with the production plan x as
the input and the total utility F as the output (see Fig. 1).

Fig. 1. The manufacturing system as an input-output decision-making
plant

It is assumed that the restricted amount bi of each type
of the resource is available and the following inequalities are
true

n∑

j=1

cijxj ≤ bi, i = 1, 2, ..., m, (7)

where cij denotes the consumption of the resource i for the
product j unit. The decision consists in the determination of
x1, x2, ..., xn to enable fulfilling constraints imposed on the
resources. In particular, the optimal decision making problem
P can be formulated and then solved. Namely, for given: bi,
cij , fj , i = 1, 2, ..., m, j = 1, 2, ..., n

max
x∈Dx

F (x), (8)

where Dx = {x : (xj ≥ 0, j = 1, 2, ..., n) ∧ (7) holds}. The
optimal solution (the optimal production plan) x∗ is obtained
as the result. Let us denote additionally F (x∗) , max

x∈Dx

F (x).

Bull. Pol. Ac.: Tech. 57(3) 2009 259



D. Gąsior and J. Józefczyk

It is worth noting that P is the multidimensional knapsack
problem for integer components of x.

2.2. Uncertain cases. The exact values of resource amounts
bi are not known in many cases, e.g. [4, 7, 8, 13, 15]. More-
over, there are often no empirical data to estimate probability
distributions or their moments, and, in the consequence, the
application of the probabilistic approach as the description
of uncertain bi is not justified in such a case. Therefore the
subjective description of the uncertainty based on the sub-
jective opinion of an expert, can be only used. Let us use
the approach based on the formalism of uncertain variables
and assume that bi are values of independent uncertain vari-
ables bi, described in the form of certainty distributions hi(bi)
given by an expert. In fact, such an assumption means that
constraints imposed on the consumption of the resources can
be satisfied only in a soft way. Consequently, it is possible on-
ly to define the certainty index that constraints of the resource
consumption are approximately satisfied. The formulation of
an uncertain decision making problem corresponding to prob-
lem P is not unique. Different cases can be considered. The
following two of them are addressed in the paper.

The optimization of the objective function taking into ac-
count that the resource constraints are satisfied with the cer-
tainty index not less than level v given by an user, referred to
as UP1.

The maximization of the certainty index that “constraints
of the resources are approximately satisfied” when the total
utility is not less than value α given by an user, further called
as UP2.

The data for both uncertain problems are as for P instead
of bi which is replaced by hi(bi) for i = 1, 2, ..., m. Moreover,
the certainty level v and the value of α must be additionally
known for UP1 and UP2, respectively. Then, to solve UP1 it
is necessary to perform the following maximization

max
x∈Dx,1

F (x)

where

Dx,1 =

{
{x : (xj ≥ 0, j = 1, 2, ..., n)∧

∧



v



∀i = 1, 2, ..., m
n∑

j=1

cijxj≤̃bi



 ≥ v







 .

The vector x′ is obtained as the solution, i.e.

F (x′)
∆
= max

x∈Dx,1

F (x).

Similarly, problem UP2 consists in

max
x∈Dx,2

v


∀i = 1, 2, ..., m

n∑

j=1

cijxj≤̃bi




where Dx,2 = {x : (xj ≥ 0, j = 1, 2, ..., n)∧ (F (x) ≥ α}.
The vector x̂ and the maximal value of the certainty index
denoted as v̂ are the results of the maximization for which,

additionally, the value F (x̂) of the total utility function can
be calculated.

3. Solution algorithms for uncertain cases

In the paper, the solution algorithms for the uncertain produc-
tion planning problem are considered under the assumption
that for unknown parameters bi the certainty distributions are
given in the form

hi(bi) =






hi(bi) for b∗i − dbi ≤ bi ≤ b∗i ,

hi(bi) for b∗i < bi ≤ b∗i + dbi,

0, otherwise

(9)

where b∗i and dbi are parameters of the certainty distribu-
tion described in Subsec. 1.2, hi(bi) is the increasing func-
tion, hi(bi) is the decreasing function, and hi(b

∗

i − dbi) = 0,
hi(b

∗

i ) = hi(b
∗

i ) = 1, hi(b
∗

i +dbi) = 0. The examples of such
functions are presented in Fig. 2. The choice by an expert
the hyperbolic version of the certainty distributions means
his (her) stronger opinion of the soft property “bi is approxi-
mately equal to b∗i ” then for the other versions.

Fig. 2. The examples of the certainty distributions

3.1. Solution algorithm for UP1. According to the proper-
ties of the uncertain variables (1)–(4), the certainty index that
“constraints of the resources are approximately satisfied” ful-
fills the following equations

v



∀i = 1, 2, ..., m
n∑

j=1

cijxj≤̃bi



 =

=v




n∑

j=1

c1jxj≤̃b1 ∧
n∑

j=1

c2jxj≤̃b2 ∧ ... ∧
n∑

j=1

cmjxj≤̃bm


=

= min
i

v




n∑

j=1

cijxj≤̃bi


 .

Let

vi
∆
= v




n∑

j=1

cijxj≤̃bi
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then

vi = v



bi∈̃




n∑

j=1

cijxj ,∞







 = max

bie∈" nP
j=1

cijxj ,∞

! hi(bi).

Consequently, the certainty index vi can be given in the
form of

vi =





1 for
n∑

j=1

cijxj ≤ bi,
∗

hi

(
n∑

j=1

cijxj

)
for b∗i <

n∑
j=1

cijxj ≤ b∗i + dbi,

0 otherwise.

Taking into account the transformation of

max

bie∈" nP
j=1

cijxj,∞

! hi(bi) = v

to
n∑

j=1

cijxj = h−1
i (v)

as well as the fact that function hi is monotonic, one can
obtain the set Dx,1 which, in fact, is dependent on v, i.e.

Dx,1(v) =

{
x : (xj ≥ 0, j = 1, 2, ..., n)∧

∧


∀i = 1, 2, ..., m

n∑

j=1

cijxj ≤ h−1
i (v)







 .

(10)

For example, when hi(bi) are triangular certainty distrib-
utions the set (10) has the form of

Dx,1 =

{
x : (xj ≥ 0, j = 1, 2, ..., n)∧

∧


∀i = 1, 2, ..., m

n∑

j=1

cijxj ≤ b∗i + (1− v)dbi







 .

It can be noticed that there are no uncertain parameters in
(10), the parameters characterizing an expert’s knowledge are
present only. So, the solution algorithms as for the determin-
istic case P can be applied now, e.g. [21].

3.2. Solution algorithm for UP2. Actually, the solutions of
UP1, i.e. x′ and F (x′) are dependent on v which can be ex-

pressed as x′(v) and F (x′(v))
∆
=F ′(v). The following prop-

erty is true.

Property

For every va, vb ∈ (0, 1) and va > vb the inequality
F ′(va) ≤ F ′(vb) holds.

Let us assume indirectly that a pair va, vb ∈ (0, 1),
va > vb exists that

F ′(va) > F ′(vb). (11)

It is easy to see that

∀
i
h−1

i (va) < h−1
i (vb)

because hi and h−1
i are decreasing functions. There-

fore, inclusion Dx,1(va) ⊆ Dx,1(vb) for the correspond-
ing sets of feasible solutions along with the following
implication are true: If x′(va) = arg max

x∈Dx,1(va)
F (x)

and consequently x′(va) ∈ Dx,1(va) then x′(va) ∈
Dx,1(vb). Let x′(vb) = arg max

x∈Dx,1(vb)
F (x) which means

¬

[

∃
x∈Dx,1(vb)

F (x′(vb)) < F (x)

]
, in particular

¬ [F (x′(vb)) < F (x′(va))] . (12)

On the other hand, F (x′(va)) = F ′(va) > F ′(vb) =
F (x′(vb)) according to (11) which contradicts (12).

Fig. 3. The solution algorithm for UP2

The solution algorithm for UP2, which block scheme is
presented in Fig. 3, can be introduced in three following steps:

1. If there exists any production plan for which the cer-
tainty index is equal to 1 it is the optimal solution be-
cause the maximal value of the certainty index cannot be
greater than 1. To check this, one should determine if set
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D̃x = {x : x ∈ Dx,2∧∀i = 1, 2, ..., m vi = 1} is empty
or not. It can be easily done by finding x∗, i.e. the optimal
solution of the deterministic production planning problem
P, assuming bi = b∗i . If F (x∗) ≥ α then x̂ = x∗ is also an
optimal solution of UP2.

2. If D̃x is empty the maximal value of the certainty index
is less than 1. According to Property, F ′(v) is a non-
increasing function of v, so the solution of UP2 can be
obtained as x̂ = x′( v(α)) where v(α) is the solution of
F ′(v) = α if it exists.

3. If D̃x is empty and F ′(v) = α has no solutions then for
every production plan x the certainty index

v



∀i = 1, 2, ..., m

n∑

j=1

cijxj≤̃bi



 = 0,

which means that every production plan x is the solution
of UP2.

4. Numerical example

A simple numerical example presented in this section can
refer to a production of four types of a juice (e.g. orange,
apple, grape and multifruit) manufactured from three types
of fruits (orange, apple, grape). It is needed to provide 1.2
units of fruits to obtain one unit of juice. The multifruit juice
is made from oranges, apples and grapes mixed with equal
proportions. Consequently, the following numerical data re-
sult from the assumptions: n = 4, m = 3, cij = 1.2 for
i, j = 1, 2, 3, i = j, cij = 0 for i, j = 1, 2, 3, i 6= j,
ci4 = 0.4 for i = 1, 2, 3, and the constraints (7) for the con-
sumption of resources can be expressed by the following in-
equalities

1.2xi + 0.4x4 ≤ bi, for i = 1, 2, 3, (13)

where bi denotes the available amount of each type of re-
sources being the values of the uncertain variables. However,
the precise values of bi are not known in advance and only
expert’s knowledge characterized by triangular certainty dis-
tributions with the parameters b∗1 = 1, db1 = 1, b∗2 = 2,
db2 = 1, b∗3 = 3, db3 = 1 is given. The local (consumers’)
utilities concerning the juice production are described by the
logarithmic function for each type of juice. So, the total utility

function is in the form of F (x) =
n∑

j=1

ln(xj + 1). To solve

such a problem, a numerical algorithm for solving the set of
nonlinear equations has to be applied. In this case, Newton’s
method was used. The results determined for UP1 and for
different user’s requirements v are given in Table 1.

Table 1
The results of UP1 for different v̄

v x
′

1
x
′

2
x
′

3
x
′

4
F (x′)

0.7 0.65 1.48 2.32 1.29 3.44

0.8 0.59 1.42 2.26 1.23 3.33

0.9 0.53 1.36 2.19 1.16 3.21

One can notice that the greater is certainty level v the
less is the total utility which may be obtained, and, so, the

amount of resources needed for the production are closer to
the values b∗i . The decreasing of certainty level v implies the
increasing of the total utility, and, in the consequence, the
amount of resources needed for the production is closer to
the values b∗i + dbi. The values of the left-hand side in (13)
for i = 1, 2, 3 and for v = 0.7, 0.8, 0.9 are given in Table 2
(notice that b∗1 = 1, b∗2 = 2 and b∗3 = 3). Another speak-
ing, the greater is the certainty level v that the constraints
for resources are approximately satisfied the closer is a real
consumption of resources to the values b∗i which the expert
is the most certain.

Table 2
The values of the left-hand side in (13) for different v̄

v
i = 1

(1.2x
′

1
+ 0.4x

′

4
)

i = 2
(1.2x

′

2
+ 0.4x

′

4
)

i = 3
(1.2x

′

3
+ 0.4x

′

4
)

0.7 1.296 2.292 3.300

0.8 1.200 2.196 3.204

0.9 1.100 2.096 3.092

Analogously, the results for UP2 and for different user’s
requirements α are presented in Table 3.

Table 3
The results for UP2 and different α

α F (x̂) x̂1 x̂2 x̂3 x̂4 v̂

2.00 2.839728 0.83 1.66 2.50 0.00 1.00

3.50 3.503816 0.69 1.52 2.35 1.33 0.64

3.75 3.752855 0.84 1.67 2.50 1.48 0.40

4.00 4.004201 0.99 1.83 2.66 1.66 0.14

The values of v̂ obtained inform a decision maker how re-
alistic is the production plan according to the expert’s knowl-
edge. It can be noticed that the greater is the requested value
of the total utility the less is the certainty index that “con-
straints of the resources are approximately satisfied”, i.e. the
less realistic is the production plan. In the second column of
Table 3, the values of the total utility calculated for x̂ are
presented. It is easy to notice that if the minimal acceptable
value of the utility α is low like in the first row of Table 3
one can find such an allocation for which the total utility is
greater than user’s expectation and the certainty index con-
cerning constraints is maximal, i.e., equal to 1. For greater
values of α the total utility F (x̂) calculated is almost equal
to α. The small differences between α and F (x̂), which can
be noticed in two first columns of Table 3, are effects of the
rounding up and the calculation errors caused by the numeri-
cal algorithms applied to solve problem UP2 which could not
be solved analytically.

5. Final remarks

The solution algorithms for the production planning prob-
lem with uncertain amount of the resources are presented.
The formalism of the uncertain variables has been used. The
information of the uncertain problem’s data (the amount of
resources) is given in the form of the certainty distributions.

In further investigations the more general case will be
considered which deals with taking into account a minimal
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positive size of the production xj,min > 0. Then, the set of
feasible solutions can be stated as

Dx = {x : (xj ≥ xj,min > 0, j = 1, 2, ..., n) ∧ (7) holds}.

It is obvious that too small size of products might lead to
a loss not to a profit as it could be seen for the numerical
example given in Sec. 4 when the local utility functions of
the form fj(xj , aj) = ln xj would be used instead of (5).
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