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Abstract
Reliable monitoring for detection of damage in epicyclic gearboxes is a serious concern for all industries
in which these gearboxes operate in a harsh environment and in variable operational conditions. In this
paper, autonomous multidimensional novelty detection algorithms are used to estimate the gearbox’ health
state based on vectors of features calculated from the vibration signal. The authors examine various feature
vectors, various sources of data and many different damage scenarios in order to compare novel detec-
tion algorithms based on three different principles of operation: a distance in the feature space, a probability
distribution, and an ANN (artificial neural network)-based model reconstruction approach. In order to com-
pensate for non-deterministic results of training of neural networks, which may lead to different network
performance, the ensemble technique is used to combine responses from several networks. The methods are
tested in a series of practical experiments involving implanting a damage in industrial epicyclic gearboxes,
and acquisition of data at variable speed conditions.
Keywords: epicyclic gearbox, soft computing, auto-associative neural network, novelty detection, vibration
signal.
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1. Introduction

1.1. Rotary machinery monitoring

Structural health monitoring plays a vital role in all industrial areas as it enables both cost-
efficient maintenance and avoidance of catastrophic failures. One of the general categories for
structural health monitoring is focused on monitoring of rotary machinery (turbines, shafts, gear-
boxes, generators, etc.). Probably the most popular approach involves acquisition of vibration
signatures, extraction of damage-sensitive features from these signals, and processing such data
in order to determine whether or not any faults are present in the system [1–5].

There are three major approaches to this problem regarding data necessary for the decision
process. Firstly, one can use only data acquired for an unknown state of the system and com-
pare selected features (e.g. RMS) of the acquired signals with an appropriate norm (see Fig. 1a).
In this way no information on the previous condition of a particular machine and no historical
data are required. However, since all of the machines must meet similar requirements, the ap-
proach is very general, and fails in detecting small faults that do not cause a significant alteration
of signal features. Secondly, one could gather a database of signals, including examples acquired
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for similar machines in healthy and damaged states, which enable to design a supervised data
classifier [6]. Signals similar to historically gathered healthy data would be classified as OK,
while those similar to historically gathered faulty data would be classified as DAMAGE (see
Fig. 1b). Unfortunately, such an approach is usually unfeasible because acquisition of signals
representing multiple instances of various faults is too costly to be performed in practice. Ter-
tiary, one could acquire signals for one particular machine monitoring its operation over a long
period and recording the variability of signals in the healthy state. Then, the signals acquired in
an unknown state can be compared with those collected in the database of normal signals – any
significant differences serve as a premise of damage (see Fig. 1c). The third approach is known
as novelty detection, anomaly detection or outlier analysis [7].

a)

b)

c)

Fig. 1. Approaches to rotary machinery diagnostics regarding necessary data: Norm-based diagnose (a);
supervised classification of faults (b); and trend analysis/novelty detection (c).

1.2. Novelty detection for monitoring of mechanical systems

In general, Novelty Detection (ND) is a task of recognizing data that are significantly different
than data belonging to a normal class; thus, it is a one-class-classification problem. Each sample
either is a member of a normal class, or is not (and should be marked as novel). The approach
is very popular in monitoring of mechanical systems and has previously been used to diagnose
bridges [8], plate-like structures [9], aircrafts [10], and many more [11–14].

In vibro-diagnostics, a simple ND-based unidimensional approach called trend analysis has
become a standard feature in all condition-monitoring systems: values of separate features (e.g.
RMS or Peak-to-peak) are plotted against time. In this scenario, variability of features in normal
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conditions is used to set up a threshold for damage detection. The multidimensional novelty
detection usually requires calculation of a distance between the normal and newly acquired data.
Different metrics can be used to this end, e.g. Euclidean or Mahalanobis distance, which were
used for bearing fault detection [15–17] or planetary gearbox diagnosis [18]. More advanced
solutions require calculation of a boundary around the normal region. Here, a neural-network-
based or support-vector-machine-based approaches are probably the most common.

Examples related to vibro-diagnostics include e.g. [19–20]. PCA-based confidence region
models were used for detection of tooth defects in helical gears [21] or bearings [17].

Another approach to novelty detection requires computation of a model that, given the input
to the object under monitoring, enables prediction of the output. Faults are detected by compari-
son of the model-obtained output with the measured one. Features calculated from such a resid-
ual signal may serve as damage indicators. Examples of methods for this approach include most
notably autoregressive models [22–23] or auto-associative neural networks (AANNs) which, al-
though not yet implemented in vibro-diagnostics, were used e.g. for detection of damage based
on frequency-response functions [24] or guided-wave-based signals [25].

Novelty detection enables monitoring of rotary machinery in nonstationary operational and
environmental conditions, provided that all significant environmental and operational states are
well represented in the training data.

1.3. Contribution and organization of this paper

The paper is dedicated to verification and comparison of efficiency of four different novelty
detection methods in the task of epicyclic gearbox health assessment. The authors implemented
a nearest-neighbour (NN) distance-based method, a data-distribution-based (DDB) method and
two model-based solutions involving AANNs. All the methods take multidimensional feature
vectors as inputs. To the best of the authors’ knowledge, all the three methods are novel in
terms of their application, i.e. they have never been applied to detection of damage in epicyclic
gearboxes, although the DDB and NN methods were previously used in vibro-diagnostics [17].
Moreover, the ensemble AANN method provides novelty by itself as ensembles of AANNs have
never been tested in any vibro-diagnostic-based novelty detection task.

As claimed by Shen [26], in terms of fault identification, standard techniques are limited to
planetary gear because of changing transmission path, moving fault location, and modulations. In
order to tackle this problem, the test rig has been equipped with epicyclic gearboxes characterized
by relatively large ratios. These ratios, resulting in a relatively slow speed, emphasize the problem
of complexity and low energy of fault-generated components.

The remainder of the paper is organized as follows: Section 2 provides a description of
methods used for detection of novelty in this work and introduces the features extracted from
vibrational signals, Section 3 provides a description of experimental procedures, test bench, or-
ganization of feature vectors, sensors, description of damages, and results obtained with all the
methods. Finally, Section 4 summarizes and concludes the paper.

2. Applied methods

2.1. Novelty detection algorithms

2.1.1. Nearest-neighbour approach

A simple nearest-neighbour approach consists in calculation of the distance between all train-
ing data points and a newly acquired data sample. The minimum distance is compared with
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a threshold: Distances exceeding the threshold are treated as a premise of novelty of the sample.
The threshold is calculated based on the average minimum distance between data samples in the
training dataset + three times the standard deviation of this value. The method is conceptually
simple, although requiring a significant computational effort, as each new sample is compared
with each point in the dataset. The method is also vulnerable to outliers in the training data.
A graphical illustration of the method is presented in Fig. 2.

Fig. 2. The principle of operation of a nearest-neighbour-based novelty detection.

2.1.2. Unidimensional distribution-based approach

A standard unidimensional trend analysis concept can easily be extended to multiple dimen-
sions by dealing with each dimension separately. For each dimension the probability distribution
should be calculated. Newly acquired samples are compared against this distribution – if they
fall outside of the plausible region they are marked as novel ones. The simplest approach to solv-
ing this in practice is to assume that the distribution is normal (note that this assumption can
be misleading!) and calculate the average x value and standard deviation σ of samples. Then,
two thresholds denoting the range of normal data can be defined as x− 3σ and x+ 3σ , where
x is a mean of samples. In the case when the abovementioned assumption is not met (i.e. the
data do not have a normal distribution), the method may produce wrong results, e.g. for a bi-
modal distribution it tends to be overconfident, marking many novel samples as normal ones –
see Fig. 3.

Fig. 3. The principle of operation of a simple distribution-based novelty detection. Although the method works good
for dimensions in which data have a normal distribution (see thresholds for the normal region for feature 2, it tends

to produce many false negatives otherwise (see thresholds for the normal region for feature 1.
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2.1.3. Auto-associative neural network

Auto-associative neural networks are essentially multi-layered perceptrons (MLPs) [6, 27–
28] that are trained by presenting to the network target vectors equal to the training ones, i.e. the
network is expected to produce the input at its output. The network is designed using a bottleneck
approach, that is: one of hidden layers have a small number of neurons, which forces the network
to develop generalized representations of the training data (see Fig. 4a). In the operational phase
such a network is presented with new patterns. The output of the network is compared with the
presented pattern. The distance between input and output is treated as the extent of novelty of
a data sample: samples for which distances are higher than the median distance +3σ are denoted
as novel. For determination of AANN’s scale well into higher dimensions (i.e. they are not as
affected by dimensionality of the problem as some other solutions) however, their results are
non-deterministic due to a random nature of their training: the same network trained on relatively
similar data might learn significantly different rules for separating normal and abnormal regions
in the data space (see Fig. 4b). For that reason it is a good approach to combine multiple neural
nets in a so-called ensemble approach – in which responses of many individual AANNs are
combined in order to increase repeatability of results.

a)
b)

Fig. 4. A scheme of the AANN network (a) and data classification rules produced by two similar networks trained
on data from a similar distribution (b).

In this paper, AANN consisted of three hidden layers with 10, 2 and 10 neurons, respectively.
The input layer size was varying depending on the input vector size (see Table 4). The output
layer size was equal to that of the input. The network was trained with the Levenberg-Marquardt
backpropagation algorithm. Since the paper evaluates the influence of input vector, source of
data, various algorithms and many damage cases, the optimization of the network structure was
not performed rigorously, as it would extend the required number of tests by the order of mag-
nitude and would cause the paper to be unclear. Instead, the size of networks was based on the
authors’ experience and preliminary examinations. It was not found that the network size has
a large influence on the final results, provided that the bottleneck is preserved and the network is
not too large to prevent overfitting. The influence of the initial weights’ distribution is far more
important.

2.2. Signal features

Many different damage-sensitive features of vibrational signals have been proposed in the
past decades, ranging from simple signal statistics to more advanced high-level features aimed at
detection of particular faults. The most frequently used simple ones are root mean square (RMS),
crest factor, peak-to-peak and kurtosis of signals (e.g. [29–31]). Some more advanced have also
been reviewed by different researchers [1, 32]. All these metrics can be calculated either for
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a raw signal or for a pre-processed one. In this work several simple features are used as inputs
for novelty detection algorithms. A brief description of them is provided in Table 1.

Table 1. Signal features used as inputs for the algorithms. fc refers to the characteristic frequency of an input.

Feature
Feature name Descriptionnumber

0 Speed Rough speed estimate (constant for the whole sigal)

1 PP Peak-to-peak value of the signal

2 RMS Root-mean-square of the signal

3 Kurtosis Kurtosis (fourth central moment) of the signal

4 Crest Crest factor (PP/RMS) of the signal

5 Skew Skewness (Third central moment) of the signal

6 SpecPP PP value of the spectrum

7 SpecKurt Fourth central moment of the spectrum

8 SpecSkew Third central moment of the spectrum

9 LowSpecRMS RMS of a low-frequency part of the spectrum: frequency range from 0 to 0.5fc

10 MedSpecRMS RMS of a medium-frequency part of the spectrum: frequency range from 0.5fc to 2fc

11 HiSpecRMS RMS of a high-frequency part of the spectrum: frequency range from 2fc to 10fc

12 VHiSpecRMS RMS of a very high-frequency part of the spectrum: frequency range above 10fc

3. Experimental evaluation

3.1. Test bench description

Experimental tests have been performed on a modified AMC Vibro VibStand 2 test bench.
The VibStand 2 test bench includes a driving electric motor followed by a parallel gearbox with
a reduction ratio 2.91:1 The modification included adding two 2-stage planetary gearboxes NEU-
GART PLQE060-064-SSSA3AD-R10 of a ratio 64:1 connected in series after the parallel shaft
gearbox. The second planetary gearbox was acting as the loading for the first planetary gearbox.
The test bench is presented in Fig. 5. A kinematic scheme of a gearbox is given in Figure 6. Data

Fig. 5. The test bench used in experiments.
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were acquired with an AMC Vibro VibMonitor. A sampling frequency was 25 kHz and an ac-
quisition time was 1 s for each signal, which gave a total of 25 600 samples. Data were gathered
with three different sensors, i.e. a Polytec PSV-400 Doppler Laser Vibrometer measuring veloc-
ity; a PCB 333B30 piezoelectric accelerometer; and a PCB 740B02 piezoelectric strain sensor.
The sensors were measuring responses on the first planetary gearbox. Additionally, a reference
speed was measured directly from the AMC Vibro VibStand 2 test bench on the driving motor
with an encoder.

Fig. 6. A kinematic scheme of a single planetary gearbox.

3.2. Signal acquisition routines

The operational data were acquired in 6 sessions. The first session represented a healthy
gearbox. Every consecutive session represented a different health state (HS) of the monitored
gearbox. In these sessions damages were implanted in the gear train as a degradation of one
tooth. Once a tooth was removed, this damage was present in all of the following sessions. All
health states are described in Table 2 and pictured in Fig. 7. The signals for all health states are
presented in Fig. 8. Between sessions, the test bench was reassembled (all gearboxes and sensors
were reattached). In every session data were measured at constant speeds at a number of different
levels, i.e. speed was measured in a range of 1000–3000 rpm with a step of 100 rpm, so in total
21 levels of different speeds were measured. For each level of speed one 300-second-long signal
was acquired and later divided into 1-second-long signal parts for the purpose of data analysis.
For each of these 1-second-long signal parts the features were calculated separately.

Table 2. Gearbox health states examined during experiments.

HS number Description

1 Healthy

2 Removed tooth from ring gear related to the first stage of the PG (see Fig. 7a)

3 Above + removed tooth from the sun gear related to the second stage of the PG
(see Fig. 7b)

4 Above + removed tooth from the sun gear related to the first stage of the PG
(see Fig. 7c)

5 Above + removed tooth from the planet gear related to the second stage of the PG
(see Fig. 7d)

6 Above + removed tooth from the planet gear related to the first stage of the PG
(see Fig. 7e)
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a) b) c)

d) e)

Fig. 7. Damages implanted in the gearbox. A tooth removed from the ring gear related to the first stage of the PG (a);
a tooth removed from the sun gear related to the second stage of the PG (b); a tooth removed from the sun gear related
to the first stage of the PG (c); a tooth removed from one of the planet gears related to the second stage of the PG (d);

a tooth removed from one of the planet gears related to the first stage of the PG (e).

Fig. 8. Fragments of vibration signals acquired for 1000 rpm for different health states.
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3.3. Methods’ training

Acquired 1-second-long signal parts were gathered using three different sensors, 13 different
features were calculated from each signal, 6 different cases of damage were present during tests.
In order to fully verify the contribution of various features, the number of features used, various
sensor configurations and various cases of damage, each method test was assigned with a par-
ticular feature vector, a particular sensor or a set of sensors and a particular arrangement of the
reference and testing data. Due to a great number of possible feature combinations (213), only
arbitrarily selected feature vectors were examined. The features are defined in Table 1.

In Table 3 these features are distributed over various possible vectors used as inputs. All
features were normalized in respect of the intact data. In all the cases the data registered at
21 different speeds were used together. In Table 4 various configurations of input sensors are
presented. Note, that the number of input features is the product of the feature vector size and the
number of input sensors. Finally, Table 5 contains all configurations of the training and testing

Table 3. Feature configurations of input feature vectors.

Feature vector number Features used
1 PP, RMS, Kurtosis

2 Crest, Skew, SpecPeak

3 SpecKurt, SpecSkew, LowSpecRMS

4 MedSpecRMS, HiSpecRMS, VHiSpecRMS

5 Speed + PP, RMS, Kurtosis

6 Speed + Crest, Skew, SpecPeak

7 Speed + SpecKurt, SpecSkew, LowSpecRMS

8 RMS, Skew, MedSpecRMS, HiSpecRMS, VHiSpecRMS

9 Kurtosis, Crest, SpecKurt, SpecSkew, LowSpecRMS

10 All features with speed

11 All features without speed

Table 4. Input sensors used.

Sensor configuration 1 2 3 4
Sensors used Vibrometer Strain sensor Accelerometer All sensors

Table 5. Reference and test data sources.

Data arrangement Source of training data Source of testing data
1 HS#1 (intact) HS#2

2 HS#1 (intact) HS#3

3 HS#1 (intact) HS#4

4 HS#1 (intact) HS#5

5 HS#1 (intact) HS#6

6 HS#2 HS#3

7 HS#3 HS#4

8 HS#4 HS#5

9 HS#5 HS#6
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Z. Dworakowski, K. Dziedziech, A. Jabłoński: A NOVELTY DETECTION APPROACH TO MONITORING . . .

data. For each damaged case either the initial (intact) state or the previous damage state were
used as a reference.

For the purpose of training, the reference data were divided randomly, so that 80% of data
would be used for training of the novelty detectors, while the remaining 20% would serve for
calculation of the false positive rate (i.e. how often a normal state triggers detection of a novelty).

3.4. Results of monitoring phase

3.4.1. Novelty detection efficiency

None of the examined methods was able to detect a great number of novelties for all con-
figurations of inputs. Some input configurations, however, enabled the methods to obtain very
good results. In particular, the methods that used as features RMS of selected frequency bands of
a spectrum enabled to detect almost 100% novelties for data arrangement #5.

In general, it is evident that the NN method is a more reliable approach than the two other
examined methods. Even if the “best” features are only a part of the input vector, the method still
gives consistently good results (see e.g. Fig. 9d): feature vectors #4, #8, #10 and #11 all include
features #10, #11 and #12 which seem to be suited particularly well for this task. AANN, on the
other hand, provides a similar efficiency for feature vectors #4 and #8 but is unable to work well
if there is a large number of inputs besides the good ones, as in the case of feature vectors #10
and #11 (see Fig. 9f).

a) b) c)

d) e) f)

Fig. 9. Percentage of false positives (a–c) and efficiency of novelty detection (true positives) (d–f) of the proposed
methods for different arrangements of data and different feature vectors used. For all results provided in this figure
sensor configuration #4 was used as the input (all the sensors). The colour version of these figures the reader can find
in the web version of this paper. NN, false positive rate (a); DDB, false positive rate (b); AANN, false positive rate

(c); NN, novelty detection (d); DDB, novelty detection (e); AANN, novelty detection (f).

Out of the three examined sensors, the accelerometer provided signals of the highest potential
for damage detection – which can easily be seen in Figs. 10e and 10f. Again, the requirement
for good performance of NN was that the accelerometer would only be included among others
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to perform well. On the other hand, for comparative performance of AANN it was required that
only the data from the accelerometer were used as the input – in Fig. 10f the efficiency for the
3rd sensor configuration is significantly better than that for the 4th.

The DDB method appears to be less vulnerable to feature choice with a similar but relatively
lower efficiency for all examined feature vectors. Contrary to the NN and AANN, the best results
were obtained for large feature vectors – which is not surprising as a novelty is detected for each
dimension separately: the greater the number of dimensions, the higher is also the chance to
detect a novelty in data (see Fig. 9e). Consistently, the method is also better for novelty detection
if more sensors are used as inputs (see Fig. 10b). It is worth noticing, however, that the number
of false positives also rises in this case (see Fig. 10e).

3.4.2. False positives

In general, NN-based and AANN-based approaches consistently provide a small number of
false positive indications – the value of error ranges from 0 to roughly 3 per cent, with the excep-
tion of a very large number of input features for the NN approach. In Fig. 9a two bottom rows of
results show that the method resulted in up to 20% of false positives. These rows correspond to
the input feature numbers 36 and 33, respectively. The results are consistent with those presented
in Fig. 10a. The number of false positives is small for feature vectors #1 – #9 or single sensors
used as outputs. However, if all the three sensors and all features are included, the false positive
rate is significantly higher.

a) b) c)

d) e) f)

Fig. 10. Percentage of false positives (a–c) and true positives (d–f) of the proposed methods for different sensors
used as inputs and different feature vectors used. For all results provided in this figure data arrangement #5 was used
(the intact state as a reference, all damages as a novelty). The colour version of these figures the reader can find in
the web version of this paper. NN, false positive rate (a); DDB, false positive rate (b); AANN, false positive rate (c);

NN, novelty detection (d); DDB, novelty detection (e); AANN, novelty detection (f).

The false positive rate for AANN method does not seem to be vulnerable to sensor, feature
or damage combinations and remained very low. In contrast, the DDB method resulted in great
numbers of false positive indications. Although for some feature vectors this phenomenon was
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not observed (e.g. feature vectors #1, #4, #5 and #8), in the remaining cases the false positive
rate was relatively high (5–13%).

3.4.3. Best case scenario

The above analyses show that the feature selection and choice of a data source are essential
for design of any novelty detection system. In the examined case, it was decided that feature
vector #8 calculated for signals acquired with the accelerometer should be the preferred choice.
For such a setup, the methods were examined once more in detection of all damage cases. Each
method was tested 10 times, each time with a random division of reference data into the training
and testing subsets. Due to a high variability of results for AANN, responses of five nets trained
on the same subsets of data were used to form an ensemble: the majority voting was used to
determine whether a given sample belongs to a normal or novel class. Due to poor performance
in previous tests, the DDB classifier was not included in this evaluation.

In Fig. 11 the results of such consecutive runs of the simulation for feature vector #8, sensor
#3 and all data configurations are provided. It is clear that repeatability of results for AANN
network is very low. Although usually AANNs produce good results, at times training converges
to a point with a very low testing efficiency, either in terms of high false positive rate or low
novelty detection efficiency. For instance, for data arrangement #3 (3rd case of damage with the
healthy state as a reference) the vertical line denotes that the spread of results covers almost full
range from 0 to 100%. Even though the majority of results have well above 90% efficiency, first
25% of results have their efficiency spreading from 0 to 90%, meaning that few ANNs exist,
which failed in detecting all the novelties.

Fig. 11. Repeatability of results of the three algorithms, namely: nearest-neighbour approach, AANN approach and
ensemble-of-AANNs approach. Peak-to-peak spreads of results are marked with vertical lines. A range from Q1 to
Q3 is marked with rectangles. The colour version of these figures the reader can find in the web version of this paper.

On the other hand, using even a very simple ensemble of AANNs, consisting of five networks
only and without any advanced ensemble design technique, significantly boosts performance of
neural nets to the point of outperforming the nearest-neighbour-based approach. Although the
spread of results for the ensemble approach is still notable (probably it could have been lowered
further using a more advanced ensemble design and bigger ensembles) it outperforms the NN
solution for all data arrangements in terms of false positive rate and is better than NN for data
arrangements #1, #2, #3 and #7 in terms of novelty detection efficiency.
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4. Summary and conclusions

In this work four different novelty detection methods for epicyclic gearbox health monitoring
were implemented and tested. The inputs to the algorithms consisted of various configurations of
12 features calculated from vibration signals and three different sensors used as sources of data.
The features calculated from selected bands of the frequency spectrum appeared to be the most
suitable for the task at hand. The accelerometer provided signals of a better quality for the state
change detection than the laser vibrometer and the strain sensor. It was found that the ensemble
approach based on auto-associative neural nets provides the smallest number of false positive
indications while maintaining efficiency comparable to the nearest-neighbour approach. Since
implanting a damage required reassembly of the gearbox, the detected novelties might be a result
of reassembly itself, not the damage-related changes in signals. Nevertheless, the method is able
to efficiently detect all examined state changes in a gearbox operating at input speeds in a range
from 1000 to 3000 RPM. The variability of results obtained with neural nets is expected to be
lower if more ANNs are used to form an ensemble.
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