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Abstract: The BeiDou navigation satellite system (BDS) is one of the four global navi-
gation satellite systems. More attention has been paid to the positioning algorithm of the
BDS. Based on the study on the Kalman filter (KF) algorithm, this paper proposed a novel
algorithm for the BDS, named as the minimum dispersion coefficient criteria Kalman filter
(MDCCKF) positioning algorithm. The MDCCKF algorithm adopts minimum dispersion
coefficient criteria (MDCC) to remove the influence of noise with an alpha-stable dis-
tribution (ASD) model which can describe non-Gaussian noise effectively, especially for
the pulse noise in positioning. By minimizing the dispersion coefficient of the positioning
error, the MDCCKF assures positioning accuracy under both Gaussian and non-Gaussian
environment. Compared with the original KF algorithm, it is shown that the MDCCKF al-
gorithm has higher positioning accuracy and robustness. The MDCCKF algorithm provides
insightful results for potential future research.
Key words: alpha-stable distribution, BeiDou satellites, Kalman filter, minimum dispersion
coefficient criteria, non-Gaussian noise, positioning algorithm

1. Introduction

The Beidou navigation satellite system (BDS) is the third mature global navigation satellite
system (GNSS) after GPS and GLONASS systems, established and managed by China indepen-
dently [1]. The capable navigation service area has covered the Asia-Pacific region, and will have
global coverage by 2020 [2]. In recent years, the BDS has received more and more attention, and
developed rapidly in military and civilian areas [1–3]. As a result of a wide range of application
areas, more and more applications need higher accuracy to satisfy the positioning requirements,
and many scholars have deeply researched various optimization of positioning algorithms [4–14].
The positioning accuracy of navigation satellite systems will be subject to many factors, including
multipath effects, tropospheric effects, ionospheric effects, which make the noise have a strong
pulse. Under such conditions, the noise does not meet Gaussian distribution, and the probability
density function often has a serious drag tail [15].
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If the noise distribution is described simply by the Gaussian model, its characteristics will not
be fully characterized. And the accuracy of the positioning algorithm will be affected.

The most commonly used positioning algorithm for the BDS is Kalman filtering (KF) algo-
rithm based on minimum mean squared error (MMSE) criteria, which is suitable for multi-variable
systems, time-varying systems and non-stationary stochastic processes [16, 17]. However, when
the noise does not obey the Gaussian distribution, there does not exist the second-order statistics of
the received data [18]. In that case, the performance of the traditional KF algorithm will seriously
degrade or even fail. Therefore, an appropriate model is needed to describe non-Gaussian noise
effectively. John P. Nolan proposed the alpha-stable distribution (ASD) upon researching Central
Limit Theorem, while the Gaussian model is one of the special cases in the ASD [19]. And then,
Nikias et al. found that the noise with a strong pulse including multipath effects, atmospheric
noise and so on can be effectively described by the ASD model [20]. Consequently, the ASD is
adopted to describe the noise environment of the BDS in this paper.

To eliminate the adverse influences of true noise, many scholars have studied the state esti-
mation. D. Magill proposed the multiple-model filter which forms the noise as a weighted sum
of Gaussians [21]. Since the number of modes increases exponentially with the number of filters,
the problem of multiple-model filters is the higher computational complexity. Reza Izanloo et al.
proposed a Kalman filter algorithm based on the maximum correntropy criterion [22]. The max-
imum correntropy criterion can handle the non-Gaussian noise effectively by processing higher
order statistics of noise [22]. But for the low-order noise, its performance will be very poor. The
Monte Carlo (MC) sampling method is often used to deal with the non-Gaussian noise. The MC’s
key is that it can filter signals on the basis of maintaining the mean and variance characteristics of
non-Gaussian noise [23]. As a non-linear method, the MC method filtering through the collection
of sampling points, will increase the system complexity, and can not be well applied to real-time
positioning system.

The existing research results can not be well used for the BDS. Therefore a more generally
applicable positioning algorithm is proposed in this paper. To improve the positioning accuracy
under both the Gaussian and non-Gaussian noises modeled by the ASD, the minimum dispersion
coefficient criteria Kalman filter (MDCCKF) positioning algorithm for the BDS is proposed. To
make up for the deficiencies of the MMSE criterion, this paper will combine more applicable
minimum dispersion coefficient criteria (MDCC) to minimize non-Gaussian errors. Numerical
results have shown that the MDCCKF algorithm could greatly improve the BDS’s accuracy under
the non-Gaussian environment. And what’s more, it can be adaptive with the pulse intensity of
noise, thereby improving the robustness of the positioning algorithm.

This paper is organized as follows: the KF based positioning algorithm for the BDS is
introduced in Section 2, the proposed MDCCKF algorithm is described in Section 3 and the
performance evaluation is presented in Section 4. Finally, the conclusions are drawn in Section 5.

2. KF based positioning algorithm in the BDS

In the BDS, the mobile station receives the observed data of BeiDou satellites, including an
ephemeris and pseudo-range, and then calculates its position according to the received data [24].
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The receiver’s coordinates will be solved according to the observation equation, including the
pseudo-range observation equation and Doppler observation equation.

Let (xu, yu, zu) denote the coordinate of a mobile station, (xis, y
i
s, zis) denote the coordinate

of the i-th visual satellite where i > 0. Then, the geometric distance from the mobile receiver to
the i-th satellite is:

Ri
u =

√(
xu − xis

)2
+

(
yu − yis

)2
+

(
zu − zis

)2
. (1)

The pseudo-range observation equation is as follows:

ρiu = Ri
u + ctu + Ii + Ti + εi . (2)

Here, ρiu is the pseudo-range from the i-th satellite to the mobile receiver; c is the speed
of light; tu represents the time-offset estimation of the mobile receiver; Ii and Ti denote the
pseudo-range changes caused by ionosphere and troposphere, respectively; εi is the sum of errors
which is not directly reflected in the equation.

Since that Ii and Ti can be got by the BDS’s ephemeris, there are four unknowns in (2): the
coordinates of mobile receiver (xu, yu, zu) and time-offset estimation tu . Therefore, more than
four satellites are needed to calculate the coordinate of the receiver by minimizing εi .

Set the priori value of receiver coordinates and time-offset as ( x̂u, ŷu, ẑu), t̂u respectively. By
the Taylor expansion equation of (2), εi is obtained as (3).

εi =
x̂u − xis

R̂i
u

δxu +
ŷu − yis

R̂i
u

δyu +
ẑu − zis

R̂i
u

δzu + cδtu − ρiu − Ii − Ti − Ri
u − ct̂u . (3)

Here, R̂i
u =

√
( x̂u − xis)2 + ( ŷu − yis)2 + ( ẑu − zis)2 represents the geometric distance from

the priori coordinate value of the mobile receiver to the coordinate of the i-th satellite.
But when the receiver is moving, it is also necessary to establish the Doppler observation

equation [25].

fdi = −
f0

c
(Pi

s − Pu) · (Vi
s − Vu)

Pi
s − Pu

+ ct ′u + εdi (4)

where f0 is the carrier frequency; Pi
s = (xis, y

i
s, zis) is the satellite position vector; Pu = (xu, yu, zu)

is the positioning terminal position vector; Vi
s = (visx, v

i
sy, v

i
sz ) is the satellite velocity vector;

Vu = (vux, vuy, vuz ) is the positioning terminal velocity vector; εdi is the sum of errors not
directly reflected in the equation.

Similarly, let the priori value of receiver velocity and time-offset be (v̂ux, v̂uy, v̂uz ), t̂ ′u respec-
tively. Through the Taylor expansion equation of (4), εdi is obtained as (5).

εdi =
f0

c

(
visx − v̂ux

R̂i
v

+
xis − x̂u
(R̂i

v)3

)
δxu +

f0

c
*,
visy − v̂uy

R̂i
v

+
yis − ŷu

(R̂i
v)3

+- δyu
+

f0

c

(
visz − v̂uz

R̂i
v

+
zis − ẑu
(R̂i

v)3

)
δzu +

f0

c

(
xis − x̂u

R̂i
v

)
δvx +

f0

c

(
yis − ŷu

R̂i
v

)
δvy

+
f0

c

(
zis − ẑu

R̂i
v

)
δvz + cδt ′u −

(
fdi − f̂di − ct̂ ′u

)
. (5)
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Here, R̂i
v =

√
(v̂ux − visx )2 + (v̂uy − visy )2 + (v̂uz − visz )2 represents the geometric distance

from the priori velocity of the mobile receiver to the velocity of the i-th satellite.
To achieve higher positioning accuracy, εi and εdi are needed to be minimized appropriately

and the KF algorithm based on the MMSE criterion is commonly used [26]. The KF algorithm
can merely deal with second-order statistics of noise, belonging to the range of second-order
statistical theory [21, 27].

The dynamic equations of the KF algorithm can be expressed as

X(k + 1) = ΦX(k) + ΓW(k), (6)

Y(k) = H X(k) + U(k), (7)

where k ∈ N+ indicates the value of time; the state value of the time k is X(k) ∈ Rn; W(k) ∈ Rr is
the input state noise;Φ represents the state transition matrix; Γ denotes the driving noise matrix;
Y(k) ∈ Rn is the observed value of the time k; U(k) ∈ Rm is the reserved noise; H represents
the prediction matrix.

After initializing the KF’s state value, the input state parameter matrix X is defined as (8).

X =
[
xu, yu, zu, tu, vux, vuy, vuz, t ′u

]T
. (8)

In general, W(k) and U(k) are Gaussian white noises with mean zero. The variance matrices
of W(k) and U(k) are Q and R respectively.



E [W(k)] = 0
E [U(k)] = 0
E

[
W(k)WT (l)

]
= Qδkl

E
[
U(k)UT (l)

]
= Rδkl

, (9)

where δkl is the Kronecker delta function.
The key problem of the KF algorithm is that the value of estimate state X̂ (l��k) with minimum

variance can be solved based on the observed signal [Y (1),Y (2), · · · ,Y (n)] where n is the number
of observations. Under the MMSE criterion, the performance index function can be described
as (10).

J = E
((

X(l) − X̂(l��k)
)T (

X(l) − X̂(l��k)
))
. (10)

Through minimizing performance index (10) and combining with lemma 1, the recursion
relation can be obtained [28].

Lemma 1 (projective theorem) [29]: Suppose that x ∈ Rn, y(1), y(2), · · · , y(k) ∈ Rm, and
the second-order statistics of them exist. Then, it holds that

proj
[
x��y(1), y(2), · · · , y(k)

]
= proj

[
x��y(1), y(2), · · · , y(k − 1)

]
+

+E
[
xεT (k)

] {
E

[
ε (k)εT (k)

] }−1
ε (k)

, (11)

where ε (k) = y(k) − ŷ(k ��k − 1).
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The projective theorem is the starting point for the KF algorithm. The derivation process based
on the projective theorem is introduced in detail in [28]. Due to space limitation, this section just
lists the derivation of conclusions as follows:

The step state transition equation is

X̂(k+1��k) = ΦX̂(k ��k), (12)

where Φ denotes a state transition matrix of time k+1.
The state update equation is

X̂(k+1��k+1) = X̂(k+1��k) + K(k + 1)ε(k + 1). (13)

Here,
K(k + 1) = P(k+1��k)HT

[
H P(k+1��k)HT + R

]−1
, (14)

ε (k + 1) = Y(k + 1) −HX̂(k+1��k), (15)

where K(k + 1) is the filter gain matrix; H indicates a prediction matrix of time k + 1; ε (k + 1)
indicates the residual value between the estimated value and the observed value.

The step prediction covariance matrix is:

P(k+1��k) = ΦP(k ��k)ΦT + ΓQΓT . (16)

The covariance matrix update equation is:

P(k+1��k+1) = [In − K(k + 1)H] P(k+1��k). (17)

Here,
E

[
X (0��0)

]
= X̂ (0��0) = µ0 , (18)

E
((

X (0��0) − µ0
)T (

X (0��0) − µ0
))
= P(0��0) = P0 . (19)

The traditional KF algorithm is not required to calculate the nominal trajectory formerly, but
it cannot handle high-order and low-order noise effectively due to the linearization [27]. It can be
seen from the performance index function of (10) that the KF algorithm processes the positioning
results based on the second-order statistics theory. Therefore, the KF algorithm is optimal in the
case of Gaussian noises. But for other noise distributions, an appropriate noise model is needed.
In this paper, we use the MDCC to reduce the effects of real positioning noises.

3. Minimum dispersion coefficient criteria based positioning algorithm

Since the KF algorithm just uses the second-order signal information, it is not optimal in
non-Gaussian noise environments [22]. In order to resolve the defect of the original algorithm,
this paper proposes the minimum dispersion coefficient criteria based Kalman filter (MDCCKF)
positioning algorithm.
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To reasonably denote the positioning noise, the ASD model developed by John P. Nolan is
introduced. Its characteristic function can be expressed as (20) [23].

ϕ(t) = exp
{

jδt − γ |t |α [
1 + j β sign(t)ω(t, α)

]}
, (20)

where j indicates the unreal figure.

ω(t, α) =


tan

(
πα

2

)
, α , 1

2
π

log |t |, α = 1
, sign(t) =


1, t > 0
0, t = 0
−1, t < 0

, (21)

0 < α ≤ 2; −1 ≤ β ≤ 1; γ > 0; −∞ < δ < +∞, (22)

where α is the pulse index, which can determine the degree of random process pulse; β is the
symmetric coefficient; γ is the dispersion coefficient that is similar to the variance of Gaussian
distribution; δ is the position parameter to describe the mean or median of the ASD. As can be
seen, the ASD is decided by these four parameters, but for ease of calculation, the SαS distribution
as definition 1 is adopted in this paper.

Definition 1 (distribution) [20]: If β ≡ 0, then such multivariate stable distributions are
symmetric and called symmetric α stable (SαS).

Non-Gaussian noises, which are caused by multipath effects, atmospheric noise and so on,
exist in the observed signal commonly while state noise of the BDS has small number of strong
pulses. Therefore, to be more suitable for the practical application scene and reduce the complexity
of the positioning algorithm, the ASD’s SαS can be used as the observation noise model in this
paper, while the state noise remains the Gaussian distribution. The spatial model described in
formulas (6) and (7) should be amended as:

X(k + 1) = ΦX(k) + ΓW(k), (23)

YnG (k) = HX(k) + UASD(k), (24)

where YnG (k) is the observed value including the ASD noise; UASD(k) is the observed noise
obeying the ASD model.

The paper addresses the dispersion coefficient defined as definition 2 to handle the noise.
Definition 2 (dispersion coefficient) [20]: let b be SαS random variables with 1 < α ≤ 2,

zero location parameters. Then the dispersion coefficient of b is

γb = [b, b]α = bαα . (25)

So, the dispersion coefficients of the observation error is given in (26).

γoe = UASD(k)αα = YnG (k) −H X(k)αα . (26)

Minimizing the dispersion coefficient of the observed error makes it equal to the solution of
∥YnG (k) −H X(k)∥α. Moreover, the α-norm is proportional to p-order statistics [19].

Lemma 2 (lower-order theory) [20]: let d be an ASD variable. Then,
E
(|d |p) < ∞, 0 ≤ p < α

E
(|d |p) = ∞, p ≥ α

. (27)
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According to the lower-order theory of lemma 2, when 1 < p < α ≤ 2, the p-order statistics
of observation error exists, signifying E

( |YnG (k) −HX(k) |p) < ∞. Therefore, the definition of
the performance index function is (28).

JMDCC = E
(���YnG (k) − AHX̂(k)���p) < ∞ (28)

where A = diag(a1, a2, · · · , an) is defined as a coefficient matrix.
It is necessary to minimize the error by solving the appropriate element value of A. Therefore,

minimizing the performance function, the derivative can be find out as (29).

∂JMDCC

∂ah
= −p ���yh (k) − ahHh∗X̂(k)���p−1 (

Hh∗X̂(k)
)T

sign
(
yh (k) − ahHh∗X̂(k)

)
= −p ���yh (k) − ahHh∗X̂(k)���p−1

Hh∗X̂(k)sign
(
yh (k) − ahHh∗X̂(k)

) , (29)

where yh (k) is the element of observation vector YnG (k); ah is the diagonal element of matrix A;
Hh∗ is the line vector of prediction matrix H. The coefficient ah has only the iterative solution
given in (30).

ah (g + 1) = ah (g) − p ���yh (k) − ah (g)Hh∗X̂(k)���p−1
Hh∗X̂(k)

sign
(
yh (k) − ah (g)Hh∗X̂(k)

) . (30)

Here, ah (g) is the value of ah at the g-th iteration, ∀g ∈ N+.
Define the residual amount rg = yh (k) − ah (g)Hh∗X̂(k), (30) can be simplified as (31).

ah (g + 1) = ah (g) − p ���rg���p−1
Hh∗X̂(k)sign

(
rg

)
, (31)

where X̂(k) is determined by state Equation (23).
When

(���rg+1
��� − ���rg���) / ���rg��� < ε, ah stops iterating. Then all the ah make up the matrix

A = diag(a1, a2, · · · , an).
Then the coefficient matrix A can be solved and the ASD noise was minimized.
The observed equation removing the ASD noise can be got as (32).

Y(k) = A H X(k) + U(k). (32)

(23) and (32) are the spatial models to describe the dynamic system. Then, the MDCCKF
algorithm will be derived according to projective theorem [29].

The step state transition equation is:

X̂(k+1��k) = ΦX̂(k ��k). (33)

The state update equation is:

X̂(k+1��k+1) = X̂(k+1��k) + K(k + 1) ε (k + 1). (34)

Here,
K(k + 1) = P(k+1��k)(AH)T

[
AHP(k+1��k)(AH)T + R

]−1
, (35)
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ε (k + 1) = Y(k + 1) − A H X̂(k+1��k). (36)

The step prediction covariance matrix is:

P(k+1��k) = ΦP(k ��k)ΦT + ΓQΓT . (37)

The covariance matrix update equation is:

P(k+1��k+1) = [In − K(k + 1) A H] P(k+1��k). (38)

Then, the coordinate and velocity can be calculated according to (34)∼(38).
The flowchart of the MDCCKF based positioning algorithm is shown in Fig. 1.

Fig. 1. The flowchart of MDCCKF positioning algorithm
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4. Numerical results and analyses

To verify the validity of the MDCCKF positioning algorithm, this paper collects BDS’s signal
to solve the positioning result, and then analyzes the results by comparing with the original KF
algorithm in terms of accuracy and robustness.

4.1. Data pre-processing

OEM6®Family Firmware which is produced by NovAtel Company is used to collect the
satellite data. The state information of satellites can be obtained using the host computer software.
By connecting the antenna, the OEM6®firmware can receive the ephemeris parameters of the
satellites.

Fig. 2 shows the work of the BDS data collection under several different circumstances,
including the vast environment, as well as many trees and the high-rise environment. As it
is shown in Fig. 3, the current state information of satellites is given intuitively. The acquired
satellite ephemeris information converted into RINEX format can be used for positioning solution.
With the ephemeris parameters, the coordinates of the visible satellites can be obtained and used
for positioning calculation.

(a) (b)

(c)

Fig. 2. Data collection under different experiments of
BDS: vast environment (a); high-rise environment (b);

lots of trees environment (c)
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Fig. 3. Interface of BeiDou satellites states

To solve the coordinates of receivers, four or more satellite data should be required. We
monitored the satellite status information within 6000 s as shown in Fig. 4. During the period of
monitoring, the BeiDou satellites’ conditions met the positioning requirements.

Fig. 4. The number of BeiDou satellites

Based on the information of satellite position and pseudo-range, the receiver can obtain
coordinate of itself in the CGCS2000 coordinate system [30].

4.2. Parameter setting and positioning accuracy comparison
According to the above theoretical research, the performance of the MDCCKF algorithm

proposed in this paper is evaluated according to real measured data, and the filtering effects of the
MDCCKF and KF algorithms are compared and analyzed. In the background of non-Gaussian
noise described by the ASD, it’s verified that the MDCCKF algorithm has better performance
than the traditional KF algorithm. The paper gives the noise distribution firstly, and then verifies
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the effect of different dispersion coefficient γ and pulse index α on the positioning error result
respectively.

Fig. 5. The PDF of ASD noise Fig. 6. The distribution of ASD noise

Due to the multipath effect and object obstruction, the observed noise of the BDS often does
not obey the Gaussian distribution, and a small amount of large abnormal points will be generated.
Therefore, the noise in this paper adopts the non-Gaussian model with alpha-stable distribution.
Fig. 5 shows the PDF of standard SαS distribution at different α value correspondingly. Among
them, according to the PDF of α = 1.5 chosen randomly, Fig. 6 shows the noise model of SαS
using 1000 noise samples. It can be seen that there are many abnormal noise points so that the
observed noise often has a strong pulse. What’s more, the smaller α is, the stronger the pulse is;
and the larger α is, the closer it is to the Gaussian distribution.

Based on the real measured satellite data and the introduction of the ASD, the positioning
accuracy of the BDS with the two algorithms can be obtained respectively. According to charac-
teristic function (20), the ASD is determined by four parameters α, β, γ, δ. β is the symmetric
coefficient; δ is the position parameter. When β = δ = 0, the PDF of the ASD is symmetrical
about Y axis, subjected to the SαS distribution. On the basis of the SαSdistribution the relation-
ship between positioning accuracy and parameters α, γ is studied. γ is the dispersion coefficient
of the ASD which is similar to the variance of the Gaussian distribution. Fig. 7 shows the curve
of positioning accuracy with varying γ when α = 1. It can be seen that the MDCCKF has a high
accuracy when γ ∈ [0.5, 1].

In the Gaussian noise environment, γ is equivalent to 2σ2. When γ = 2σ2 = 1, the positioning
errors of the KF and the MDCCKF algorithms with the changes of α are shown in Fig. 8. When
α < 1, the ASD has too many pulses so that it cannot be used as a statistical model of signal
processing. Moreover, when p < α < 1, the error function will no longer be a convex function so
that the convergence algorithm will be very complicated. Therefore, the value range of α in this
paper is [1, 2]. The comparison between the two algorithms shows that the MDCCKF algorithm
has higher accuracy obviously, especially when α ∈ [1, 1.5].

It can be seen that the differences of positioning accuracy in Fig. 8 are apparent, when
α ∈ [1, 1.5], while the positioning accuracy of two algorithms does not have much difference
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Fig. 7. The positioning error of different Fig. 8. The positioning error of different

when α ∈ [1.5, 2]. Therefore, upon studying dynamic filtering within a certain time range,
the two intervals should be considered separately. The median value of these two intervals is
adopted in this paper, namely α = 1.25 and α = 1.75, to compare the positioning accuracy
of the KF and MDCCKF algorithms. In order to ensure a reasonable positioning accuracy and
be consistent with previous experiments, the dispersion coefficient and variance are still set as
γ = 2σ2 = 1.

Fig. 9 illustrates the curve of positioning errors within 300 s when α = 1.25. It can be
concluded that the MDCCKF algorithm has higher accuracy and enters a steady state faster
compared with the original KF algorithm. To better show the error distribution, Fig. 10 illustrates
the PDF of the positioning errors of the two algorithms. Most errors of the MDCCKF algorithm
concentrate around 0.6 m while the error distribution of the KF algorithm is more dispersed
and has a longer tail. It is clearly demonstrated that the MDCCKF algorithm has a concentrated
distribution of the positioning error.

Fig. 9. The position error of BDS (α = 1.25) Fig. 10. The PDF of positioning error (α = 1.25)
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Fig. 11 shows the curve of the positioning error within 300 s when α = 1.75. According to
the characteristics of the ASD, the noise is closer to the Gaussian distribution compared with
α = 1.25. It can be seen from Fig. 11 that there is a significant reduction of the positioning error
in both algorithms, but the error of the MDCCKF algorithm is still much smaller than that of
the KF algorithm. Moreover, the curve of the MDCCKF algorithm maintains better stability and
Fig. 12 shows that most errors of the MDCCKF algorithm concentrate around 0.4 m while that
of the KF algorithm is about 1m. Similar to Fig. 10, Fig. 12 still shows that the KF algorithm has
a longer tail, which means there’s a larger positioning error. Therefore, the MDCCKF algorithm
can effectively reduce the BDS’s positioning error and maintain better stability.

Fig. 11. The position error of BDS (α = 1.75) Fig. 12. The PDF of positioning error (α = 1.75)

Through the real data collection and experimental research, it is proved that the MDCCKF
algorithm can effectively eliminate the abnormal points in the signal and improve the accuracy
of the positioning algorithm. At the same time, the MDCCKF algorithm can reach a steady
state faster. And after reaching a stable state, the MDCCKF algorithm has better estimation
performance and good robustness.

5. Conclusion

To solve the problem that the original KF algorithm can not deal with non-Gaussian noise
effectively, this paper presents a MDCCKF algorithm. Based on the MDCC principle, the MD-
CCKF algorithm can remove the influence of non-Gaussian noise on the input signal, thereby
improving the BDS’s positioning accuracy. The research results show the MDCCKF algorithm
has higher accuracy in the non-Gaussian noise environment, which ensures the stability of the
positioning algorithm. The results give us an insightful future to improve the competitiveness of
the system. Even in abnormal circumstances, the BDS can also ensure the accuracy of positioning
results. In the future, after full verification by the BDS, the MDCCKF algorithm will also be able
to help improve the GNSS’s performance and even other positioning areas.
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