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Abstract
The advance of MEMS-based inertial sensors successfully expands their applications to small unmanned
aerial vehicles (UAV), thus resulting in the challenge of reliable and accurate in-flight alignment for air-
borne MEMS-based inertial navigation system (INS). In order to strengthen the rapid response capability
for UAVs, this paper proposes a robust in-flight alignment scheme for airborne MEMS-INS aided by global
navigation satellite system (GNSS). Aggravated by noisy MEMS sensors and complicated flight dynamics,
a rotation-vector-based attitude determination method is devised to tackle the in-flight coarse alignment
problem, and the technique of innovation-based robust Kalman filtering is used to handle the adverse im-
pacts of measurement outliers in GNSS solutions. The results of flight test have indicated that the proposed
alignment approach can accomplish accurate and reliable in-flight alignment in cases of measurement out-
liers, which has a significant performance improvement compared with its traditional counterparts.
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1. Introduction

As a small powered aerial vehicle without airborne pilots, UAV has a significant potential
in the applications such as scientific research, public security, traffic surveillance, aerial map-
ping, and disaster rescues [1]. Among all the techniques enabling intelligent flight in harsh
environments, an autonomous navigation system is indispensable for individual UAVs. How-
ever, traditional inertial navigation systems (INS) cannot be suitable for small UAVs due to their
big weight, large size and high cost. The advent of cost-effective miniaturized INS, i.e. Micro-
Electro-Mechanical System (MEMS), enables to use an affordable GNSS/INS integrated system
for small UAVs [2]. Its adoption spares more space and weight for other functional instruments,
resulting in reinforcement of UAV capability for diverse tasks [3].

Accurate initial position, velocity and attitude are essential for the navigation calculation
of a dead reckoning system such as INS. The process whereby the initial navigation state is
determined is termed as the initial alignment. Among them, initial position and velocity are easy
to obtain with GNSS, but initial attitude is difficult to achieve for a moving body. For an initial
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alignment algorithm, the major task is actually to acquire the initial attitude. However, traditional
initial alignment algorithms for high-precision INS cannot be simply applied to MEMS-based
INS [4, 5]. This is because MEMS-based gyros cannot sense the Earth rate (about 15deg/h) with
noise levels of 10–100 deg/h or more. For noisy MEMS-INS, the conventional coarse alignment
based on the gravity and Earth rate measurements cannot be accomplished; neither does the
self-alignment based on gyro-compassing [6]. A promising solution seems to be an in-motion
alignment technique. However, accurate and reliable in-motion alignment still faces difficulty,
due to severe model nonlinearity and unpredictable GNSS outliers.

The INS model nonlinearity is mainly caused by uncertain initial attitude errors. The un-
scented Kalman filter (UKF) and Cubature Kalman filter (CKF) could be used to tackle the
model nonlinearity [4, 7–9]. Superior performance could be achieved by a single UKF without
model switches or linearization, but the enormous computation burden deteriorates the real-time
property. Moreover, the linearized model can be derived using the trigonometric functions of
wander angle for in-flight coarse alignment under large heading errors [5, 10]. Although the
reduced computation load meets real-time navigation, this scheme suffers from model inconsis-
tency and weak observability of the trigonometric function error states. Another effective method
to reduce the linearized error is to obtain proper initial attitude estimates, meaning the coarse
alignment should provide sound initial values [6]. The initial attitude could be derived as the iter-
ative solution for the equivalent optimization problem of finding the minimum eigenvector [11,
12]. In addition, the approximately analytical solution to initial attitude could be also derived
with some assumed constraints [13, 14]. However, these approaches are easily affected by either
sudden manoeuvres or sideslips.

Besides, outliers may occur in GNSS challenging environments, which would violate the
assumed GNSS error model. Thus, the alignment performance will also be deteriorated due to
this model mismatch. The Huber-based robust M estimation could be employed to relieve the
effects of outlying observations [15, 16]. Sensitive to the initial value, these robust methods may
also fail when an outlier occurs in the satellite which affects the satellite geometry significantly
[17]. An adaptively robust Kalman filter (ARKF) with a predicted residuals-based fading factor
is devised to resist the adverse influence of both dynamic model error and GNSS outliers [18].
In addition, the fading factor could also be constructed from the innovation sequence to deflate
the gain matrix [19], and this robust Kalman filter could be improved with the IGG (Institute of
Geodesy and Geophysics) scheme [20]. Motivated by the ARKF architecture, this paper proposes
a reliable in-flight alignment for UAV’s on-board MEMS-INS aided by GNSS. A rotation-based
attitude determination method is devised to perform in-flight coarse alignment, overcoming the
calculation burden and model switches. Moreover, the technique of the innovation-based robust
Kalman filter is adopted to handle the measurement outliers. The improved in-flight initial align-
ment is proposed by combining both methods and applied to small UAV MEMS-based naviga-
tion. Compared with the traditional approaches, the proposed method can complete accurate ini-
tial alignment even when outliers happen. The field test results also demonstrate its effectiveness.

The structure of this paper is as follows. Section 2 briefly describes the INS error state model
for in-flight alignment. Section 3 presents the derivations and implementations of the proposed
in-flight alignment. The test results and conclusions are given in Section 4 and 5.

2. MEMS-INS error-state model for in-flight alignment

This paper presents an in-flight initial alignment algorithm based on the Kalman filter struc-
ture shown in Fig. 1. This section will briefly describe the core modules such as SINS mecha-
nization, system error state model, and error compensations.
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Fig. 1. The algorithm structure of in-flight alignment for MEMS-INS aided by GNSS.

2.1. SINS dynamics

As a strap-down INS, accelerometers and gyros are mounted upon the vehicle directly to
sense the body motion. This kind of inertial system which may be used to navigate in the vicinity
of the Earth is formulated as the Newtonian equations in the n-frame [6]:{

v̇n = Cn
b f b − (2ωωωn

ie +ωωωn
en)× vn +gn

Ċn
b = Cn

b(ωωωb
ib×)− (ωωωn

in×)Cn
b

, (1)

where vn = [vN ,vE ,vD]
T is the vehicle velocity along northern, eastern and downward directions

of n-frame; Cn
b is the attitude transformation matrix from the b-frame to the n-frame; f b is the

specific force of b-frame relative to inertial frame (i-frame) resolved in b-frame measured by ac-
celerometers, and ωωωb

ib is the angular rate of b-frame relative to inertial i-frame resolved in b-frame
measured by gyros; ωωωn

ie and ωωωn
en are the Earth’s rate and transfer rate resolved in n-frame, and

ωωωn
in = ωωωn

ie +ωωωn
en; gn is the gravity vector resolved in n-frame. It indicates that these derivatives

(i.e., v̇n and Ċn
b) are integrated to obtain estimates of vehicle velocity and attitude relative to their

initial values in (1). The position can be subsequently obtained by integrating the velocity esti-
mate. Expressed as latitude, longitude and altitude in the geodetic coordinates, i.e., r = [L,λ ,h]T ,
the position rate can be written as:

L̇ = vN/(R+h), λ̇ = vE/ [(R+h)cosL] , ḣ =−vD . (2)

The strap-down computational algorithm which obtains the estimates of vehicle position,
velocity and attitude by high-precision numerical integration is termed as SINS mechanization.
Savage’s works [21, 22] are widely recognized in such calculation, reducing the computation
errors to a negligible level. As a result, it is the quality of initial alignment and the inertial sensor
bias residuals that result in the growing navigation errors, which could be tackled by the proposed
alignment algorithm based on a Kalman filter presented in the following parts.

2.2. System state model

The INS error-state vector consists of 15 components, i.e. three position errors, three velocity
errors, three attitude errors, three gyro bias errors and three accelerometer bias errors. For sim-
plicity, the dynamic state equation in the n-frame is briefly listed here. The interested readers can
refer to [23] for detailed derivations.

ẋ = F x+G w, (3)

where x= [δ r, δv, ϕϕϕ , εεε , ∇∇∇]T = [δL,δλ ,δh,δvN ,δvE ,δvD,ϕN ,ϕE ,ϕD,εX ,εY ,εZ ,∇X ,∇Y ,∇Z ]
T is

the error state, in which δL, δλ and δh represent the position errors in latitude, longitude, and
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height; δvN , δvE , and δvD represent the velocity errors in the north, east and downward direc-
tions; ϕN , ϕE , and ϕD represent misalignment angles between the computed and real attitudes;
εX , εY , and εZ represent the gyro bias errors; ∇X , ∇Y and ∇Z represent the accelerometer bias
errors. The system noise vector is defined as w:

w = [wgx,wgy,wgz,wax,way,waz,ξ b
gx,ξ b

gy,ξ b
gz,ξ b

ax,ξ b
ay,ξ b

az]
T . (4)

In (1), the matrices F and G are expressed as follows:

F =


F1 F2 03×3 03×3 03×3

F3 F4 F5 03×3 −Cn
b

F6 F7 F8 Cn
b 03×3

03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3

 , G =


03×3 03×3 03×3 03×3

03×3 −Cn
b 03×3 03×3

Cn
b 03×3 03×3 03×3

03×3 03×3 I3×3 03×3

03×3 03×3 03×3 I3×3

 , (5)

in which, 03×3 and I3×3 represent the 3×3 zero matrix and the 3×3 identity matrix, respectively;

F1 =


0 0 −vN

R2

vE tanL
RcosL

0 − vE

R2 cosL
0 0 0

 , F2 =


1
R

0 0

0
1

RcosL
0

0 0 −1

 ,

F3 =


−vE

(
2ΩcosL− vE

Rcos2 L

)
0

1
R2

(
v2

E tanL− vNvD
)

2Ω(vN cosL− vD sinL)+
vNvE

Rcos2 L
0 − vE

R2 (vN tanL+ vD)

2ΩvE sinL 0
1

R2

(
v2

N + v2
E
)

 ,

F4 =


vD

R
−2Ω(sinL+

vE tanL
R

)
vN

R

2ΩsinL+
vE

R
tanL

1
R
(vN tanL+ vD) 2ΩcosB+

vE

R

−2vN

R
−2(ΩcosL+

vN

R
) 0

 ,

F5 =

 0 − fD fE
fD 0 − fN

− fE fN 0

 , F6 =


−ΩsinL 0 − vE

R2

0 0
vN

R2

−ΩcosL− vE

Rcos2 L
0

vE tanL
R2

 ,

F7 =


0

1
R

0

− 1
R

0 0

0 − tanL
R

0

, F8 =


0 −ΩsinL− vE tanL

R
vN

R

ΩsinL+
vE tanL

R
0 ΩcosL+

vE

R
−vN

R
−ΩcosL− vE

R
0

,
where Ω is the Earth’s rate; fN , fE , and fD are the measured specific forces resolved in the
n-frame, i.e. f n = Cn

bf b; R is the Earth radius.
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2.3. System observation model

Both GNSS and INS can output position and velocity components when GNSS positioning
is available. So the position and velocity differences between GNSS and INS can be taken as the
observations, i.e. Z = [rINS − rGNSS, vINS − vGNSS]

T .
The lever-arm ℓℓℓb

G is defined as a vector from the INS centre to the GNSS antenna phase centre
referenced in the b-frame. The corresponding observation equation is:

Z = H x+ e. (6)

The measurement matrix H and the noise vector e are defined as:

H =

[
I3×3 03×3 (Cn

bℓℓℓ
b
G)× 03×3 03×3

03×3 I3×3 −[(ωωωn
in×)(Cn

bℓℓℓ
b
G×)+Cn

b(ℓℓℓ
b
G ×ωωωb

ib)×] −Cn
b(ℓℓℓ

b
G×) 03×3

]
,

e =
[

er
ev

]
,

(7)

where the symbol ‘(·)×’ denotes the skew symmetric matrix constructed by the vector elements
in the brackets. Usually, the GNSS data rate is far less than that of INS, e.g. 1 Hz as the typical
value. The state-space model of GNSS/INS integrated system is constituted by the Equations (3)
and (6).

2.4. Error compensations

When GNSS solutions are available at tk moment, the INS predicted navigation error state (a
priori estimate) is x−k = [δ r−k ,δv−k ,ϕϕϕ

−
k ,εεε

−
k ,∇∇∇

−
k ]

T , and the updated error state (a posteriori esti-
mate) is x+k = [δ r+k ,δv+k ,ϕϕϕ

+
k ,εεε

+
k ,∇∇∇

+
k ]

T . The updated errors will be used to calibrate the inertial
sensors and update the navigation results. The INS predicted position r−k and velocity v−k can be
compensated as follows:

r+k = r−k −δ r+k , v+k = v−k −δv+k . (8)

Based on the assumption of small misalignment angles, the INS predicted attitude matrix
Cn−

b,k is rectified as:

Cn+
b,k = (I +[ϕϕϕ+

k ×])Cn−
b,k . (9)

The INS predicted gyro bias b−gyro,k and accelerometer bias b−accl,k are corrected as:

b+gyro,k = b−gyro,k + εεε+k , b+accl,k = b−accl,k +∇∇∇+
k , (10)

where the a posteriori estimates b+gyro,k and b+accl,k represent the inertial sensor biases at tk moment,

and they could be used to correct raw inertial measurements (i.e., ω̃ωωb
ib,k and f̃

b
k) at tk moment:

ω̂ωωb
ib,k = ω̃ωωb

ib,k − εεε+k , f̂ b
k = f̃

b
k −∇∇∇+

k . (11)

The calibrated measurements (i.e., ω̂ωωb
ib,k and f̂ b

k) will be used for SINS mechanization.
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3. Improved in-flight alignment for MEMS-based INS in UAV applications

The improved in-flight initial alignment can be divided into two stages, i.e. coarse alignment
and fine alignment. The in-flight coarse alignment provides a sound initial attitude with the ac-
curacy of a few degrees for the following fine alignment. For flying UAVs, the proposed in-flight
coarse alignment can determine a rough initial attitude aided by a single GNSS antenna, without
the need of additional external aids, such as a magnetometer or multi-GNSS antennas. Guaran-
teed by the coarse alignment, the improved fine alignment can be achieved with a robust Kalman
filter to reduce the effects of GNSS outliers.

3.1. Improvement with in-flight coarse alignment

To determine the rough initial attitude of a moving body, we proposed a novel in-flight coarse
alignment method based on the rotation vector [3]. This approach aims at accomplishing attitude
initialization during UAV flight, and is demonstrated by the field test. In the following part, the
algorithm is presented briefly and the readers can refer to [3] for details.

The proposed in-flight coarse alignment is devised to obtain the initial attitude quaternion qn
b

by two consecutive rotations, as shown in Fig. 2. The corresponding quaternions to the first and
second rotations are denoted as q f

b and qn
f , respectively. The initial attitude can be determined as

qn
b = q f

b ◦ qn
f , i.e.:

f n0 = qn
b ∗◦ f b0 ◦ qn

b, (12)

where f b0 and f n0 are the unitization vectors of f b and f n, i.e.:

f n0 = f n/∥f n∥ , f b0 = f b/
∥∥∥f b
∥∥∥ , (13)

where ∥ · ∥ represents the norm of a vector.

a) b)

0bf

0u

0r
0b

nf
/ 2θ / 2θ

0 0 0

0 0

0

0 0

=
b b

n

b b

n

b b

n

u f f

f f
r

f f

×

+
×

+
0bv

'v

0bf

/ 2α

2
r

/ 2α
1
r 3

r

Fig. 2. The coarse attitude determination with two consecutive rotations. The first rotation process (a); the second
rotation process (b).

Equation (1) shows that f n can be constructed as:

f n = v̇n +(2ωωωn
ie +ωωωn

en)× vn −gn, (14)

where v̇n is the body total acceleration in n-frame, which can be approximated by the velocity
difference between two consecutive GNSS moments, i.e. average acceleration in n-frame.
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For the first rotation, the vector triad
(
f n0, vn0, f n0 × vn0

)
rotates by the angle θ around

f n0 × f b0, as shown in Fig. 2a. The corresponding quaternion q f
b is computed as:

r0 =
f b0 + f n0∥∥f b0 + f n0

∥∥ , u0 =
f n0 × r0∥∥f n0 × r0

∥∥
sin
(

θ
2

)
=
∥∥f n0 × r0

∥∥ , cos
(

θ
2

)
=

√
1− sin2

(
θ
2

)
q f

b = cos
(

θ
2

)
+u0 · sin

(
θ
2

) . (15)

The first rotation transforms vn0 into a new vector v′, i.e.:

vn0 = vn/∥vn∥ , v′ = q f
b ∗◦ vn0 ◦ q f

b . (16)

Then, a newly-formed vector triad
(
f b0,v′, f b0 × v′

)
rotates by the angle α around f b0, as

shown in Fig. 2b. Assuming the sideslip rate ρslip can be known with some special sensor (e.g.
ρslip is set to zero in a balanced flight), the analytical solution of vb0 = [vx,ρslip,vz]

T can be
obtained by the motion constraints of UAV [3]:

c = f b0 · (q f
b ∗◦ vn0 ◦ q f

b)− fy ·ρslip

vx = { fx · c+ | fz| · [( f 2
x + f 2

z ) · (1−ρ2
slip)− c2]1/2}

/
( f 2

x + f 2
z )

vy = ρslip
vz = c− fx · vx

/
fz

, (17)

where f b0 = [ fx, fy, fz]
T . The corresponding quaternion qn

f to the second rotation is computed as:

r1 = v′− v′ · f b0, vb0 = vb/
∥∥vb
∥∥

r3 = vb0 − vb0 · f b0, r2 = r1 + r3

r0
1 = r1/∥r1∥ , r0

2 = r2/∥r2∥

sin
(α

2

)
=
(
r0

1 × r0
2
)
· f b0, cos

(α
2

)
=

√
1− sin2

(α
2

)
qn

f = cos
(α

2

)
+ f b0 · sin

(α
2

)
. (18)

Finally, the initial attitude is computed as:

qn
b = q f

b ◦ qn
f . (19)

Subsection 4.2 will compare this method with its traditional counterpart by the field test.

3.2. Improved Robust Kalman filtering for in-flight fine alignment

Based on the sound initial state provided by in-flight coarse alignment, the discretization and
linearization can be performed. The state equation and measurement equation are discretized to
construct extended Kalman filter.{

xk = ΦΦΦk,k−1xk−1 +ΓΓΓ k,k−1wk−1

Zk = Hkxk + ek
, (20)
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where xk is the error state at time k; ΦΦΦk,k−1 is the state transition matrix from time k−1 to time
k; ΓΓΓ k,k−1 is the noise design matrix; the system noise vector at time k−1 is wk−1 ∼ N(0,Qk−1),
Hk is the measurement design matrix at time k; and ek is the measurement noise vector with the
covariance matrix Rk.

Using the SINS error model as accurate system dynamics, the KF innovation vk = Zk −Hkx−k
can reflect the effects of GNSS observation outliers. For the discretized system depicted by (20),
the innovation sequence

{
vk = Zk −Hkx−k

}
should satisfy the following property:{

E [vk] = 0, ∀k

E
{

vkvT
j

}
= Ckδk j , Ck = HkP−

k HT
k +Rk

, (21)

where δk j is the Kronecker function. If the actual model structures and parameters are consistent
with (20), (21) will hold true. On the contrary, if (21) is violated, it is reasonable to judge that
some improper approximations or outliers exist. In GNSS/INS integration, the hypothesis test can
be performed to check whether the actual GNSS observation violates the model assumptions, in
which the null hypothesis is vk ∼ N(0,Ck). As a judging index for observation outlier detection,
the test statistics γk is constructed as:

γk = M2
k = vkC−1

k vT
k , (22)

where Mk =

√(
Zk −Hkx−k

)T C−1
k

(
Zk −Hkx−k

)
is the Mahalanobis distance [19]. If the null hy-

pothesis holds, the test statistics obeys the Chi-square distribution χ2(m) with the degree of free-
dom m. The probability threshold of rejection for the null hypothesis, i.e. the significance level
α , should be of a very small value, e.g. 0.01%. With this judging index, the null hypothesis can
be rejected if the computed value is larger than the Chi-square α-quantile χ2

α(m), meaning that
either actual measurements are not compatible with the assumed model or outliers are detected.
In other words, the above test process can be written as:

Pr
{

γk > χ2
α(m)

}
= α, (23)

where Pr(·) represents the probability of a random event. The (23) indicates γk > χ2
α(m) as

an event of small probability. When this event happens, it is reasonable to reject the null hypoth-
esis and conclude that outliers are detected.

To resist the adverse influence of outliers, a scaling factor λk is constructed based on γk and
χ2

α(m) to devise a robust Kalman filter. If the computed γk is larger than χ2
α(m), the adaptive

factor λk is introduced to inflate the innovation covariance Ck:

Ck = λkCk . (24)

Thus, the following equation should be satisfied:

γk = vkC−1
k vT

k = χ2
α(m). (25)

Then

λk =


1 γk ≤ χ2

α(m)

γk

χ2
α(m)

γk > χ2
α(m)

. (26)

Equation (26) is the analytical solution of adaptive factor λk without an iterative process as
employed in [19]. When an observation outlier occurs, the factor λk > 1 will reduce the gain Kk
to balance the contribution of observations in state estimation. It can be observed that the robust
KF is transformed to a standard KF when there is no outlier detected with λk = 1.
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3.3. Implementation of proposed in-flight initial alignment

Implementation of the proposed reliable in-flight alignment approach is obtained by combin-
ing Subsection 3.1 and Subsection 3.2, and listed briefly as follows.

Step 1: Initialization of the navigation filter:
(1) The initial position and velocity are set as the GNSS-derived solutions (rGNSS and vGNSS).
(2) The initial attitude qn

b is obtained by the proposed in-flight coarse alignment algorithm
with the GNSS velocity (vn

k−1, vn
k) and accelerometer measurements (f b

k−1, f b
k) at two consecutive

GNSS moments tk−1 and tk, according to (12)~(19).
(3) The error state x+0 is set to zero, and the corresponding covariance P+

0 is a diagonal
matrix diag(σ2

L ,σ2
λ ,σ

2
h ,σ

2
vN
,σ2

vE
,σ2

vD
,σ2

ϕN
,σ2

ϕE
,σ2

ϕD
,σ2

εX
,σ2

εY
,σ2

εZ
,σ2

∇X
,σ2

∇Y
,σ2

∇Z
). Some diago-

nal elements are set by experience with σL = σλ =

√
2

2
σh = 5 m, σvN = σvE =

√
2

2
σvD = 0.1 m/s,

σϕN =σϕE =σϕD = 0.2 rad; and the elements σεX =σεY =σεZ = 4×10−3 rad/s and σ∇X =σ∇Y =
σ∇Z = 3×10−2 m/s2 are set according to noise parameters included in Table 1.

Step 2: SINS mechanization:
Equations (1) and (2) are numerically integrated for SINS-predicted position, velocity and

attitude estimates, using the corrected inertial measurements ω̂ωωb
ib,k and f̂ b

k from (11);
Step 3: Time update:

x−k = ΦΦΦk,k−1x+k−1 , P−
k = ΦΦΦk,k−1P+

k−1ΦΦΦT
k,k−1 +ΓΓΓ k,k−1Qk−1ΓΓΓ T

k,k−1 . (27)

Step 4: Computation of the innovation vector and its covariance:

vk = Zk −Hkx−k , Ck = HkP−
k HT

k +Rk . (28)

Step 5: The test statistics γ̃k is calculated with (20), and the factor λk is updated with (24);
Step 6: Measurement update:

Kk = λ−1
k P−

k HT
k (HkP−

k HT
k +Rk)

−1. (29)

x+k = x−k +Kk(zk −Hkx−k ), P+
k = (I−KkHk)P−

k (I−KkHk)
T +KkRkKT

k . (30)

Step 7: Error compensation with (8), (9) and (10);
Return to Step 2 until the end of the whole flight.

4. Field test

4.1. Test setup

A field test was performed with the GNSS/MEMS-INS integrated prototype system, as shown
in Fig. 3 (middle), mounted on a small UAV. The prototype system consists of a low-cost MEMS-
based IMU (ADIS14605) and a GNSS receiver. The IMU is used for collecting inertial data with
the noise parameters listed in Table 1. The GNSS receiver is used for collecting GNSS data.
The field test airborne equipment is shown in Fig. 3 (left). The airborne MEMS-INS performs the
in-flight alignment aided by GNSS single point positioning (SPP), i.e. SPP position and velocity.
Intentionally, a temporary GNSS base station as shown in Fig. 3 (right) was installed on the top
of the Aerospace Engineering building at the university premises, to obtain the centimetre-level
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Table 1. ADIS16405 IMU noise parameters.

Parameter type Gyro Accelerometer

Bias 3.0 deg/sec 50 mg

Bias Instability 0.007 deg/sec 0.2 mg

Random Walk 2.0 deg/
√

hr 0.2 m/sec/
√

hr

Fig. 3. The airborne equipment (left), GNSS/MEMS-INS prototype system (middle), and RTK base station (right).

real-time kinematic (RTK) results as the position reference. Therefore, the alignment perfor-
mance can be reflected by the position error. The test site is located in the open area on the Moon
Island, about 10 km away from the base station.

The UAV RTK reference trajectory is presented in Fig. 4, which shows that the circular move-
ment is the main manoeuvre to guarantee the filter state observability. It takes about 15~20 min
for IMU warm-up, then the in-flight initial alignment begins once the UAV takes off.
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Fig. 4. The horizontal trajectory (left) and the vertical position (right) of UAV flight.

4.2. In-flight coarse alignment results

The proposed coarse alignment algorithm and the conventional method [14] are compared
here. The Kalman filter attitude estimates are used as the reference. Both coarse alignment al-
gorithms are executed at every moment during the whole flight, and Fig. 5 shows their attitude
errors. It can be noticed that the proposed algorithm with a known sideslip (green dashed line)
significantly improves the accuracy of attitude estimation, compared with other methods. In fact,
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the zero-sideslip simplified algorithm (red dotted line) also greatly enhances the roll estima-
tion accuracy and slightly improves the yaw estimation, compared with the traditional method
(blue solid line). Fig. 5 also shows that the blue and red lines encounter some large disturbances
in heading and pitch angles, which are caused by the actual sideslip of UAV, thus violating
the zero-sideslip assumption. If the lateral speed can be measured by some special sensor, it is
demonstrated that the proposed algorithm with known sideslip (green dashed line) will never
undergo such disturbances. The root mean square errors (RMSE) of these three algorithms are
listed in Table 2, which indicates that the proposed coarse alignment algorithm provides a better
attitude estimate. The accuracy enhancement is benefited from the combined use of both GNSS
and INS measurements, while the conventional algorithm uses only the single GNSS antenna ob-
servations. It will also be demonstrated that the proposed in-flight coarse alignment can provide
a sound initial value for the following fine alignment.
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Fig. 5. Comparison of the in-flight coarse attitude error for the proposed
and traditional algorithms.

Table 2. Comparison of the coarse alignment accuracy for the proposed and traditional algorithms.

Algorithm type Roll RMSE [deg] Pitch RMSE [deg] Yaw RMSE [deg]

Traditional method 19.0510 7.2999 16.7469

The proposed method (zero slip assumption) 9.0040 8.3487 15.4732

The proposed method (non-zero slip) 7.0862 3.5584 6.0682

4.3. In-flight fine alignment results

Because Satellite 16 is observable during the whole test, an outlier of 100m is given to the
C/A-code observation of Satellite 16 every 100 moments to test the proposed algorithm. Fig. 6
(left) shows the SPP position error characteristics in this situation. Fig. 6 (left) also shows that
the average number of observable satellites is about 6 during the flight test, and the PDOP (posi-
tion dilution of precision) reflects the changing satellite geometry with the number of satellites.
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In Fig. 6 (left), the outlier occurrence moments are marked by red arrows, and GNSS position
outliers also occur at the corresponding moments.

Fig. 6. A posteriori analysis of the GNSS SPP error (left) and comparison of position errors for different algorithms
in three case studies (right).

Based on the in-flight coarse alignment result at first moment, three fine alignment cases are
analysed and compared here.

Case 1: Fine alignment scheme uses standard KF without introducing outliers;
Case 2: Fine alignment scheme uses standard KF with outliers every 100 moments;
Case 3: Fine alignment scheme uses the robust KF with outliers every 100 moments.
Figure 6 (right) shows the position error of each scheme. It can be observed that the blue solid

line shows the standard KF performance without observation outliers, while the black dashed
line corresponds to the results with outliers introduced every 100 moments. It should be noticed
that the standard KF suffers from outliers, resulting in a degraded performance during the fine
alignment. On the other hand, Fig. 6 (right) shows that the red dot-and-dash line is very close to
the blue solid line even in the case of GNSS outliers. Table 3 shows the root-mean-square errors
(RMSE) of both standard KF and robust KF in the presence of outliers after the fine alignment
almost stabilizes. It can be seen that the adoption of robust KF significantly improves the overall
accuracy by 15% and by more than 50% the accuracy in horizontal directions, compared with
the traditional fine alignment using the standard KF.

Table 3. Fine alignment accuracy of the proposed and conventional algorithms in the case of outliers.

Algorithm type
North position East position Downward position Position RMSE

RMSE [m] RMSE [m] RMSE [m] norm [m]

Standard KF 24.01 6.54 32.41 40.86

The proposed approach 10.21 3.44 32.46 34.20

The comparison between Fig. 6 (left) and Fig. 6 (right) indicates that the GNSS position out-
liers in Fig. 6 (left) contribute to the divergence of conventional fine alignment at corresponding
moments in Fig. 6 (right), while the proposed robust method still performs well at these mo-
ments. This fact demonstrates that the proposed robust method can complete fine alignment in
a way that is immune from observation outliers, resulting in an improved alignment accuracy.
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5. Conclusions

In this paper, a novel two-stage in-flight initial alignment approach is proposed for the air-
borne MEMS-based INS aided by GNSS. In order to address the attitude estimation in a moving
base, a real-time in-flight coarse alignment algorithm adopts accurate GNSS velocity and accel-
eration sensed by IMU to construct the nonlinear equation of initial attitude, and its approximate
solution is derived with the devised two-rotation method. The in-flight fine alignment overcomes
the adverse influence of observation outliers on the alignment performance using innovation
filtering. The field test results have demonstrated that the proposed algorithm can improve the
in-flight alignment accuracy even when the observations are contaminated by outliers, compared
with conventional methods.
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