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ELASTICITY SOLUTION OF ADHESIVE TUBULAR JOINTS
IN LAMINATED COMPOSITES WITH AXIAL SYMMETRY

This paper presents an elasticity solution of adhesive tubular joints in laminated
composites, with axial symmetry. In this model, adherends are orthotropic shells and
the stacking sequences can be either symmetric or asymmetric. Adhesive layer is
homogenous and made of isotropic material. They are modelled as continuously dis-
tributed tension/compression and shear springs. Employing constitutive, kinematics
and equilibrium equations, sets of differential equations for each inside and outside
of overlap zones are obtained. By solving these equations, shear and peel stresses in
adhesive layer(s), as well as deflections, stress resultants and moment resultants in
the adherends are determined. It is seen that the magnitude of peel stresses due to
transverse shear stress resultant is much greater than that obtained from axial stress
resultant. The developed results are compared with those obtained by finite element
analysis using ANSYS software. The comparisons demonstrate the accuracy and ef-
fectiveness of the aforementioned methods.

1. Introduction

The history of using composite materials in piping systems is close to half
a century. Several advantages of composite pipes with respect to metallic pipes
such as: light weight, high specific strength and stiffness and corrosion resistance,
caused widespread tendency to using of these pipes in various industries such as:
oil, gas, petrochemical, power plants, marine industries and sewage pipes.

Joints are the source of weakness and structural excess weight. Therefore, the
ideal piping system would be designed without joints. However, limitations on
component size imposed by manufacturing process and transportation necessitate
applying joints in most piping systems. Adhesive joint is a simple method with
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low weight and cost for joining composite pipes together. Advantages of adhesive
joints with respect to mechanical joints (screws and rivets) are:

• significant reduction in stress concentration,
• weight reduction (especially in narrow joints),
• vibration damping capability,
• capability of joining and sealing simultaneously,
• ease of fabrication process,
• reducing production cost.
The most common type of pipe joint is the tubular lap joint. The other common

types of pipe joints are: tubular butt and tubular strap joints. These joints are shown
in Fig. 1).

Fig. 1. Typical tubular adhesive joint
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The response of an adhesive annular butt joint subjected to a pure torsion was
measured in [1]. Authors of [2], analysed the stresses in tubular lap joints under a
tensile axial load and gave solutions for both the shear stress τzr in the adhesive
layer and normal stress σr across the thickness of the adhesive layer that result
from adherend bending.

The problem of torsional stress in tubular lap joints was first investigated in
[3]. In this analysis, the presence of the circumferential shear stress was ignored,
and the adhesive layer was treated as a sort of shearing springs acting between two
adherends. The previous research was improved by taking into account the effect
of thickness of the adhesive layer [4]. Stress distribution formulation for adhesively
bonded tubular lap joint under torsion was carried out in [5]. This research is based
on the variational principle of complementary energy method.

All the above models considered only the isotropic adherends. Authors of [6],
applied finite element method for analysis of the tubular lap joint composed of
steel tube that adhesively bonded to a composite tube. The system responses of
composite pipe joints with orthotropic behaviour and under tensile loading was
investigated in [7, 8] by using one-dimensional simulation model.

Behaviour of GFRP adhesive pipe joints subjected to pressure and axial load-
ings was studied experimentally and analytically in [9]. The torsional strength of
tubular adhesive joints with carbon-epoxy and glass-epoxy adherends are investi-
gated in [10]. Recently, a closed form solution for tubular adhesive joints subjected
to axial loads was presented in [11, 12].

In this paper, we present an analytical model for analysing of adhesive joints
in laminated composite pipes with axial symmetry in the cylindrical coordinates.
A sample of tubular lap joint is solved analytically and the results are validated by
finite element modelling in ANSYS software.

2. Mathematical modelling

2.1. Tubular butt joint

In the tubular butt joint, magnitude of peel stress is determined by a simple
equation of σ = Nz/t. In this equation Nz is axial stress resultant and t is thickness
of the pipe. The adhesive shear stress is considered to be zero.

2.2. Mathematical modelling for other types of tubular adhesive joints

Mathematical modelling for other types of tubular adhesive joints is obtained
by adopting sets of restrictive assumptions, for describing the behaviour of bonded
joints. Based on these assumptions, constitutive and kinematics relations for each
of adherends and constitutive relations for adhesive layer are obtained. Then, equi-
librium equations of the joint in each of inside and outside of overlap zones are
derived. Finally, by combining these relations and equations, governing equations
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as sets of differential equations, for each zone (inside and outside of overlap zone)
are obtained. Basic assumptions for the adherends, adhesive layers, loading and
boundary conditions are as follows:

1. Adherends
• adherends aremodelled as axisymmetric, laminated composite pipes;
• the thickness of layers remains constant;
• laminates have linear elastic behaviour.

2. Adhesive layers
• adhesive layer is assumed to behave as homogenous, isotropic and
elastic material and modelled as continuously distributed tension
compression and shear springs.

As noted, each type of adhesive joint consists of two regions of: inside of
overlap zone and outside of overlap zone, and the governing equations in these two
regions are different. It is clear that this equation in the inside of overlap zone is
more complex than the governing equations in outside of overlap zones.

2.3. Inside of overlap zone modelling

As mentioned previously, the adherends are assumed to have linear elastic
behaviour and the thickness of adherends remain constant when subjected to load-
ings. Therefore, the displacements and slopes in the cylindrical coordinates are
defined as:

uir = uir (z), (1)

uiθ (z) = uiθ0(z) − ξ βiθ (z), (2)

uiz (z) = uiz0(z) − ξ βiz (z), (3)

βiθ =
∂uir
∂θ
= 0, (4)

βiz =
∂uir
∂z

, (5)

where ξ = r − r and r is the mean radius of the tubular adherend. The strain–
displacement relations for axisymmetric cylindrical shells become:

εθθ =
ur (z)

r
, (6)

εzz =
∂uz
∂z

, (7)

γzθ =
∂uθ
∂z

. (8)
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By considering r � t, the tangential strain remains constant in the radial
direction and is equal to:

ε0
θθ =

ur (z)
r

. (9)

The resultant force (moment)–strain relations for cylindrical coordinate in the
θ–z plane are defined as:



NZ

Nθ

NZθ


=



A11 A12 A16

A12 A22 A26

A16 A26 A66





ε0
z

ε0
θ

γ0
zθ



+



B11 B12 B16

B12 B22 B26

B16 B26 B66





κz

κθ

κzθ


, (10)



Mz

Mθ

Mzθ


=



B11 B12 B16

B12 B22 B26

B16 B26 B66





ε0
z

ε0
θ

γ0
zθ


+



D11 D12 B16

D12 D22 D26

D16 D26 D66





κz

κθ

κzθ


, (11)

where:



κz

κθ

κzθ



= −



∂2ur
∂z2

∂2ur
∂θ2

2
∂2ur
∂z∂θ



=



−
∂2ur
∂z2

0

0



(12)

and AAA, BBB and DDD are extensional, coupling and bending stiffness matrices, respec-
tively, and defined by Eqs. (13)–(15):

Ai j =

n∑
k=1

(Qi j )k (zk − zk−1), (13)

Bi j =
1
2

n∑
k=1

(Qi j )k (z2
k − z2

k−1), (14)

Di j =
1
3

n∑
k=1

(Qi j )k (z3
k − z3

k−1), (15)

whereQQQ denotes the stiffnessmatrix [13]. By substitutingEqs. (1)–(8) into Eqs. (10)
and (11), the resultants force and moment equations are obtained as:

Nz = A11
∂uz0
∂z
+ A12

ur
r
+ A16

∂uθ
∂z
− B11

∂ βz
∂z

, (16)

Nθ = A21
∂uz0
∂z
+ A22

ur
r
+ A26

∂uθ
∂z
− B21

∂ βz
∂z

, (17)

Nzθ = A61
∂uz0
∂z
+ A62

ur
r
+ A66

∂uθ
∂z
− B61

∂ βz
∂z

, (18)
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Mz = B11
∂uz0
∂z
+ B12

ur
r
+ B16

∂uθ
∂z
− D11

∂ βz
∂z

, (19)

Mθ = B21
∂uz0
∂z
+ B22

ur
r
+ B26

∂uθ
∂z
− D21

∂ βz
∂z

, (20)

Mzθ = B61
∂uz0
∂z
+ B62

ur
r
+ B66

∂uθ
∂z
− D61

∂ βz
∂z

. (21)

By considering the symmetric stacking sequences for adherends, the upper
equations are simplified as:

∂uz0
∂z
=

1
A11

Nz −
A12

r A11
ur , (22)

∂Nθ

∂z
=

A21
A11

∂Nz

∂z
+ *

,

A22
r
−

A2
12

r A11
+
-

∂ur
∂z

, (23)

∂ βz
∂z
=
−1
D11

Mz , (24)

∂Mθ

∂z
=

D21
D11

∂Mz

∂z
, (25)

Mzθ = 0. (26)

Here, the adhesive layer(s) modelled as continuously distributed linear tension
compression and shear springs. In this modelling, shear and peel stresses in the
adhesive layer(s) are determined by Eqs. (27) and (28):

σ(z) = Eaεr (z) =
Ea

ta

[
uir (z) − u j

r (z)
]
, (27)

τ(z) =
Ga

ta

[
uiz (z, r) − u j

z (z, r)
]

=
Ga

ta

[
uiz0(z) +

ti
2
βiz (z) − u j

z0(z) +
t j
2
β
j
z (z)

]
. (28)

Each equilibrium element in the inside of overlap zone consists of an element of
adherendwith half thickness of adhesive layer(s). Fig. 2 shows equilibriumelements
of tubular lap joint in the inside of overlap zone. The equilibrium equations in the
inside of overlap zones in the upper element (Eq. 29) and in the lower element
(Eq. 30) are obtained as follows:
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∂N1
z

∂z
= −τ

(
r1 −

t1 + ta
2

)
r1

,

∂Q1
z

∂z
= −

N1
θ

r1
− σ

(
r1 −

t1 + ta
2

)
r1

,

∂N1
zθ

∂z
= 0,

∂M1
zθ

∂z
= 0,

∂M1
z

∂z
= Q1

z − τ
t1 + ta

2

(
r1 −

t1 + ta
2

)
r1

;

(29)

∂N2
z

∂z
= τ

(
r2 −

t2 + ta
2

)
r2

,

∂Q2
z

∂z
= −

N2
θ

r2
+ σ

(
r2 −

t2 + ta
2

)
r2

,

∂N2
zθ

∂z
= 0,

∂M2
zθ

∂z
= 0,

∂M2
z

∂z
= Q2

z − τ
t2 + ta

2

(
r2 −

t2 + ta
2

)
r2

.

(30)

(a) upper adherend (b) lower adherend

Fig. 2. Equilibrium element in the inside of overlap zone
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By combining constitutive and kinematic relations of adherends and adhesive
layer with equilibrium equations, the governing equations in the inside of overlap
zones are determined as sets of coupled differential equations in the form of:
d
d z
{X (z)} = [A]{X (z)}. It has 22 equations and 22 unknowns. Here, for the sake of

brevity, only tubular lap adhesive joint governing equation with symmetric stacking
sequences is presented as Eq. (A.1) in the appendix section.

2.4. Outside of overlap zone modelling

In the outside of overlap zone, constitutive and kinematics relations in ad-
herends are the same as those in the inside of overlap zone. The adhesive stresses
don’t appear, either. In Fig. 3, an equilibrium element in the outside of overlap zone
is shown. So that, the equilibrium equations in the outside of overlap zone are as
follows:

∂N i
z

∂z
= 0,

∂Qi
z

∂z
= −

N i
θ

r i
,

∂N i
zθ

∂z
= 0,

∂M i
zθ

∂z
= 0,

∂M i
z

∂z
= Qi

z .

(31)

Fig. 3. Equilibrium element in the outside of overlap zones
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The governing equations in the outside of overlap zones are sets of differential
equations in the formof:

d
d z
{X (z)} = [A]{X (z)}with 11 equations and 11 unknown

as Eq. (32):



∂ui
z0

∂z
=

1
Ai

11
N i
z −

Ai
12

r i Ai
11

uir ,

∂uiθ
∂z
=

1
Ai

66
N i
zθ ,

∂uir
∂z
= βiz ,

∂ βiz
∂z
=
−1
Di

11
M i

z ,

∂N i
z

∂z
= 0 ,

∂N i
θ

∂z
= *

,

Ai
22

r i
−

Ai2
12

r i Ai
11

+
-
βiz ,

∂N i
zθ

∂z
= 0 ,

∂Qi
z

∂z
= −

N i
θ

r i
,

∂M i
z

∂z
= Qi

z ,

∂M i
θ

∂z
=

Di
21

Di
11

Qi
z ,

∂M i
zθ

∂z
= 0.

(32)

3. Numerical results

In this section, an example of adhesive tubular joint with fixed boundary
condition in one side and free in the other side is considered. The laminated pipes are
manufactured with 8 unidirectional glass/epoxy lamina with the stacking sequences
of [0◦, 45◦, −45◦, 90◦]Sym. The thickness of each lamina is 0.2 mm. The adhesive is
Epoxy AY103 (Ciba Geigy). The mechanical properties of adherends and adhesive
layer are listed in Table 1. It is noticeable that the symbols X , Y and S denote
longitudinal tensile strength, transverse tensile strength and in-plane shear strength,
respectively.
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Table 1.
Mechanical properties of adherends and adhesive layer

Part Material Properties
Adherend Fiberglass/Epoxy: E1 = 36.8 GPa, E2 = E3 = 8.27 GPa,

G12 = G13 = 4.14 GPa, G23 = 3 GPa,
ν12 = ν13 = 0.26, ν23 = 0.38,
X = 450 MPa, Y = 31 MPa,

S = 72 MPa, t = 0.2 mm
Adhesive Epoxy AY103 (Ciba Geigy) Ea = 2.8 GPa, νa = 0.4, ta = 0.4 mm

The length of each pipe is 70 mm with overlap bonded length of 20 mm. The
inner pipe has a mean radius of 25 mm and the outer pipe has a mean radius of
26mm.The free end of joint is subjected to axial stress resultant of: Nz =10000N/m
and shear stress resultant of Qz =10 N/m, as shown in Fig. 4.

Fig. 4. Boundary conditions and loading

At first, the governing equations in the left outside of overlap zone are solved
by using Eq. (32) and by considering the boundary conditions in: x = −50 mm.
Then, the governing equations in the inside of overlap zone are solved by using
equation set A.1. This equation set has an analytical solution in the form of Eq. (33)

X = (eAx )X0 (33)

where, X0 = X (z = 0). Finally, the governing equations in the right outside of
overlap zone are solved by using equation set 33 and by considering the boundary
conditions in: x = 20mm. Figs. 5 to 8 illustrate deflections, slopes, stress resultants
and moment resultants of outer and inner adherends at each point of inside and
outside of overlap zones.

Due to the lack of similar solution concerning the problem under consid-
eration in the available literature, the present formulation and method of solu-
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Fig. 5. Deflections and slopes of the outer adherend vs. axial position

Fig. 6. Stress resultants and moment resultants of the outer adherend vs. axial position
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Fig. 7. Deflections and slopes of the inner adherend vs. axial position

Fig. 8. Stress resultants and moment resultants of the inner adherend vs. axial position
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tion are validated by similar modelling obtained by finite element (FE) analy-
sis using ANSYS software. The tubular adhesive joint is modelled by employ-
ing 6060, 3D solid elements. Each element consists of 8 nodes. Fig. 9, depicts
the variation of peel and shear stresses along the length of overlap zone in the
adhesive layer, and the results are compared with those obtained in ANSYS
software.

Fig. 9. Peel and shear stress distributions in the adhesive layer

According to Figs. 4 and 9, it is observed that peel stresses, in the adhesive
tubular joint, are caused by shear stress resultant ofQz , and the axial stress resultant
of Nz has no effect on creation of this type of stress. Although the magnitude of
shear stress Qz resultant is much lower than the magnitude of axial stress resultant
Nz , the maximum magnitudes of adhesive peel stress is approximately equal to the
maximum adhesive shear stress, and this is due to considerable bending moment
created by Qz .

It is seen that the maximummagnitudes of peel and shear stresses occur at one
edge of overlap zone which is near to the fixed boundary condition. Because of the
free surface at the end of the adhesive layer, the adhesive shear stress must be zero.
Also, high shear and peel stresses gradient near the end of the joint are observed at
a very short distance.

By comparing peel and shear stresses obtained from mathematical modelling
and FE simulation, it is seen that the mathematical solutions shows a very good
agreement with the results achieved from FE modelling that demonstrates the
validity of the presented mathematical modelling.
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4. Conclusions

In this paper, an efficient analytical elasticity solution of adhesive tubular
joints is presented. Here, the adherends are orthotropic shells with linear elas-
tic behaviour. The stacking sequences can be either symmetric or asymmetric.
The adhesive layer is considered to be homogenous and made of isotropic ma-
terial and modelled as continuously distributed tension/compression and shear
springs. Finally, by employing constitutive, kinematics and equilibrium equations,
sets of differential equations for each inside and outside of overlap zones are de-
rived.

It is found that the presented elasticity solution yields accurate results when
compared with the solutions of ANSYS software. The obtained results of the
present method reveal the following conclusions:

1. The magnitude of peel stress due to transverse shear resultants is much
greater than that obtained from axial stress resultant.

2. The maximum magnitudes of peel and shear stresses occur at one edge of
overlap zone which is near to fixed boundary condition.

Appendix

In the appendix section, the governing equations in the inside of overlap zones
for tubular lap adhesive joint with symmetric stacking sequences are presented as
Eq. (A.1).




∂u1
z0

∂z
=

1
A1

11
N1
z −

A1
12

r1 A1
11

u1
r ,

∂u1
θ

∂z
=

1
A1

66
N1
zθ ,

∂u1
r

∂z
= β1

z ,

∂ β1
z

∂z
=
−1
D1

11
M1

z ,

∂N1
z

∂z
= −

(
r1 −

t1 + ta
2

)
r1

Ga

ta

[
u2
z0 +

t2
2
β2
z − u1

z0 +
t1
2
β1
z

]
,

∂N1
θ

∂z
=
−A1

21

A1
11

(
r1 −

t1+ta
2

)
r1

Ga

ta

[
u2
z0 +

t2
2
β2
z − u1

z0+
t1
2
β1
z

]
+ *

,

A1
22

r1
−

A1 2
12

r1 A1
11

+
-
β1
z ,
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


∂N1
zθ

∂z
= 0 ,

∂Q1
z

∂z
= −

N1
θ

r1
−

(
r1 −

t1 + ta
2

)
r1

Ea

ta

[
u2
r − u1

r

]
,

∂M1
z

∂z
= Q1

z −
t1 + ta

2

(
r1 −

t1 + ta
2

)
r1

Ga

ta

[
u2
z0 +

t2
2
β2
z − u1

z0 +
t1
2
β1
z

]
,

∂M1
θ

∂z
=

D1
21

D1
11


Q1

z −
t1 + ta

2

(
r1 −

t1 + ta
2

)
r1

Ga

ta

[
u2
z0 +

t2
2
β2
z − u1

z0 +
t1
2
β1
z

]
,

∂M1
zθ

∂z
= 0 ,

∂u2
z0

∂z
=

1
A2

11
N2
z −

A2
12

r2 A2
11

u2
r ,

∂u2
θ

∂z
=

1
A2

66
N2
zθ ,

∂u2
r

∂z
= β2

z ,

∂ β2
z

∂z
=
−1
D2

11
M2

z ,

∂N2
z

∂z
= τ

(
r2 −

t2 + ta
2

)
r2

=

(
r2 −

t2 + ta
2

)
r2

Ga

ta

[
u2
z0 +

t2
2
β2
z − u1

z0 +
t1
2
β1
z

]
,

∂N2
θ

∂z
=

A2
21

A2
11

(
r2−

t2+ta
2

)
r2

Ga

ta

[
u2
z0 +

t2
2
β2
z − u1

z0 +
t1
2
β1
z

]
+

*.
,

A2
22

r2
−

A2
12

2

r2 A2
11

+/
-
β2
z ,

∂N2
zθ

∂z
= 0 ,

∂Q2
z

∂z
= −

N2
θ

r2
+

(
r2 −

t2 + ta
2

)
r2

Ea

ta

[
u2
r − u1

r

]
,

∂M2
z

∂z
= Q2

z −
t2 + ta

2

(
r2 −

t2 + ta
2

)
r2

Ga

ta

[
u2
z0 +

t2
2
β2
z − u1

z0 +
t1
2
β1
z

]
,
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


∂M2
θ

∂z
=

D2
21

D2
11


Q2

z −
t2+ta

2

(
r2−

t2+ta
2

)
r2

Ga

ta

[
u2
z0 +

t2
2
β2
z − u1

z0 +
t1
2
β1
z

]
,

∂M2
zθ

∂z
= 0.

(A.1)
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