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Accepted: 28 July 2016 The technology of wideband code division multiple access (WCDMA) has been applied to
band selective interference cancellation system (ICS) repeaters. To inspect the telecommu-
nication quality of the systems, quality engineers must check the shape of the signals at the
corresponding frequency band of the repeaters. However, measuring the signal quality is a
repetitive manual task which requires much inspection time and high costs. In the case of
small-sized samples, such as the example of an ICS repeater system, Bayesian approaches
have been employed to improve the estimation accuracy by incorporating prior information
on the parameters of the model in consideration. This research proposes a virtual method of
quality inspection for products using a correlation structure of measurement data, mainly in
a Bayesian regression framework. The Bayesian regression model derives prior information
from historical measurement data to predict measurements of other frequency bandwidths
by exploiting the correlation structure of each measurement data. Empirical results show
the potential for reducing inspection costs and time by predicting the values of adjoining
frequency bandwidths through measured data of a frequency bandwidth in the course of
quality inspections of ICS repeater systems.
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Introduction

An interference cancellation system (ICS)
telecommunication repeater has been used to de-
tect radio frequency interference during feedback
between antennas using a digital signal process. In
the case of an ICS repeater with wideband code
division multiple access (WCDMA), every telecom-
munication company uses a different bandwidth of
its own conversion [1]. In domestic applications in
Korea, specific frequency bandwidths are assigned
to each of telecommunication companies for the ICS
repeater. Quality engineers inspect only a specific
bandwidth assigned to each of telecommunication
companies. However, in foreign applications, the fre-
quency bandwidths assigned to a telecommunication
company are not unique, depending on the regions

in which the ICS repeaters are used. For example,
AT&T agency is assigned at frequency bandwidth 1
in region A of US, while assigned at frequency band-
width 2 in region B as shown in Fig. 1.

Fig. 1. Domestic and international allocations of frequen-
cy bandwidths for ICS repeaters.
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In the case of a WCDMA switched ICS repeater,
each of the bandwidths should be inspected manually
and individually by an inspector. Hence the inspec-
tion procedure is a time consuming procedure result-
ing in decreasing productivity. Inspection schemes of
this repeater system for international applications
need a lot of inspection time because quality engi-
neers should inspect all frequency signals at differ-
ent bandwidths using a measuring instrument. This
results in higher inspection costs because all of the
bandwidths should be inspected manually [2].

In this study, we introduce a Bayesian regres-
sion model to improve productivity by reducing in-
spection costs caused by repeated measurements. We
measure one bandwidth for an ICS repeater, then
predict the rest of the adjoining bandwidths using a
correlation structure between the measurements via
a Bayesian regression model, which reduces measure-
ment times. In general, we select small sample sizes
out of a population in quality inspection, and make
decisions based on the inspection results from the
sample in real applications of ICS repeaters. When
prior information is available, Bayesian approaches
have provided better estimation results for the para-
meters of regression models than popular maximum
likelihood (ML) methods, especially when the sam-
ple size is small [3–5]. For the band selective repeater
systems, we expect to increase prediction accura-
cy for the measurements of adjoining bandwidths of
small-sized samples via the proposed Bayesian virtu-
al metrology.

In the literature review, Chen et al. [6] pro-
posed a measurement prediction of the variables in
semiconductor manufacturing processes by virtual
metrology to improve process control. Khan et al.
[7] applied a virtual metrology approach to wafer-to-
wafer monitoring at factory level. There have been a
number of other applications of Bayesian approach-
es throughout various industries. The application of
Bayesian methods include estimation of storage reli-
ability on pyrotechnic mechanical devices [8], under-
water wireless sensor networks analysis with port-
starboard ambiguity [9], single-cell differential ex-
pression analysis[10], and subway vibration power
analysis on electromotive force [11]. However, to our
knowledge, the application of a Bayesian method to
the virtual metrology area has not been tried yet.

Bayesian regression model

As one of the oldest methods in mathematical
statistics, a regression analysis is the approach for
modeling the relationship between a dependent vari-
able (y) and one or more independent variables (x′s).

Given a data set with p independent variables of n
units, a linear regression model assumes the relation-
ship between the yi and xi

′s as

yi = β0 +β1xi1 + . . .+βpxip +εi, i = 1, . . . , n. (1)

Define xi = (1, xi1, . . . , xip)
T
, β = (β0, β0, . . . , βp)

T
,

then a linear regression model (1) can be written as

yi = xT
i β + ǫi, i = 1, . . . , n. (2)

In this formula, we can write the model (2) as a ma-
trix form as

y = Xβ + ε, (3)

where y = (y1, . . . , yn)
T
, X = (x1, . . . , xn)

T
,

and ε = (ǫ1, . . . , ǫn)
T
. Under normality assump-

tions for the error terms, ordinary least squares
(OLS) estimates of regression coefficients, β̂OLS =
(XT X)−1XT y, are the same as maximum likeli-
hood estimates (MLEs).
If prior information is available, Bayesian esti-

mates for the regression parameters have proven to
be better than MLEs, especially for small-sized sam-
ples [12]. In this study, we construct a regression
model in a Bayesian framework to increase estima-
tion accuracy of regression parameters, and then
compared the estimation results with those from
OLS method. Prior distributions for the regression
parameters are assumed to follow conjugate prior dis-
tributions as

β ∼ MN (β0,Σ0) , σ2 ∼ IG (a, b) , (4)

where β0,Σ0 are the mean and variance of a multi-
variate normal prior for regression coefficients β, and
a, b are the shape and scale parameters respectively,
for an inverse-gamma prior distribution. The multi-
variate normal probability density function (pdf) is
given by

p (β|β0,Σ0) = (2π)
−p/2

|Σ0|
−1/2

exp
{
−

1

2
(β − β0)

T
Σ

−1
0 (β − β0)

}
, x ∈ R

p.
(5)

We need a family of prior distributions for σ2 that
has the support (0, ∞). One of such family distri-
butions is the gamma family, hence we assume the
prior distribution for σ2 to be an inverse-gamma dis-
tribution; that is, 1/σ2 ∼ Gamma (a, b). The inverse-
gamma pdf is given by

p
(
σ2|a, b

)
=

ba

Γ(a)
σ2−(a+1)

e−b/σ2

, x ∈ R, (6)

and the shape and scale parameters for the inverse-
gamma prior distribution can be derived from prior
information as

a = υ0/2, b = (σ2
0υ0)/2, (7)
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where υ0 and σ2
0 are the degree of freedom for σ2

and sample variance of prior observations. In gen-
eral, the degree of freedom for σ2 is n − 2 for the
simple linear regression and the sample variance

σ2
0 = MSE =

SSE

n − 2
, where SSE is the sum of squares

of errors.

The posterior distribution created by combining
prior distribution for β and σ2 can be shown as

p
(
β, σ2|y, X

)
∝ p(y|X, β, σ2)p(β|σ2)p(σ2)

∝
(
σ2

)−n

2 exp

{
−

1

2σ2
(y − Xβ)

T
(y − Xβ)

}

×
(
σ2

)− k

2 exp

{
−

1

2σ2
(β − β0)

T
Σ0 (β − β0)

}

×(σ2)−(υ0/2+1) exp

{
−

υ0σ
2
0

2σ2

}
.

(8)

We can rewrite Eq. (8) as

p
(
β, σ2|y, X

)

∝
(
σ2

)− k

2 exp

{
−

1

2σ2

(
β−β̃

)T(
XTX+Σ0

)(
β−β̃

)}

×
(
σ2

)−((n+υ0)/2+1)
exp

{
−

(υ0s
2
0 + ns2)

2σ2

}
, (9)

where β̃ =
(
XT X + Σ0

)
−1 (

XT Xβ̂ + Σ0β0

)
, and

Σβ = σ2
0(XT X +Σ0)

−1. Then the posterior distrib-
ution for the parameters are also multivariate normal
distribution and inverse-gamma distribution as

β|σ2y ∼ MN

(
β̃,Σβ

)
,

and σ2 ∼ IG

(
υ0 + n,

υ0s
2
0 + ns2

υ0 + n

)
,
(10)

where

ns2 =
(
y−Xβ̃

)T(
y−Xβ̃

)
+

(
β̃−β0

)T

Σ0

(
β̃−β0

)
.

Note that the Bayes estimator corresponding to the
posterior mean is β̃.

As another approach, we introduce a multivari-
ate regression model [13–15]. The two neighboring
bandwidths can be predicted by measuring an inter-
mediate bandwidth. In a multivariate linear regres-
sion for y against x′s, a set of regression equations
related through common x variables and correlated
errors is represented as

yi = xT
i βi + ǫi, ǫi ∼ MN (0,Σ) , (11)

where yi = (y1i, . . . , ymi)
T
is a (m×1) response vec-

tor for i-th observed data, xi = (1, xi1, . . . , xip)
T
and

βi = (β0i, β1i, . . . , βpi)
T
. The model (11) is a conve-

nient way of expressing the model for the purpose of
writing down the likelihood function for the model as

p (ǫ1, . . . , ǫn|Σ) ∝ |Σ|−
n

2 exp

{
−

1

2
tr (Sǫ)Σ

−1

}
,

Sǫ =
n∑

i=1

ǫiǫ
T
i .

(12)

where tr(·) denotes a trace of a vector. To obtain
the form for the natural conjugate prior for the re-
gression coefficients, we can rewrite the multivariate
regression model as,

Y = XB +E, B = [β
1
, . . . , βc, . . . , βm]. (13)

Both Y and E are (n × m) matrices of observations
whose (i, j)-th elements are the i-th observation on
equation j.X is an (n×p) matrix of observations on
the p common independent variables. To construct
the form of the natural conjugate prior, the likeli-
hood function is written as

p (Y |X, B,Σ) ∝ |Σ|−n/2

etr

{
−

1

2

(
S+

(
B−B̂

)T

X ′X
(
B−B̂

))T

Σ
−1

}
(14)

with S =
(
Y − XB̂

)T

(Y −XB̂), B̂ is the OLS of

B; B̂ = (XT X)−1XT Y . Here, etr(·) = exp(tr(·)),
where tr(·) is a trace of a vector. The OLS of Eq. (14)
suggests that the natural conjugate prior is an in-
verted Wishart on Σ and a prior on B which is con-
ditional on Σ. The natural conjugate priors for the
multivariate regression model are of the form

p (Σ, B) = p (Σ) p (B|Σ), Σ ∼ IW (υ0, V 0),

B|Σ ∼ N
(
β̃,Σ⊗ Σ

−1
β

)
,

(15)

where ⊗ is an operation on two matrices of arbitrary
size resulting in a block matrix; that is a Kronecker
product. Just as in the univariate regression model,
the prior on the regression coefficients is dependent
on the scale parameters. The posterior can be ob-
tained by combining terms from the natural conju-
gate prior to produce a posterior which is a product
of an inverted Wishart and a ‘matrix’ normal ker-
nel as

p (Σ, B|Y , X) ∝ |Σ| etr

(
−

1

2
V 0Σ

−1

)

× |Σ|
−

k

2 etr

(
−

1

2

(
B−B

)T
Σ0

(
B−B

)
Σ

−1

)

× |Σ|
−k/2
etr

(
−

1

2
(Y −XB)

T
(Y −XB)Σ−1

)
.

(16)

We can combine the two terms involvingB, using the
same structure for the univariate regression model as
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(
B−B

)T
Σ0

(
B−B

)
+(Y −XB)T (Y −XB)

= (Z − WB)
T

(Z − WB)

=
(
Z − WB̃

)T (
Z − WB̃

)

+
(
B − B̃

)T

W ′W
(
B − B̃

)
.

(17)

With W =

[
X

U

]
, Z =

[
Y

UB

]
, Σ0 = UT U .

The posterior density can now be written as

p (Σ, B|Y , X) ∝

|Σ|
−(υ0+n+m+1)/2

etr

(
−

1

2

(
V 0 +

(
V − WB̃

)T

Σ
−1

))

×|Σ|
−k/2
etr

(
−

1

2

(
B−B̃

)T

W ′W
(
B−B̃

))
.

(18)

Thus, the posterior is in the form of the conjugate
prior as

Σ|Y , X ∼ IW (υ0 + n, V 0 + S),

β|Y , X,Σ ∼ N

(
β̃,Σ⊗

(
XT X + A

)
−1

)
,

β̃ = vec
(
B̃

)
,

B̃ =
(
XT X + A

)
−1 (

XT XB̂ + AB
)
,

S=
(
Y −XB̃

)T(
Y −XB̃

)
+

(
B̃−B

)T

A
(
B̃−B

)
.

(19)

Measuring methods and data set

ICS repeaters are inspected using spectrum
analysis tools after calibration of a measuring in-
strument. The instrument inspects the shape and
dimension of the frequency produced in the ICS re-
peater. The ideal frequency shape is of rectangular
form, and the normal frequency shape is determined
by the height from the bottom of the frequency as
shown in Fig. 2. The ICS repeater will fail if mea-
sured values of frequency height lie outside of the
margin limits.

Fig. 2. Measuring scheme for the frequency bandwidth
for an ICS repeater system.

The data set in our research consisted of a total
of 210 measurement data for ICS repeater systems.
Each data contains three variables measured at three
different bandwidths. Each variable represents mea-
sured frequency height on a frequency bandwidth of
an ICS repeater. Because the data were measured
at different frequency bandwidths repeatedly with
respect to the same components (heights), measure-
ment time increased as frequency bands that should
be inspected increased. Figure 3 shows the clear cor-
relation structure among the three bands for 210 re-
peater systems.

Fig. 3. Correlation plot.

Table 1 describes the data set in our analysis.
Contrary to general linear regression approaches,
Bayesian estimation draws a posterior distribution
of the parameters from prior distributions.

Table 1
Data set structure for experiment.

The purpose of data The number of data

Liner regression (n = 50) y = 50, x = 50

Liner regression (n = 30) y = 30, x = 30

Liner regression (n = 5) y = 5, x = 5

Data for producing prior information y = 100, x = 100

We considered three cases: n = 5, 30, and 50. For
all of the cases, the prior distributions for the regres-
sion parameters are constructed by historical data
with the sample size 100.

Analytical results

We compared Bayesian estimates of the regres-
sion parameters with ordinary least square (OLS)
estimates in a simple linear regression. We conduct-
ed random sampling to select 30 samples from 100
data set and set up parameters β0 and Σ0 for the
multivariate normal prior distribution. We repeated
this 50 times with the sample size of 30. Then, we
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conducted a regression analysis with each of the 50
sample sets and calculated the mean and variance
for regression coefficients β, then set up the results
for parameters for prior distributions β0 and Σ0. We

set υ0 = 28 and (σ2
0υ0)/2 =

MSE ∗ υ0

2
= 50 for the

sample set. From these posterior distributions, we
estimated parameters and compared them to para-
meters that were created by a linear regression with
n = 50, n = 30, and n = 5.

As can be seen in Table 2, standard errors for
regression coefficients increase as the data size de-
creases in OLS estimates. However, in the case of
a Bayesian regression, the estimation errors were
kept very small by incorporating prior information
in estimating the parameters, even n = 5. Figure 4
shows the distribution for the regression coefficients
in Bayesian linear regression model. The coefficients
β0 and β1 in linear regression models are plotted
when sample sizes are 5, 30 and 50. Comparing the
modeling accuracy between ordinary linear regres-
sion and Bayesian linear regression when the sam-
ple is small (n = 5), the Bayesian regression with
prior information estimates more accurately, indicat-
ing lower Std. Error (0.335) than the one with LSE
(10.810), even on small-sized sample conditions. We
also could identify that posterior distribution is more
likely to be influenced by prior information. Accord-

ingly, once accurate prior information is acquired,
more precise estimations on regression coefficients
would be possible by applying the Bayesian method
even on small-sized sample conditions.
Next, we compared the parameter estimation re-

sults from OLS method with those from Bayesian
multivariate regression model. Table 2 shows that
even if the sample size is as small as five, the esti-

Table 2
Bayesian multivariate regression result.

Parameter Method Mean Std. Error

β0(Y 1)

Linear regression (n = 30) 4.6285 3.1361

Linear regression (n = 50) 6.7215 2.4165

Linear regression (n = 5) 0.2560 10.8097

Bayesian regression 5.7143 0.3809

β0(Y 2)

Linear regression (n = 50) 38.3915 4.9099

Linear regression (n = 30) 21.2252 5.0394

Linear regression (n = 5) 3.0636 5.4096

Bayesian regression 24.5667 0.5145

β1(Y 1)

Linear regression (n = 50) 0.8066 0.0626

Linear regression (n = 30) 0.8624 0.0821

Linear regression (n = 5) 0.9813 0.2822

Bayesian regression 0.3598 0.0132

β1(Y 2)

Linear regression (n = 50) 0.0133 0.1272

Linear regression (n = 30) 0.4504 0.1320

Linear regression (n = 5) 0.9252 0.1412

Bayesian regression 0.3597 0.0173

Fig. 4. The distribution comparisons for regression coefficients in Bayesian multivariate regression.
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mation accuracy of regression coefficients increases
when we incorporate prior information in estimat-
ing regression parameters. Figure 4 also shows that
the Bayesian multivariate regression model provides
more reliable regression results.
Overall, in comparison with the results from OLS

method, the Bayesian multivariate linear regression
shows higher accuracy on estimation of regression co-
efficients than in Bayesian simple linear regressions.

Conclusion

A virtual metrology approach in our applications
enables manufacturers to significantly reduce mea-
suring times and costs in quality inspections of ICS
repeater systems. Testing methods of mobile repeater
systems require repeated measurements for differ-
ent frequency band sections. The current inspection
scheme results in lower productivity by requiring a
repeated application of the same measuring meth-
ods to other different frequency band sections. This
paper proposes an application of Bayesian regres-
sion methods based on correlated measurement data
and predictions of the other frequency band sections
without direct measurements. We confirmed that
higher estimation accuracy is possible when such a
Bayesian regression model is applied, even with a
with small-sample size. Measuring times and costs
can be reduced by properly setting prior information
for the regression parameters.
In future research, a beneficial circle would be

created through an economy of scale that raises the
volume of sales while lowering production costs and
product prices. Additionally, further research is need-
ed on other measurement items of ICS repeaters be-
yond the ones currently investigated. Other method-
ologies should also be explored for measurement
items that have upper or lower limits, not only target
values.
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