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Abstract
Conventionally, the filtering technique for attitude estimation is performed using gyros or attitude dynamics
models. In order to extend the application range of an attitude filter, this paper proposes a quaternion-
based filtering framework for gyroless attitude estimation without an attitude dynamics model. The attitude
estimation system is established based on a quaternion kinematic equation and vector observation models.
The angular velocity in the system is determined through observation vectors from attitude sensors and the
statistical properties of the angular velocity error are analysed. A Kalman filter is applied to estimate the
attitude error such that the effect from the angular velocity error is compensated with its statistical properties
at each sampling moment. A numerical simulation example is presented to illustrate the performance of the
proposed algorithm.
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1. Introduction

Attitude estimation is an important issue involved in many practical systems such as space-
craft, aerial vehicles, and robotic systems [1, 2]. With an appropriate attitude estimation algo-
rithm, the orientation of a physical system in respect to a reference frame can be determined.
For example, an attitude estimation algorithm is implemented on a star tracker to measure the
attitude of a remote sensing satellite [3]. The high-precision attitude information is obtained by
detecting small star spots in the field of view (FOV) of the star tracker [4]. The mathematical
representation of attitude is diverse. One attitude representation that has been proven very useful
is the attitude quaternion [5], which contains the minimal number of parameters necessary for
the globally defined attitude and is recognized as the most valuable parameterization due to its
computational efficiency and linear state propagation nature of the kinematic equation [6].

Numerous algorithms for determining the attitude quaternion of a physical system have been
developed over the past few decades, following two main techniques that the closed-form algo-
rithms determine the optimal attitude by solving the Wahba’s problem [7, 8] and the Kalman
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filtering methods obtain the sequential quaternion estimate by minimizing the estimate error co-
variance [9, 10]. In the filtering methods for attitude quaternion estimation, the norm constraint
of a quaternion should be tackled appropriately because the Kalman filter does not have the prop-
erty of preserving the norm of the estimate result, and accordingly many filtering algorithms are
proposed to overcome this difficulty, among which the multiplicative extended Kalman filter and
unscented quaternion estimator are the most well-known representatives.

Filtering methods for attitude estimation are achieved based on the quaternion kinematic
equation in which the knowledge of angular velocity is required for attitude propagation [11, 12].
A gyro is the preferred sensor to measure angular velocity, and in this regard, the attitude esti-
mation with gyros for angular velocity information and attitude sensors for vector observations
are extensively studied in the literature [13, 14]. A realistic model of rate integrating gyro is
usually applied to construct the process equation, where the system state vector is augmented to
include the random gyro drift. Although the gyro error is compensated by estimated gyro drift,
a rate integrating gyro has an inevitable tendency to degrade or even fail due to its mechanical
and electrical effects. For example, EAS Remote Sensing Satellite of European Space Agency
had an orbital rescue because of gyro failure [15]. In addition, some small spacecraft may not
carry gyros because of their high price and high power consumption, yet they need to determine
their orientation for attitude control [16]. For these reasons, the gyroless attitude estimation has
become an important research direction in recent years [17–19]. The basic idea of gyroless at-
titude determination is to estimate angular velocity based on attitude dynamics of a rigid body
and correct attitude estimate error using measurements from attitude sensors. However, an atti-
tude dynamics model may contain parameter uncertainties especially for complex spacecraft, due
to difficulties in accurate modelling, fuel consumption, spacecraft docking and external distur-
bances, eventually leading to performance deterioration or instability of attitude estimation [20–
22]. A simple approach is able to avoid parameter uncertainties in the dynamics model where the
derivative of the angular velocity is regarded as white noise without solid knowledge about dy-
namics [23], but its estimation precision may be affected by variable angular velocity. Therefore,
in order to improve the performance of a filtering algorithm in the aforementioned situation, we
have developed a new method for attitude estimation without using a gyro or a dynamics model,
which, to the best our knowledge, has not been intensively studied in the literature.

Based on the above discussion, in this paper, we investigate quaternion-based filtering for
gyroless attitude estimation without an attitude dynamics model. The mathematical model of
the attitude estimation system contains the attitude kinematic equation in terms of the attitude
quaternion and vector observation models of attitude sensors. The angular velocity is determined
dependent merely on the information from observation vectors. The attitude error is recursively
estimated with a Kalman filter, whereas the angular velocity error is compensated by its covari-
ance. The main contributions of this paper are as follows: 1) the addressed filtering problem is
new, with both theoretical importance and practical significance; 2) only with observation vectors
from attitude sensors, the angular velocity in the attitude kinematic equation is determined and
the statistical properties of the angular velocity error are analysed for attitude estimation; 3) the
simulation results illustrate the superiority of the proposed method.

2. Gyroless attitude estimation system

2.1. Kinematic equation of attitude error

Before establishing the kinematic equation studied in this work, the attitude quaternion is
presented for convenient explanation of the system model and attitude estimation. A quaternion
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is defined as:

q =

[
qv
q4

]
, (1)

with
qv = [q1 q2 q3]

T . (2)

In order to parameterize the attitude, the quaternion is required to satisfy the 2-norm con-
straint ∥q∥ = 1. Given the unit quaternion q, the corresponding attitude matrix is obtained ac-
cording to the relationship:

A(q) =
(

q2
4 −∥qv∥2

)
I3 +2qvqT

v −2q4 [qv×] , (3)

where I3 represents a 3×3 identity matrix and the cross-product matrix [qv×] is defined as:

[qv×] =

 0 −q3 q2
q3 0 −q1
−q2 q1 0

 . (4)

With the quaternion representation, the attitude kinematic model can be expressed by the
following differential equation:

q̇ =
1
2

ΩΩΩ(ωωω)q, (5)

with

ΩΩΩ(ωωω) =

[
−[ωωω×] ωωω
−ωωωT 0

]
, (6)

where ωωω is the angular velocity. And, correspondingly, the attitude matrix A(q) satisfies:

Ȧ(q) =− [ωωω×]A(q). (7)

The discrete-time kinematic model of the attitude quaternion is given by [13]:

qk+1 = ΩΩΩ(ωωωk)qk , (8)

with

ΩΩΩ(ωωωk) =


cos
(

1
2
∥ωωωk∥T

)
I4 +

[
−[ΨΨΨk×] ΨΨΨk

−ΨΨΨT
k 0

]
∥ωωωk∥ ̸= 0

I4 ∥ωωωk∥= 0

, (9)

where ΨΨΨk = sin(∥ωωωk∥T/2)ωωωk
/
∥ωωωk∥ and T is the sampling period.

A straightforward way for attitude estimation is to regard the quaternion q as the estimated
system state in the algorithm development, while it is not appropriate because of ignoring the unit
norm constraint of attitude quaternion. The multiplicative quaternion error is utilized to tackle
this problem, in which the constraint is kept to be within first-order [9]. For this reason, the
attitude quaternion error is defined as:

δq = q⊗ q̂−1, (10)
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where q̂ is the quaternion estimate and ⊗ indicates quaternion multiplication. Then the differen-
tial equation of attitude quaternion error can be yielded as follows based on (5), (6) and (10):

δ q̇ =
1
2

{[
ω̂ωω
0

]
⊗δq−δq⊗

[
ω̂ωω
0

]}
+

1
2

[
δωωω
0

]
⊗δq, (11)

with the angular velocity error δωωω defined as:

δωωω = ωωω − ω̂ωω . (12)

Using small angle approximation [24], the attitude quaternion error δq can be represented as:

δq = [ϕ/2 θ/2 ψ/2 1]T , (13)

where ϕ , θ and ψ are the errors in roll, pitch and yaw angles, respectively. Substituting (13) into
(11) and dropping the small second-order quantities, the continuous-time process equation of the
gyroless attitude estimation system is obtained as:

ẋ =− [ω̂ωω×]x+δωωω, (14)

where x = [ϕ θ ψ ]T is the attitude error regarded as the system state.
In application, it is advantageous to operate in discrete time and the following discrete-time

process equation is given based on the discretization of (14):

xk+1 = Fkxk +ΓΓΓkδωωωk , (15)

where:

Fk = exp{− [ω̂ωωk×]T}

= I3 −
[ω̂ωωk×]

∥ω̂ωωk∥
sin(∥ω̂ωωk∥T )+

[ω̂ωωk×]2

∥ω̂ωωk∥2 [1− cos(∥ω̂ωωk∥T )] ,
(16)

ΓΓΓk =

T∫
0

exp{− [ω̂ωωk×] t}dt

= T I3 −
[ω̂ωωk×]

∥ω̂ωωk∥2 [1− cos(∥ω̂ωωk∥T )]+
[ω̂ωωk×]2

∥ω̂ωωk∥2

[
T − sin(∥ω̂ωωk∥T )

∥ω̂ωωk∥

]
.

(17)

And, if ∥ω̂ωωk∥= 0, then Fk = I3 and ΓΓΓk = T I3.

2.2. Measurement model

The attitude sensors considered here are any sensors whose measured quantities depend on
the directions of some objects in the body frame, such as a star tracker, sun sensor or lunar sensor.

Let there be N observation vectors obtained from attitude sensors at a sampling moment k.
Assuming that the observation vectors in the body frame are related to the corresponding vectors
in the inertial reference frame with an attitude matrix A(qk), the vector observation model is
given by:

b̃i,k = A(qk)ri + vi,k , i = 1, . . . ,N, (18)

where b̃i,k is the ith observation vector in the body frame, ri is the ith reference vector in the
inertial frame, vi,k is the measurement noise. Usually, the measurement noise of an attitude sensor
is white noise. For example, the measurement noise of a star tracker is caused by the centroid
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extraction error which is uncorrelated at different sampling moments. Therefore, we assume
that vi,k is white noise satisfying E{vi,k} = 0 and E{vi,kvT

i,k} = σ2
i I3. Moreover, the observation

vectors are obtained either from different stars in the FOV of a star tracker or from other attitude
sensors at the sampling moment k, and each process of acquiring the observation vectors is
independent. For this reason, the measurement noise also satisfies E{vi,kvT

j,k}= 0, i ̸= j.
Based on the definition of the attitude quaternion error and the small angle approximation,

the vector observation model (18) can be rewritten as:

b̃i,k = A
(

δqk ⊗ q̂k|k−1

)
ri + vi,k

= A(δqk)A
(

q̂k|k−1

)
ri + vi,k

≈ (I3 − [xk×])A
(

q̂k|k−1

)
ri + vi,k

= A
(

q̂k|k−1

)
ri +

[
A
(

q̂k|k−1

)
ri×
]

xk + vi,k ,

(19)

where xk is the system state in the process equation (15) and q̂k|k−1 is the one-step prediction of
the attitude quaternion at the sampling moment k−1.

For N observation vectors, the measurement model can be given by:

yk = Hkxk + vk , (20)

where:

yk =



b̃1,k −A
(

q̂k|k−1

)
r1

b̃2,k −A
(

q̂k|k−1

)
r2

...

b̃N,k −A
(

q̂k|k−1

)
rN


, Hk =



[
A
(

q̂k|k−1

)
r1×

]
[
A
(

q̂k|k−1

)
r2×

]
...[

A
(

q̂k|k−1

)
rN×

]


(21)

and vk =
[
vT

1,k vT
2,k · · · vT

N,k

]T
is white noise with:

R = E
{

vkvT
k
}
= diag

(
σ2

1 I3, σ2
2 I3, . . . , σ2

NI3
)
. (22)

Remark 1. From (15) and (20), the process and measurement equations of the gyroless atti-
tude estimation system are established. Unlike existing methods of gyroless attitude estimation,
only the kinematic equation of attitude error is regarded as the process equation, which elimi-
nates the dependency on an attitude dynamics model. On the other hand, the angular velocity
plays an important role in the attitude propagation but has not been determined. It can be seen
later that the angular velocity is calculated based on observation vectors.

3. Quaternion-based filtering for attitude estimation

3.1. Angular velocity determination

The least-squares approach is applied to determine the angular velocity in the kinematic (15)
based on observation vectors from attitude sensors.

According to (18), the ideal observation vector can be written as:

bi,k = b̃i,k − vi,k = A(qk)ri (23)

and the derivative of bi,k is calculated using (7).
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ḃi,k = Ȧ(qk)ri =−[ωωωk×]A(qk)ri =−[ωωωk×]bi,k . (24)

On the other hand, the following equations are given by the Taylor expansion:

bi,k+1 = bi,k +T ḃi,k +
T 2

2
b̈i,k + τ1 , (25)

bi,k−1 = bi,k −T ḃi,k +
T 2

2
b̈i,k + τ2 , (26)

where τ1 and τ2 are higher-order terms. From (25) and (26), ḃi,k can be yielded as:

ḃi,k =
1

2T

(
bi,k+1 −bi,k−1 + τ2 − τ1

)
≈ 1

2T

(
bi,k+1 −bi,k−1

)
.

(27)

It should be pointed out that (27) is the second-order approximation of ḃi,k.
Substituting (27) into (24), we have:

1
2T

(bi,k+1 −bi,k−1) =− [ωωωk×]bi,k . (28)

According to (23) and (28), the measurement equation of the angular velocity is obtained as:

1
2T

(
b̃i,k+1 − b̃i,k−1

)
=
[
b̃i,k×

]
ωωωk +wi,k , (29)

where:

wi,k = [ωωωk×]vi,k +
1

2T

(
vi,k+1 − vi,k−1

)
(30)

and the covariance matrix of wi,k is calculated as:

Q(i)
k,k = E

{
wi,kwT

i,k
}

= [ωωωk×]E
{

vi,kvT
i,k
}
[ωωωk×]T +

1
4T 2 E

{
vi,k+1vT

i,k+1
}
+

1
4T 2 E

{
vi,k−1vT

i,k−1
}

= σ2
i [ωωωk×][ωωωk×]T +

σ2
i

2T 2 I3 .

(31)

Noticing the unknown ωωωk in (31), the accurate covariance matrix Q(i)
k,k cannot be computed.

Generally, the approximation ∥ωωωk∥T ≪ 1 is valid for attitude estimation systems [10], and the
covariance matrix can be simplified as:

Q(i)
k,k = σ2

i [ωωωk×][ωωωk×]T +
σ2

i
2T 2 I3

=
σ2

i
2T 2

(
2T 2[ωωωk×][ωωωk×]T + I3

)
≈ σ2

i
2T 2 I3 = σ2

i I3 .

(32)
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With N1 equations in (29), i.e. i = 1, . . . , N1, N1 ≤ N, the weighted least-squares approach
can be applied to determine the angular velocity, that is:

ω̂ωωk =
1

2T
B−1

k

N1

∑
i=1

σ−2
i

[
b̃i,k×

]T(
b̃i,k+1 − b̃i,k−1

)
, (33)

where Bk =
N1

∑
i=1

σ−2
i

[
b̃i,k×

]T [
b̃i,k×

]
. N1 ≥ 2 is required for the matrix B−1

k to exist.

Substituting (29) into (33), the angular velocity error δωωωk can be expressed by:

δωωωk = ωωωk − ω̂ωωk =−B−1
k

N1

∑
i=1

σ−2
i

[
b̃i,k×

]T
wi,k . (34)

Based on the relationship between δωωωk and wi,k in (34) and the statistical property of wi,k in
(32), we have the following covariance matrix of δωωωk:

Qk,k = B−1
k

N1

∑
i=1

σ−4
i

[
b̃i,k×

]T
Q(i)

k,k

[
b̃i,k×

]
B−1

k ≈ B−1
k . (35)

3.2. Quaternion-based filtering method

The quaternion-based filtering framework is presented in this section for the gyroless attitude
estimation issue. The angular velocity in the process (15) is determined by (33), while introduc-
ing the angular velocity error into the process equation. The covariance of the angular velocity
error is analysed in (35) and can be used in the attitude estimation.

Based on the multiplicative extended Kalman filtering technique [9], the quaternion-based
filtering framework for the gyroless attitude estimation without an attitude dynamics model is
outlined as follows:
1) Initialization

Given the initial attitude quaternion estimate q̂0|0, angular velocity estimate ω̂ωω0, attitude error
estimate x̂0|0 and error covariance P0|0, the state and covariance are then propagated until
measurements are made.

2) Time update
The angular velocity estimate ω̂ωωk is calculated by (33) and the Qk,k is obtained from (35). The
attitude quaternion q̂k|k is propagated to obtain the a priori quaternion estimate q̂k+1|k as:

q̂k+1|k = Ω(ω̂ωωk) q̂k|k , (36)

where Ω is defined in (9).
Due to the operation of the attitude update at the sampling moment k, set x̂k|k = 0, and

then x̂k+1|k = 0. The one-step prediction error covariance Pk+1|k = E
{

xk+1|kxT
k+1|k

}
is calcu-

lated as:
Pk+1|k = FkPk|kFT

k +ΓΓΓkQk,kΓΓΓT
k , (37)

where Fk and ΓΓΓk are defined in (16) and (17), respectively.
3) Measurement update

The attitude error estimate is updated as:

x̂k+1|k+1 = Kk+1yk+1 , (38)

with the filter gain given by:

Kk+1 = Pk+1|kHT
k+1
(
Hk+1Pk+1|kHT

k+1 +R
)−1

, (39)

where yk+1, Hk+1 and R are defined in (21)–(22), respectively.
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The filtering error covariance Pk+1|k+1 = E
{

xk+1|k+1xT
k+1|k+1

}
is calculated as:

Pk+1|k+1 = (I3 −Kk+1Hk+1)Pk+1|k. (40)

4) Attitude update
The a posteriori quaternion estimate q̂k+1|k+1 is yielded from the attitude error estimate
x̂k+1|k+1 and the a priori estimate q̂k+1|k.

q̂k+1|k+1 =

 1
2

x̂k+1|k+1

1

⊗ q̂k+1|k . (41)

Remark 2. The filtering problem for gyroless attitude estimation without an attitude dynam-
ics model is solved from the above scheme. It is worth pointing out that many important filtering
algorithms have been developed for attitude estimation in recent years. Unfortunately, the exist-
ing results cannot be simply applied to the system (15) and (20), hindered by the requirement
of gyro measurement or attitude dynamics modelling. In contrast, the process model (15) con-
structed only with the attitude kinematic equation, the angular velocity information obtained
from (33) and (35), and the effect from angular velocity error compensated in the filtering algo-
rithm are unique, which constitutes the main difference from the existing results. In conclusion,
the proposed quaternion-based filtering framework provides an approach that complements the
existing filtering techniques for attitude estimation.

For the sake of clarity, a flowchart of the proposed algorithm is shown in Fig. 1.

Initialization

  ω    ,                     and             are 

computed by (33), (35), (36) and (37).

The filter gain          is given by (39).1k+
K

           and                can be 

obtained by (38) and (40).
1| 1

ˆ
k k+

x

Output

k=k+1

At sampling time k+1, the new 

observation vectors are obtained. 

The quaternion estimate               is 

given by (41).

k=0

ˆ
k 1|

ˆ
k k+

q
1|k k+

P

1| 1k k+
P

1| 1
ˆ
k k+

q

1| 1
ˆ
k k+

q

,k kQ

+

++

+

Fig. 1. A flowchart of the proposed algorithm.
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4. Numerical simulation

This section shows the performance of the proposed filtering algorithm. The simulation is
performed using a star tracker to determine the attitude of a spacecraft in a low-Earth orbit. The
spacecraft’s x axis is pointed at the orbit velocity direction and y axis is pointed opposite to the
orbit momentum vector at the initial moment, with the initial attitude quaternion given by:

q0 = [0 0.7071 0.7071 0]T . (42)

The star tracker’s boresight is defined by its corresponding sensor z axis, which is assumed
to be along the negative spacecraft body z axis. The star tracker outputs observation vectors of
stars in the body frame simulated by:

b̃i =
1√

1+ ã2
i + b̃2

i

 −ãi

−b̃i
1

 , (43)

where ãi and b̃i are focal plane measurements. Their true quantities are denoted by ai and bi.
Defining γγγ i = [ai bi]

T, we obtain:
γ̃γγ i = γγγ i +ζζζ i , (44)

where ζζζ i is zero-mean Gaussian noise with the covariance given by [25]:

RFOCAL
i =

σ2

1+a2
i +b2

i

[ (
1+a2

i
)2

(aibi)
2

(aibi)
2 (

1+b2
i
)2

]
, (45)

where σ = 0.0053× (π/180) rad. The star tracker can sense up to 15 stars in a 7×7 deg field of
view. The catalogue contains stars that can be sensed up to a magnitude of 6.0 (larger magnitudes
indicate dimmer stars). Star images are taken at 1 s intervals. A plot of the number of available
stars is shown in Fig. 2.

Fig. 2. Availability of stars.
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Assume that the spacecraft is undergoing motion characterized by:

ωωω =
[

5.8148×10−6t 0.0011 0.0052sin(0.0079t)
]T rad

/
s. (46)

This true angular velocity is plotted in Fig. 3. The initial attitude estimate is given by its
true value and the error covariance is set as P0|0 = 0.1I3. The initial angular velocity estimate is
also given by its true value. The new gyroless attitude estimation algorithm is compared with the
method denoted by M2 in which the dynamics is modelled as [23]:

ω̇ωω = ξξξ , (47)

where ξξξ is zero-mean white noise and the angular velocity ωωω as the augmented system state is
automatically updated along with the attitude quaternion by a Kalman filter.

Fig. 3. The true angular velocity.

The angular velocity estimate error with the new method is shown in Fig. 4a. Clearly, the ap-
proach in (33) has the ability of angular velocity determination and the angular velocity estimate
error is within its 3σ boundary. In addition, the error in Fig. 4a is smaller than that in Fig. 4b.
It is reasonable that in order to ensure the convergence of angular velocity estimate error, the
relatively large variances of ξ in (47) should be set to reflect error increases in the process of the
angular velocity propagation under variable angular velocity for the reason that the zero-mean
noise ξ in (47) implies that the angular velocity keeps constant in the propagation, which has
an influence on the covariance of angular velocity estimate error and results in the larger 3σ
boundary in Fig. 4b.

It can be seen from Fig. 5a that the predicted 3σ boundary does indeed bound the attitude
estimate error which slightly increases at times when fewer stars are available. Therefore, the pro-
posed quaternion-based filtering framework is effective for gyroless attitude estimation without
an attitude dynamics model. This is due to the fact that we have made special efforts to establish
the gyroless attitude estimation system, determine the angular velocity, analyse the properties of
the angular velocity error and reduce the error effect in the filtering process. The 3σ boundary in
Fig. 5a is about 20 µrad for x and y axes and 450 µrad for z axis, whereas in Fig. 5b is smaller
than 30 µrad for x and y axes and 600 µrad for z axis. Therefore, the proposed method has better
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a) b)

Fig. 4. The angular velocity estimate error and 3σ boundary. New method (a); M2 method (b).

performance than M2 because the angular velocity plays an important role in (8) and (15), and
the smaller angular velocity estimate error in Fig. 4a brings a more accurate attitude estimate.

a) b)

Fig. 5. The attitude estimate error and 3σ boundary. New method (a); M2 method (b).

5. Conclusions

In this paper, we have established the quaternion-based filtering framework for gyroless at-
titude estimation without an attitude dynamics model. The discrete-time kinematic equation of
attitude error has been derived as the process model and the attitude sensor model has been
used to construct the measurement equation. The angular velocity information has been obtained
dependent only on the knowledge of observation vector measurements from attitude sensors,
where the statistical properties of angular velocity error have been analysed. The multiplicative
extended Kalman filtering technique has been used to reduce the effect from the angular velocity
error and measurement noise and update the attitude quaternion estimate at each sampling mo-
ment. Finally, a simulation example has been given to illustrate the superiority of the proposed
method.
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