

DETERMINING THE MINIMUM SUM OF PRODUCTION ORDER DELAYS IN A TWO-MACHINE SYSTEM

Andrzej Jardzioch¹, Robert Dylewski²

¹ West Pomeranian University of Technology Szczecin, Faculty of Mechanical Engineering and Mechatronics, Poland
 ² University of Zielona Góra, Faculty of Mathematics, Computer Science and Econometrics, Poland

 $Corresponding \ author:$

Andrzej Jardzioch West Pomeranian University of Technology Szczecin Faculty of Mechanical Engineering and Mechatronics Al. Piastów 19, 70-310 Szczecin, Poland phone: (+48) 91 449-49-89 e-mail: andrzej.jardzioch@zut.edu.pl

Received: 20 December 2016 Accepted: 31 March 2017	ABSTRACT One of the main tasks in the planning of production processes is to satisfy the needs of the customers in terms of quantity, quality and time. The issue of the timely execution of production orders is becoming increasingly important. Based on the conducted studies it can be concluded that the size of the delay depends on the adopted scheduling of orders. This paper focuses on the problem of implementing a scheduling of production orders that will allow to avoid delays, and in the event such a scheduling is not possible, for minimizing the sum of delays of all the orders. A new algorithm has been proposed that allows to determine of the optimal sequence of production orders with the minimum sum of delays. The considerations have been limited to the issue of a two-machine system in which the orders are carried out in a flow.
	KEYWORDS two-machine flow system, job scheduling, minimum delay times.

Introduction

The basic paradigm of modern production methods is the desire to fulfill customers' requirements [1, 2]. In the age of universal competition and globalization, enterprises are forced to implement innovative methods for managing and controlling the production process. One of the most innovative production process management concepts is lean management [3]. This concept is based on the rigorous elimination of all forms of waste associated with excessive production, excessive inventory, unnecessary transport and unnecessary time of the orders awaiting processing. One of the ways of eliminating unnecessary downtime is to introduce orders for production in an optimal sequence. The criteria for optimization most often include the maximum lead time of all the production orders, the sum of delays of the orders and the sum of costs associated with the delays [1, 4].

The problem of determining the optimal sequence of production orders has been the subject of many scientific studies [4–7]. The total execution time of all orders is the most common criterion adopted for the determination of the optimal sequence of execution of production orders. This approach allows all orders to be quickly executed but does not consider the required order execution deadlines, and therefore is not able to minimize the delays caused by missed delivery deadlines. In order to achieve success in today's consumer market an enterprise is forced to implement a strategy prioritizing customer satisfaction, and therefore the need to meet the set delivery deadlines.

This article presents a new algorithm that allows the optimal sequence of production orders to be determined in a two-machine system, based on the minimum sum of delays. The developed algorithm utilizes the methodology of branch and bounds, and takes into account the slack time (permissible order delay not leading to delay costs) following processing on the first machine. The proposed algorithm is a certain extension of the algorithm that allows

to determine of the optimal scheduling of orders in a single-machine system, presented in detail in paper [1].

The rest of the paper is organized as follows. Section 2 is a detailed presentation of scheduling production orders in a two-machine system. Section 3 describes the algorithm for determining the sequence of production orders with a minimum sum of delays in a two-machine system. In order to provide a better illustration of the proposed methods, examples along with graphical trees of solutions are included in Sec. 4. The paper ends with a summary, which includes the most important conclusions from the carried out works and indicates the issues that the authors plan to address in the course of further research.

The problem of scheduling production orders processed on two machines

The issue of scheduling production orders has been illustrated using the example of a two-machine manufacturing system implementing unit production and small series production.

The production system consists of an input storage, two machines (M_1, M_2) and an output storage. The system implements a set of n production orders. It is assumed that all orders are available in the input storage at the start of production $(T_1 = 0)$ and may be performed in any sequence. The technological process is carried out in a flow. The execution of each order z_j , j = 1, ..., n requires the performance of two operations. First operation $O_{1,j}$ is performed on machine M_1 and then operation $O_{2,j}$ is carried out on machine M_2 . Each operation $O_{i,j}$, i = 1, 2, j = 1, ..., n, has an assigned processing time required for its execution $-t_{i,j}$. The required processing time $t_{i,j}$ results from the technological process carried out; it is positive and clearly defined.

Only one operation may be performed on each machine at any given time. The operations are nonpreemptive which means that the commenced operation cannot be interrupted. After the completion of operation on machine M2 the order is transferred to the output storage. The output storage capacity allows to store all the executed orders. It was also assumed that the execution of individual orders requires the proper retooling of the machines. The machine retooling time does not depend on the sequence of the orders introduced to production and has been included in the processing time of the individual orders. Furthermore, there are no interruptions in the operation of the machine and in the delivery of orders for production. A diagram of the considered production system is shown in Fig. 1.

Each order has an assigned required completion deadline $-tt_i$.

The problem of scheduling production orders in a two-machine system has been defined as follows:

It is necessary to use such a sequence of introduction of orders for production U_i (scheduling of orders) that will allow to achieve the minimum sum of delays of all the production orders.

In order to determine the delay of the individual orders the concept of order, delivery date deviation has been introduced. The delivery date deviation was defined as the difference between the actual order execution date $-tr_j$ – and the required completion deadline $-tt_j$ ($\Delta Td_j = tr_j - tt_j$).

If the delivery date deviation of order z_j is greater than zero $(\Delta T d_j > 0)$, then the order delay is equal to the order delivery date deviation. If the delivery date deviation is negative or equal to zero $(\Delta T d_j \leq 0)$, then the order has been executed before the required deadline. In this case the order execution delay is equal to zero. The purpose of the scheduling process is to find such a scheduling that the sum of delays of all the orders is minimal. The objective function used in the process of determining the optimal scheduling is expressed by formula (1)

$$F_c = \sum_{j=1}^{n} \max\{0, tr_j - tt_j\},$$
(1)

where F_c – the objective function used in the problem of scheduling of production orders, tr_j – the actual execution time of order z_j , tt_j – the required completion deadline of order z_j .

Fig. 1. Diagram of a two-machine production system.

The problem of scheduling production orders defined in such a way is strongly NP-hard. The total number of all possible sequences depends on the number of production orders and equals n!. Therefore, finding the optimal solutions with a complete review may not be appropriate in this case, as the computational complexity does not allow to obtain results in an acceptable time (already at 15 production orders the search space is more than 10^{12} permutations).

Evolutionary algorithms, swarm algorithms, simulated annealing algorithms or various types of heuristic rules are often suggested for resolving such problems [8]. These methods allow us to obtain solutions quickly, but their common weakness is the inability to obtain the optimal solution. They also do not allow us to estimate how far the obtained solution is from the optimal solution. Because of that investigations are being carried out to find a method that would allow to identify the optimal sequence of orders for a given objective function [8–11].

Johnson's algorithm is often used in order to solve two-machine problems. It allows us to find the shortest paths between every pair of vertices in graphs and can be used to find a scheduling with which the total duration of all orders will be minimal (the $F2||C_{max}$ problem). Unfortunately, this algorithm cannot be used to find the scheduling which allows to minimize of the sum of delays of the production orders. In the defined two-machine flow system, the production does not run smoothly (uninterrupted). In a situation where following the processing on machine M1 an order should be forwarded to processing on machine M_2 , but machine M_2 is busy, the order is blocked on machine M_1 until machine M_2 is free. In this situation the 'wait-time' of the order on machine M_1 until the completion of processing of another order on machine M_2 extends the execution of individual production orders. The frequency of occurrence of 'wait-time' of the production orders on machine M1 depends on the adopted scheduling of the production orders and impacts their execution time.

Method for determining the sequence of production orders with a minimum sum of delays

In this point a method is proposed that allows to determine the sequence of production orders enabling us to minimize the sum of delays. This method is a certain modification of the method for the singlemachine problem, presented in paper [1] and it consists of two stages. In the first stage the base sequence is determined, i.e. a sequence for which the maximum lack of slack time for a single order is not greater than in all the other sequences. In the second stage the sequences of orders providing the minimum sum of delays are determined.

It is assumed that for a given list of orders z_1, z_2, \ldots, z_n the following information is available:

- $t_1(i)$ the processing time for order z_i on machine M_1 ,
- t₂(i) the processing time for order z_i on machine M₂,

• $t_t(i)$ – the required deadline for order z_i .

The determination of the base sequence begins with the determination of the sum of the processing times of all orders received on machine M_1 . This sum is denoted by S_1 :

$$S_1 = \sum_{i=1}^{n} t_1(i).$$
 (2)

For each order included on the list, the lack of slack time is determined in the event it is performed as the last one. If order z_i is executed as the last one on machine M_1 , then the lack of slack time for this order after processing on machine M_2 will be:

$$p(i) = S_1 + t_2(i) - t_t(i).$$
(3)

If $p(i) \ge 0$, then the delay in the execution of order z_i will amount to at least p(i), if it is carried out as the last one.

The determination of solutions with a minimum sum of delays has the form of a tree.

Stage I:

At the beginning, in the first block (the root of the tree), the value p(i) is determined for each order according to formula (2). Any of the orders for which p(i) is the smallest is selected and placed at the end of the queue (the selected order is marked as z_j). Then the time that needed to carry out the rest of the orders on machine M_1 is determined (excluding the selected order z_j); this equals

$$S_1' := S_1 - t_1(j). \tag{4}$$

The sum of the lack of slack time (for the time being, only taking into account the last order in the queue) is $S_{br} = \max \{p(j); 0\}$.

Then, in block 2 (the successor of block 1 in the tree of solutions), what has been done in the root of the tree is performed, but excluding the order that has already been put at the end of the queue. However, in order to determine p(i), $S'_1(p(i) = S'_1 + t_2(i) - t_t(i))$ it now taken into account. The order selected in block 2 is designated as z_k and is inserted into the queue as the second to last. The time required for processing the remaining orders is updated $S'_1 := S'_1 - t_1(k)$ and the sum of the lack of slack time $S_{br} := S_{br} + \max \{p(k); 0\}$.

Management and Production Engineering Review

Then what has been done in block 2 is repeated (ignoring the orders already inserted as the last and second to last in the queue) until block of n is reached (leaf in the tree), from which the order is inserted to the front of the queue. In this way the base branch in the tree is obtained (with the established sequence of all orders). The sum of the lack of slack time for the entire branch is designated as S_{brk} .

For the established sequence in the base branch we determine the sum of the delays of all orders S_{op} following processing on machine M_2 . Of course $S_{op} \geq S_{brk}$. If $S_{op} = 0$, then the received sequence is optimal due to the sum of delays.

Stage II:

If in a sequence determined in the base branch the sum $S_{op} > 0$, then this sequence will not necessarily give the minimum sum of delays. We then check from block n-1 to block 1, whether the selection of the next order, in terms of the minimum value p(i), would cause the S_{br} to exceed the sum of delays S_{op} of the base solution. If that is the case, another branch is not expanded. If not (i.e, $S_{br} + \max{p(i_k); 0} \leq S_{op}$), the selected order z_{ik} is entered into the next block in the appropriate place in the queue, etc.

If the next leaf in the tree is reached (with an established sequence of all orders), then the sum of the lack of slack time S_{brk} for this sequence is no higher than the sum of delays S_{op} for the base solution. Therefore, the sum of delays for this sequence

is determined. If it is lower than S_{op} from the base solutions, then the S_{op} is updated and checking the subsequent branches is continued until they can be developed (until S_{op} is not be exceeded by S_{br}). Finally, the optimal solutions are in the leaves with the minimum S_{op} value.

Caution:

The established sequence of all orders is denoted as $(z_{i1}, z_{i2}, \ldots, z_{ik}, \ldots, z_{in})$. If some block with an already established sequence of n - k orders shows $p(i) \leq 0$ for all the other orders, then the sum of the lack of slack time S_{brk} for the entire branch will be the same as the sum of the lack of slack time S_{brk} in that block. Therefore, the sequence of the remaining orders on the first k positions is not important due to S_{brk} .

Examples

Four examples have been presented in order to better illustrate the proposed method. Data for Example 1 are shown in Table 1.

It should be noted that the shortest time of processing orders on machine M_1 is not shorter than the longest time of processing on M_2 . In such case, for every sequence any order whose processing on machine M_1 has been completed can be immediately processed on machine M_2 (see Figs. 2 and 3). As a consequence for every sequence $S_{op} = S_{brk}$.

Table 1

Fig. 3. Gantt chart for sequence U_2 in Example 1.

0 + 0 + 9 = 9

Management and Production Engineering Review

The obtained results are summarized in Table 2. Sequences for the base solution (U_1) and optimal solution (U_2) were given. It should be noted that the interruptions in work on machine M_2 do not have any effect on the sum of the delay times.

Figure 4 shows the tree of solutions for Example 1. In the upper left corner, the block number according to the designation sequence is given under (Bi). The crossed out order z_i indicates that the inclusion of this order to the given item would cause the minimum sum of delays to be exceeded, i.e. $S_{br} + \max\{p(i); 0\} \geq S_{op}$.

 U_2 (blok B5)

 (z_1, z_2, z_3)

In Example 2 parameters t_2 and t_t are changed for orders z_3 in relation to Example 1 (see Table 3). In this example the shortest time of processing orders on machine M_1 is also not shorter than the longest time of processing on M_2 .

The obtained results are summarized in Table 4. The sequence established in the base solution is also the optimal solution. It should be noted that the sequence in the base solution is not in compliance with the increasing completion deadlines.

optimal solution

Table 2					
Summary of the designated sequences selected for Example 1.					
Identification	Sequence	S_{brk}	S_{op}	Comments	
U_1 (blok B3)	(z_1,z_3,z_2)	0 + 3 + 7 = 10	0 + 3 + 7 = 10	base solution	

0 + 0 + 9 = 9

Fig. 4. Tree of solutions for Example 1.

Table 3

Data for Example 2.						
Order	Processing time on M_1 t_1 [min]	Processing time on M_2 $t_2 \text{ [min]}$	Required deadline $t_t \text{ [min]}$			
z_1	5	4	10			
z_2	6	3	14			
z_3	7	1	13			

Table 4

Summary of the	e designated	sequences	selected	for	Example 2.	
----------------	--------------	-----------	----------	-----	------------	--

Identification	Sequence	S_{brk}	S_{op}	Comments
U_1 (blok B3)	(z_1,z_2,z_3)	0 + 0 + 6 = 6	0 + 0 + 6 = 6	base and optimal solution

Management and Production Engineering Review

Figure 5 shows the tree of solutions for Example 2.

Fig. 5. Tree of solutions for Example 2.

In Example 3 (see Table 5) the times of processing on machine M_2 are longer than on M_1 for some orders. For this reason, there are situations in which orders whose processing on machine M_1 has been completed have to "wait" for the start of processing on machine M_2 .

Table 6 shows the results obtained for this example. Sequences obtained in all four leaves of the tree of solutions are presented. The sequences U_2 , U_3 and U_4 have been determined because the sum of the lack of slack time S_{brk} for these sequences did not exceed the sum of delays S_{op} from the base solution, which also turned out to be optimal. It should be noted that for sequence U_1 , which is optimal in terms of the sum of delays, the processing time of all orders is 18 minutes (see Fig. 6), and for sequence U_4 , which is much worse in terms of the sum of delays, this time is 15 minutes. This is the shortest time of processing of all the orders (see Fig. 7). Moreover, the sum of wait time for the start of processing on machine M_2 for sequence U_4 amounted to 1 + 2 = 3 minutes, and for the optimal sequence U_1 it was much longer: 1+6=7 minutes. As can be seen the Johnson's algorithm, which allows us to designate the sequence providing the shortest time of processing of all the orders (in this example -15 minutes) is not useful in terms of the minimization of the sum of the delays.

Figure 8 shows the tree of solutions for Example 3.

Finally Example 4 was presented with four orders (see Table 7). In this example there are orders which have a longer processing time on machine M_1 and an order which has a longer processing time on machine M_2 .

Data for Example 5.					
Order	Processing time on M_1 t_1 [min]	Processing time on M_2 $t_2 \text{ [min]}$	Required deadline $t_t \ [min]$		
z_1	1	5	18		
z_2	4	3	8		
z_3	2	6	12		

Table 5 Data for Example 3.

 Table 6

 Summary of the designated sequences for Example 3.

		-		-
Identification	Sequence	S_{brk}	S_{op}	Comments
U_1 (blok B3)	(z_2,z_3,z_1)	0 + 0 + 0 = 0	0 + 1 + 0 = 1	base and optimal solution
U_2 (blok B4)	(z_3, z_2, z_1)	0 + 1 + 0 = 1	0 + 3 + 0 = 3	
U_3 (blok B6)	(z_2, z_1, z_3)	0 + 0 + 1 = 1	0 + 0 + 6 = 6	
U_4 (blok B7)	(z_1,z_2,z_3)	0 + 0 + 1 = 1	0 + 1 + 3 = 4	

Volume 8 • Number 3 • September 2017

Management and Production Engineering Review

Fig. 8. Tree of solutions for Example 3.

Table 7Data for Example 4.					
Order	Processing time on M_1 t_1 [min]	Processing time on M_2 t_2 [min]	Required deadline $t_t \text{ [min]}$		
z_1	10	2	70		
z_2	5	11	20		
z_3	20	1	60		
z_4	15	6	50		

Table 8 shows the results obtained for this example. Sequences obtained in all three leaves of the tree of solutions are presented. All three sequences turned out to be optimal. It should be noted that for solution U_1 the time of processing of all the orders is 52 minutes (see Fig. 9), and there are no cases of orders waiting for the start of processing on machine M_2 after the completion of processing on machine

 M_1 . Meanwhile for solution U_3 the time of processing of all the orders is 51 minutes (see Fig. 10) and there is a wait time (1 minute) for order z_1 (because $t_1(1) = 10$ and $t_2(2) = 11$). Despite that, both sequences give the minimum sum of delays.

Figure 11 shows the tree of solutions for Example 4.

Management and Production Engineering Review

Summary of the determined sequences for Example 4.					
Identification	Sequence	S_{brk}	S_{op}	Comments	
U_1 (blok B4)	(z_2,z_4,z_3,z_1)	0 + 0 + 0 + 0 = 0	0 + 0 + 0 + 0 = 0	base and optimal solution	
U_2 (blok B7)	(z_2,z_4,z_1,z_3)	0 + 0 + 0 + 0 = 0	0 + 0 + 0 + 0 = 0	optimal solution	
U_3 (blok B9)	(z_2,z_1,z_4,z_3)	0 + 0 + 0 + 0 = 0	0 + 0 + 0 + 0 = 0	optimal solution	

Table 8

Fig. 11. Tree of solutions for Example 4.

Management and Production Engineering Review

Summary

The problem of determining the minimum sum of delays in the processing production orders in a two-machine system is much more complex than in the case of a single-machine system. In contrast to single-machine systems, the time of delay of the last order can be determined only once the scheduling of all the orders is known. This is due to the occurrence of cases where orders await the start of machining on machine M_2 following the completion of processing on machine M_1 . If for every order the time of processing on machine M_1 is greater or equal to the time of processing of the remaining orders on machine M_2 , then there are no cases of orders awaiting the start of machining on machine M_2 following the completion of processing on machine M_1 . In such case the sum of the delay times is equal to the sum of the lacks of slack time. However, generally the sum of the delay times can be greater than the sum of the lack of slack time, precisely because of the possible waiting-time for the start of machining on the second machine.

Unfortunately Johnson's algorithm is quite useless for the problem of minimization of the sum of delays. It may happen that the scheduling providing the shortest processing time of all the orders in a two-machine system will give the greatest sum of delays. In addition, the scheduling giving the longest processing time of all orders gives the smallest sum of delays.

The algorithm proposed in this paper allows us to find the optimal solutions from the point of view of the sum of delay times in a two-machine system, by utilizing the so-called lack of slack time ratio.

Further work is required in which the authors are planning to extend the proposed method to the problem of minimization of the sum of delay costs associated with the execution of all the orders.

<u>References</u>

 Dylewski R., Jardzioch A. Krebs I., The Optimal Sequence of Production Orders, Taking into Account the Cost of Delays, Management and Production Engineering Review, 7, 2, 21–28, 2016.

- [2] Okongwu U., Lauras M., Francois J., Deschamps J-Ch., Impact of the integration of tactical supply chain planning determinants on performance, Journal of Manufacturing Systems, 38, 181–194, 2016.
- [3] Cherrafi A., Elfezazi S., Chiarini A., Mokhlis A. Benhida K., The integration of lean manufacturing, Six Sigma and sustainability: A literature review and future research directions for developing a specific model, Journal of Cleaner Production, 139, 828–846, 2016.
- [4] Aljorephani S. K., ElMaraghy H. A., Impact of Product Platform and Market Demand on Manufacturing System Performance and Production Cost, Procedia CIRP, 52, 74–79, 2016.
- [5] Yang D-L., Hou Y-T., Kuo W.-H., A note on a single-machine lot scheduling problem with indivisible orders, Computers and Operations Research, 79, 34–38, 2017.
- [6] Schmitt R. H., Ellerich M., Humphrey S., Multi-objective allocation of customized orders to production-line networks, CIRP Annals – Manufacturing Technology, 65, 1, 429–432, 2016.
- [7] Hoogeveen H., Lente C., Tkindt V., Rescheduling for new orders on a single machine with setup times, European Journal of Operational Research, 223, 1, 40-46, 2012.
- [8] Jardzioch A. Bulwan K., The prioritisation of production orders under the bee colony algorithm, Advances in Manufacturing Science and Technology, 37, 4, 49–59, 2013.
- [9] Ji Q., Wang Y., Hu X., Optimal production planning for assembly systems with uncertain capacities and random demand, European Journal of Operational Research, 253, 2, 393–391, 2016.
- [10] Germs R., Van Foreest N.D., Kilc O.A., Optimal polices for production-clearing systems under continuous – review, European Journal of Operational Research, 255, 3, 747–757, 2016.
- [11] Wan H., Wang Q., Asymptotically-optimal component allocation for Assemble-to-Order production – inventory systems, Operations Research Letters, 43, 3, 304–310, 2015.