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Abstract
This paper presents two methods for evaluation of the effective wavenumber of nearly-Gaussian beams in
laser interferometers that can be used for determination of a so called diffraction correction in absolute
gravimeters. The first method, that can be simply used in situ, is an empirical procedure based on the eval-
uation of the variability of g measurements against the amount of light limited by an iris diaphragm and
transmitted to a photodetector. However, precision of this method depends on the beam quality similarly
as in the case of the conventional method based on measurement of a beam width. The second method,
that is more complex, is based on beam profiling in various distances and on calculation of the effective
wavenumber using the second spatial derivative of a non-ideal beam field envelope. The measurement re-
sults achieved by both methods are presented on an example of two absolute gravimeters and the determined
diffraction corrections are compared with the results obtained by measurements of beam width. Agreement
of methods within about 1 µGal have been obtained with average diffraction corrections slightly exceeding
+2 µGal for three FG5(X) gravimeter configurations.

Keywords: diffraction correction, effective wavenumber, interferometer, Gaussian beam, absolute gravi-
meter.
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1. Introduction

The diffraction effect of laser beams used in optical interferometers has to be taken into ac-
count in high-accurate distance measurements. The corresponding correction, expressed as the
determination of the effective wavelength or wavenumber, was studied by Monchalin et al. in
[1] and by Sasso et al. in [2]. Absolute gravimeters with macroscopic masses employ a mod-
ified Mach-Zehnder laser interferometer to measure the distance of a free-falling test mass in
vacuum [3]. The effect of diffraction in absolute gravimeters was estimated in [4, 5], the beam
waist approximation being consistent with [1]. Nevertheless, the real waist of laser beams of ab-
solute gravimeters is only rarely determined or it is approximated by a beam width at a particular
distance. For the most accurate type of gravimeters (FG5 and FG5X), for which a standard un-
certainty of 2–3 µGal (1 µGal = 10 nm/s2, i.e. ≈ 10−9 relative in acceleration or displacement)
is declared, the diffraction correction of 1.2 µGal is usually applied, as shown in [6]. Moreover,
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according to [2], the wavefront perturbations and deviations from a fundamental-mode Gaus-
sian intensity-profile have to be taken into account at a relative accuracy level of 10−9. To our
knowledge, such an approach has never been applied to absolute gravimeters and diffraction cor-
rections are computed based on the beam width measurement [4, 5] at one selected distance and
referred to as a beam waist [4].

In this paper, we present two methods for the determination of the effective wavenumber
and related diffraction correction: 1) an approximate method for fundamental-mode Gaussian
beams based on an in situ experiment that does not require the direct measurement of the beam
waist size of nearly collimated coaxial beams and 2) a general method using camera-based beam
profiling that takes into account non-ideal Gaussian beams.

Further, we will show that a beam quality (M2) factor is an important parameter for the
FG5(X) gravimeters. The knowledge of laser beam parameters influences the accuracy of present
gravimeters, both working with a macroscopic object or cold atoms [7], thus contributing to the
accuracy of new SI realization of kilogram with a Kibble balance. A new SI realization of mole
via the Si lattice parameter also needs to carefully take into account a “diffraction correction”
of beams used in interferometers [8]. Moreover, the volume determination of silicon spheres
also deals with the Gouy shift and the “diffraction effect”, both related to a change of effective
wavenumber. It has the main contribution to the uncertainty of measurement [9], similarly as
in the new alternative realization of kilogram with the XRCD method [10]. For example, in the
case of a uniform beam profile the total Gouy shift varies from −π up to −2π [11] (compare
with −π for a fundamental-mode Gaussian beam with M2 = 1). It is known that the pure higher-
order Hermite-Gaussian or Laguerre-Gaussian beam modes have the Gouy shift multiplied by an
integer [1] that equals to their M2 factor. Thus, it can be assumed that from the modal decompo-
sition of an arbitrary beam there will be a factor F (generally not an integer) that will modify the
Gouy shift effect in real beams. Consequently, if the measured beam quality is M2 = 1.2, as in
[12], the phase correction will be underestimated in the volume determination of silicon sphere.
Generally, we can see that optical beams play a significant role in future realizations of SI and
that a correct treatment of the diffraction effects including the beam quality has to be carefully
investigated.

2. Method with iris diaphragm

In the Monchalin’s approach [1] (11), the beam widths w1 and w2 of the collimated reference
and measuring beams are approximated by the beam waist w0. The effective wavenumber k (in z
direction) within aperture of radius ρ is given by:

k(ρ) = k

[
1−
(

λ
2πw0

)2
(

1+
2ρ2w−2

0

exp
(
2ρ2w−2

0 −1
))] , (1)

where k is the wavenumber related to the vacuum wavelength as k = 2π/λ . Note that without
aperture (as ρ tends to infinity) the second term in round brackets is equal to 1 and (1) becomes
identical with (12) in [1]. Further we would like to point out that the symbol overline will be
used in this paper to demonstrate the character of averaging (over the beam within a given ra-
dius).

The optical power of fundamental Gaussian beams encircled within a radius ρ is:

P(ρ) = P(∞)
(
1− exp(−2ρ2w−2

0 )
)
. (2)
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If the aperture is limited by an iris diaphragm and the relative interference power
x(ρ) = P(ρ)/P(∞) is determined from the fringe signal amplitudes, then the effective wavenum-
ber from (1) might be expressed, substituting 2ρ2w−2

0 =− ln(1− x) obtained from (2), as a linear
function of dimensionless factor:

f (x) =
(
x−1 −1

)
ln(1− x)−1, (3)

and therefore also measurements of g, that linearly depend on the distance measurements, can be
determined as:

g(x) = gcorrect + s f (x), (4)

where gcorrect is the g-value that corresponds to the vacuum wavelength λ determined by the op-
tical frequency calibration and the second term represents the diffraction effect. Since f (x) =−1
for a beam without limitation by a diaphragm, the slope s corresponds to the diffraction correc-
tion. In principle, only two measurements (g-values, in our case) are necessary for the experi-
mental determination of s, the first with the fully opened iris diaphragm and the second with a
partly closed diaphragm. Besides, x has to be determined but there is no need to know ρ and w0.

We have to point out that the described method is valid only for the fundamental-mode Gaus-
sian beams (M2 = 1). It means that it has principally the same limitations as the usual method
where the beam waist is determined by a knife-edge beam blocking [4]. An advantage of the
discussed method is that the diffraction correction is determined within the gravimeter itself (i.e.
applied approximately at a correct distance), the only necessity is to attach the iris diaphragm
in front of the detector (see Fig. 1). Therefore, it is easy to repeat a measurement and the real
effect on g is observed (instead of a blind correction) for nearly-ideal beams. However, it is clear
that the drop-to-drop scatter of g measurements contributes to the evaluation uncertainty of the
diffraction correction.

Fig. 1. A measurement scheme of modified absolute gravimeters FG5 and FG5X equipped with a convex lens, an iris
diaphragm (within a tube mounted to the threads of the detector), APD and an HS5 system [13].

To verify the method experimentally, the detection system of fringe signals in absolute gravi-
meters FG5-215 and FG5X-251 were modified according to [13, 14]. Further, we used a fast
avalanche photodiode (APD, Thorlabs APD430A/M) with centred mounting of a convex lens
and an iris diaphragm for modifications of x. FG5X-251 gravimeter has been tested in two con-
figurations, the first one with the original input beam collimator and the second one with the new
triplet collimator (Thorlabs TC25APC-633) (the reason for using different collimators will be
explained below).

The measurement results related to FG5-215 are illustrated in Fig. 2 and approximated by a
single regression line with a slope that also represents (according to (4)) the measured diffraction
effect. Its value (with reference to a beam with infinite width) and standard deviation estimated
from data obtained during three non-consecutive measurement days are (−1.71±0.53) µGal and
correspond approximately to a relative error of about 1.7 ·10−9 of the displacement measurement.
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Fig. 2. Left: The absolute gravity acceleration g measured by gravimeter FG5-215 as a function of a dimensionless pa-
rameter f (x), given by (3), that depends on the interference power limited by the iris diaphragm. All g-values (diamonds)
represent averages from about 300 drops and were obtained from three non-consecutive measurement days (in Feb. and
Mar. 2017). Three grey circles represent g-values in illustrative cases for a given linear fit. Right: the g-differences be-
tween two measurement systems of gravimeter FG5X-251 achieved for a setup with the original collimator (measured
in Aug. 2017). Interferometer alignments are shown distinguished by the lightness of symbols. Note that displayed are
differences of g-values obtained from the complementary output with reference to the original output systems and thus

the correct extrapolation does not intersect zero difference at f (x) = 0.

In the case of FG5X-251, two detection systems were running in parallel during the exper-
iments with the iris diaphragm. The original system was kept without any change and the iris
diaphragm was mounted to a new HS5 system (analogue-to-digital converter TiePie Handyscope
HS5-530XMS with a swept FFT filter, see [13, 14]). A huge advantage of the two parallel mea-
surement systems is that the g-values determined from the same free falls contain similar noise
contributions which are suppressed in g-differences. A low noise level in g-differences (about
1 µGal for one free-fall) enables a more effective examination of the effects influencing one
of the two systems. The g-differences between both systems related to variable openings of the
iris diaphragm were measured for two configurations of FG5X-251, the first one with the orig-
inal input beam collimator (see Fig. 2) and the second one with the new triplet collimator. The
diffraction effects with error estimates were obtained as an average and standard deviation of
three slopes reaching (−2.51± 0.20) µGal and (−1.78± 0.24) µGal for the original and new
collimators, respectively.

3. Method with profiling camera

The second, more complex and general method for the determination of the diffraction cor-
rection is based on the beam profiling using a digital camera with calibrated pixel spacing. It
enables to determine parameters of non-ideal Gaussian beams in the interferometer and thus the
effective wavenumber.

3.1. Beam parameters

Evolution of beam width w along the direction of propagation was determined for gravimeters
FG5-215 and FG5X-251 (in two configurations, with the original and Thorlabs triplet collima-
tors) by analyzing beam profiles at different distances measured at the outputs of gravimeters.
The first two examples are shown in Fig. 3. The expected evolution of a Gaussian beam width
along the z-axis is given by:

w2(z) = w2
0
(
z2

R +(z− z0)
2)z−2

R , (5)
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Fig. 3. Evolution of beam widths w obtained from the second moment beam width (D4σ ) for the reference beam w1,
measuring beam w2 and their combination w12 determined by the profiling camera at several distances for outputs of
FG5 gravimeter (without fibre optics with 5× beam expander directly from an He-Ne laser) and FG5X gravimeter with

the original collimator.

where three parameters – the Rayleigh length zR, the beam waist position z0 and w0 together with
the derived beam quality (M2) factor describe the beam according to the ISO standard 11146.
The results for three beams related to three gravimeter setups are shown in Table 1. We can
see that the original fibre collimator of FG5X-251 gravimeter significantly deteriorates the beam
quality, which can also be clearly seen from the beam profiles at larger distances (see Fig. 4).

Table 1. Parameters of the measuring beams in gravimeters. The “expected” Rayleigh length is related to a single
determination of the beam width close to the gravimeter with assumed M2 = 1. The “measured” Rayleigh lengths
were determined from the evolution of the beam width along the direction of beam propagation, the beam widths
have to be determined for at least three distances to evaluate three beam parameters including the beam quality factor
M2 or the beam waist. The accuracy of beam waist estimation, expressed from the error of fitting parameters given

by (5), is below 0.05 mm.

Rayleigh length waist

configuration expected [m] measured [m] M2 [mm]

FG5 with original expander 20.3 14.8 1.23 1.91

FG5X with original collimator 34.0 14.9 2.16 2.54

FG5X with new triplet collimator 23.3 17.3 1.22 2.06

Fig. 4. Beam profiles of the reference beams measured at several distances (the same as in Fig. 3; the curve lightness
is increasing with distance indicated in legend) from outputs of the gravimeters FG5-215 (left) and FG5X-251 with the

original collimator (right).
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Note, that the diffraction correction given by Monchalin’s approach is computed from the
beam waist. However, the position of the beam waist is often far outside (5–10 m) the gravime-
ters, as it can be seen in Fig. 3. Thus, the evaluation from a beam width at one position (e.g. inside
or close to the gravimeter) always underestimates the diffraction effect according to [1]. For ex-
ample, in the case of FG5-215, the beam waist is 1.91 mm and beam width in the gravimeter is
of about 2.2 mm that leads to corrections of 2.72 µGal and 2.1 µGal, respectively.

3.2. Determination of effective wavenumber

The propagation of a complex amplitude E of the beam envelope in the paraxial approxima-
tion is given by the Helmholtz equation:(

∇2
⊥−2ik

∂
∂ z

)
E(x,y,z) = 0, (6)

where:

∇2
⊥ =

∂ 2

∂x2 +
∂ 2

∂y2 (7)

is the transverse part of the Laplacian. The wavenumber in z direction is given in the paraxial
approximation as:

kz = k

√
1−

k2
x + k2

y

k2
∼= k−

k2
x + k2

y

2k
. (8)

It is known from Fourier optics that the wavenumber components correspond to partial
derivatives in direct space. Then, we could calculate the deviation of the effective wavenumber
in z direction approximately as:

κ(x,y,z)∼= Re
{

∇2
⊥E(x,y,z)

2kE(x,y,z)

}
. (9)

The fundamental Gaussian mode of the electric field could be written as:

E(x,y,z) = E(0,0,z)exp
(
− r2

w2

)
exp
(
−ik

r2

2R

)
, (10)

where z = 0 corresponds to the position of beam waist w0, the beam width w is given by the
relation (5) and the radius of curvature R is:

R(z) =
(
z2

R + z2)z−1. (11)

The first exponential term of (10) can be named a diffraction term and the second exponential
term – a divergence term.

Since in our experiments with a digital camera (without a wavefront sensor) we were able to
determine only intensity beam profiles I, we can calculate E simply as Ediff:

Ediff(x,y,z) =
√

I(x,y,z) . (12)

However, we cannot resolve the divergence term that should be included. In the paraxial approx-
imation, we can suppose that the radius of curvature is a function of z only:

R(x,y,z) = R(z). (13)
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The experimental results in Fig. 3 show that the evolution of beam width w can be well repre-
sented by the relation (5). Thus, we could expect R as a function of z relative to the position of
beam waist z0:

1
R2(z)

=
(z− z0)

2(
z2

R +(z− z0)2
)2 . (14)

If we include the divergence term (as a radial phase dependency) to our evaluation of field E
from camera images, we obtain:

E(x,y,z) =
√

I(x,y,z)exp
(
−ik

r2

2R(z)

)
(15)

and further from (9) we will obtain the total evaluation of the effective wavenumber deviation in
the form

κtot(x,y,z) = κdiff(x,y,z)− k
r2

2R2(z)
, (16)

where the first term is the diffraction term (representing the second derivatives from (9) for a
field given by (12) without a divergence term) and the second term corresponds to the divergence
term (local cosine error).

Electric fields of the reference beam E1 and the measuring beam E2 interfere on the detec-
tor. The reference beam, which propagates through the static arm of interferometer, works as a
soft-aperture in paraxial approximation. The effective wavenumber must be evaluated from the
measuring beam using (16) and weighted by the interference field, because only interference
fringes represent the detected signal of interferometer. The origin of x and y coordinates is eval-
uated from the centroid of interfering fields. Then, the effective wavenumber deviation for the
diffractive term κdiff over the full beam can be expressed as:

κdiff(z)∼=

∫∫
κdiff(x,y,z)E1E2dxdy∫∫

E1E2dxdy
∼=

1
2k

∫∫ (√
I1(x,y,z)∇2

⊥
√

I2(x,y,z)
)

dxdy∫∫√
I1(x,y,z)

√
I2(x,y,z)dxdy

, (17)

where the integrations (or corresponding summations) are performed over the area of camera
that covers most of the beam power. To suppress the effect of image-clipping, the half-size of
the integration area given by the window size has been chosen as the beam width multiplied by
a fixed factor of 2 (i.e. D4σ -sized for Gaussian beams). It is close to the optimal values obtained
in [15] for a minimal sensitivity to the camera background. The total effective wavenumber
deviation over the full beam, including the divergence term, can be calculated as:

κ tot(z) = κdiff(z)−
kw2

12
4R2(z)

, (18)

where the width w12 is obtained from both beams (reference beam 1 and measuring beam 2) as:

w2
12
2

=

∫∫
r2E1E2dxdy∫∫
E1E2dxdy

. (19)

Let us also note that the total phase shift of an interferometer between the points given by the
positions zA and zB is given by:

φ =

zB∫
zA

k(z)dz. (20)
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In the case of gravimeters, where the displacement is relatively small (a few decimetres) with
reference to the Rayleigh length, we can directly use the local effective wavenumber from (18).

3.3. Evaluation of camera images

The second derivatives of the electric field for each point (a pixel of camera images) of
the measuring beam in (17) were evaluated through fitting the field E2 by a fourth order 2D
polynomial on coordinate differences from pixel coordinates x and y (i.e. moving least squares
with unit weight in a given moving area, see Fig. 5):

E2
(
x′− x, y′− y

)
= ∑

i+ j≤4
E2i j(x,y)

(
x′− x

)i (y′− y
) j
. (21)

Fig. 5. An example of the intensity beam profile (dark grey) and its square root,
i.e. electric field (light grey). Two local fourth order fits (black lines) at two points
are shown in 1D. The second order coefficients of corresponding fits in 2D were

used for the evaluation of the second derivatives according to (22).

The fits were carried out on a data range given by the size of approximately the width w2
to avoid large local derivatives of the beam profile due to the measurement noise. These ranges
were selected symmetrically around each point and thus we can directly write:

∇2
⊥E2(x,y) = 2(E220(x,y)+E202(x,y)) , (22)

because the second order coefficients of the polynomial in x or y correspond to the second deriva-
tives of Taylor series around this point.

The local fitting by the fourth order polynomial was also applied to the intensity profile Ib
of a beam b since it helps to improve the performance of beam width estimation that depends
on the correct background subtraction. The range of the intensity local fits should be smaller
than for the electric field. The resulting coefficients Ib00(x,y) with indices i = 0 and j = 0 cor-
respond to a smoothed profile of the intensity. The minimal value of Ib00 within the range of
beam width estimation was used for subtracting the camera electrical and optical backgrounds.
Such a smoothing is advantageous, because it removes a bias of evaluated electric field E (that
is in principle also negative and we determine it as a positive square root of I) caused by the
camera noise affecting directly intensity I. We verified the effect of background and noise on the
evaluation of images by setting different exposition times and we found a negligible effect on
the determination of the diffraction correction. It represents a successful test of parasitic effects
caused by the non-linearity of camera pixel readings.
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3.4. Results of method

The Monchalin’s approximation (given by (12) in [1]) is exactly valid only at the position of
beam waist for the fundamental Gaussian mode. We could simply calculate that as beam spreads
at larger distances from the beam waist, the Monchalin’s approximation (where the beam width
is approximated by the beam waist) cannot be used outside the Rayleigh range and it tends
to zero effects at infinite distance, if a single locally evaluated width is used to determine the
correction. Thus, the divergence effect should be also taken into account. From Fig. 6 we can see
that the diffractive term obtained from the second derivatives of beam profiles is almost identical
with Monchalin’s approximation for high quality beams with M2 close to 1 (FG5X with the
triplet collimator). On the other hand, if the beam quality decreases (FG5X with the original
collimator), the difference between the two evaluations becomes significant. Further, it can be
seen that the divergence terms are smaller than the diffractive terms that represent the diffraction
effect of a plane wave-front limited by the finite beam profile. It shows that the beam divergences
are too small to be measured correctly by a compact wavefront sensor in the case of FG5(X)
gravimeters.

Fig. 6. The evaluated total effect (black diamonds and solid lines, the equation (18)) on gravity measurement with
FG5-215, FG5X-251 equipped with the original collimator and FG5X-251 with the new triplet collimator (Thorlabs
TC25APC-633), respectively. Its contributions, the diffractive (open triangles, (17)) and the divergence (open squares,
(19)) terms are compared with the Monchalin’s approximation (gray symbols and lines) calculated from the local beam

widths. The values extrapolated to the zero distance were used for correcting measurements of gravimeters.

The estimated effects for individual gravimeters were obtained from Fig. 6 by extrapolating
the total effects to the zero distance. The effects are (−2.64±0.03) µGal, (−1.01±0.42) µGal
and (−2.72± 0.02) µGal for FG5-215, FG5X-251 with the original collimator and FG5X251
with the new triplet collimator, respectively. The associated standard error estimates represent
contributions from fitting and extrapolation errors, only. As it can be seen from Fig. 6 and er-
ror estimates, the estimated effect for a lower quality beam from the original collimator of the
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FG5X-251 is quite uncertain due to a high fit/extrapolation error that even tends to an unrea-
sonable value of +0.72 µGal obtained for the diffractive term. This discrepancy can be caused
by the fact that the beam at the collimator output is composed of more beams (probably from
parasitic reflections) with different parameters and then their interference modifies the beam
profile (as shown in Fig. 4) while the pure-mode beam profile only spreads with a distance.
Therefore, in this case (FG5X-251 with the original collimator), the total effect will not be
represented by the extrapolated value of −1.01 µGal, that even does not reach the effect of
diffraction-limited beam with corresponding beam width. The average total effect and its stan-
dard error of mean from all examined distances reaching value of (−2.35 ±0.12) µGal will be
used instead.

3.5. Other parameters of interfering beams

The camera beam profiling method further enables to determine (as secondary results) addi-
tional parameters of the interfering beams that can be used for correcting g-values or for improv-
ing the evaluation of measurement uncertainty.

To optimize the fringe signal, the two interfering beams are standardly aligned by transla-
tion and angular adjustment of the test beam relative to the reference beam. For a particular
alignment, images of both beams were taken without camera movement at a particular dis-
tance. The evaluation of images showed that the centroids of reference and measuring beams
from the interferometer output are distant by less than 20% of beam width. According to the
equation 5 in [8], such a misalignment affects the difference of effective δk by less than 4%
for the Gaussian beam (i.e. less than 0.1 µGal for gravimeters with a diffraction correction
of about 2 µGal). Since the obtained coordinates x and y match well the interfering fields E1
and E2 used in the calculations of the diffractive effect (including the centroid shift), the cen-
troid correction from [8] should not be applied within our profiling method. Nevertheless, the
overlap of the collimated beams in the position of the camera is different from the overlap in
the detector plane that is behind the focusing lens in gravimeters. It means that in the detector
plane, the overlap of beams also depends on the parallelity of beams. Therefore, the overlap-
ping effect obtained from the camera images might be underestimated. The angular alignment
of beams (parallelity of the reference and measuring beams from the interferometer output) was
quantified from centroid differences at different distances and it was found to be better than
10 µrad for M2 = 1.2 quality beams. However, it could reach 20 µrad for a low quality beam
given by the original collimator. Nevertheless, a beam shear does not affect g measurements
directly as in the case of verticality misalignment [4] given by the angle between the effective
wave vector (spatial frequency) of the measuring beam and the vertical direction of displace-
ment to be measured. In the detector, the optical frequency beat between interferometer arms
of a counting interferometer is not influenced by the geometry in front of this detector. The
angular misalignment of beams only influences spatial frequencies and the contrast of the in-
terferometer signal. We have to point out that such a conclusion does not correspond with (5)
in [8], where the mutual angular misalignment of beams directly influences the interferome-
ter fringe counting. We found that the distances between the centroids of collimated reference
and measuring beams in gravimeters are often above 0.1 mm that is caused by the accuracy of
alignment. Focusing such beams to the detector by a lens with a focal distance of about 40 mm
produces an angle between the beam axes, which, according to [8], could affect the results of
measurements in the order of up to hundreds of µGal. However, such a huge effect has never
been observed by absolute gravimeters and thus the angular correction from [8] should not be
applied.
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4. Comparison of results

The gravity effects that correspond to the effective wavenumbers determined by the meth-
ods discussed in Sections 2 and 3 are given in Table 2. These results are compared with the
Monchalin’s approach using a measured beam waist (instead of a beam width at a particular
distance). We can see that the results of individual methods are quite ambiguous as the method
based on the Monchalin’s approach has the largest effect for FG5-215, the diaphragm method
has the largest effect for FG5X-251 with the original collimator and the camera method has
the largest effect for FG5X-251 with the new collimator. Main contributions to the uncertainty
budget for all three methods are caused by systematic effects that can be hardly estimated. Gen-
erally, the camera method should be the most accurate, but for beams with a really low quality
we also found a problem caused by the uncertain extrapolation. Thus, we recommend that the
average of all three methods should be used as the representative value for correcting gravimet-
ric measurements. These average corrections are almost identical, 2.4 µGal for FG5-215 and
about 2.2 µGal for FG5X-251. Further, we can see that the effects estimated with the three
methods are within roughly 1 µGal for a particular gravimeter. Therefore, we suppose that the
expanded uncertainty of the average effects will not be worse than 0.9 µGal. Generally, we can
say that all the estimates of a so called diffraction correction (according to [4, 5]) for FG5(X)
gravimeters discussed within this paper, are certainly larger than the value of 1.2 µGal that is
usually applied to FG5(X) gravimeters with the original fibre collimator, according to the re-
sults from [4]. Moreover, the diaphragm method clearly shows that the effect (slopes) for the
original collimator of FG5X-251 is larger than that for the new collimator. Note, that the ef-
fect with the new collimator cannot be as small as −1.2 µGal, because the beam width and
waist of a nearly Gaussian (i.e. diffraction-limited) beam measured for the new collimator is
too small. In order to verify the difference between collimators, we also carried out g mea-
surements with repeated replacements of collimators (five times) in the FG5X gravimeter. The
obtained difference between the original and the new collimator was found to be −0.13 µGal
with the standard error of mean of 0.55 µGal (that also includes repeatability of beam adjust-
ments), showing that the difference between the collimators is smaller and probably with the
opposite sign than could be assumed from the beam widths only. Concluding, the usual correc-
tion of 1.2 µGal is probably underestimated and a larger correction should be applied. Neverthe-
less, it is worth considering to determine the effective wavenumbers for all particular gravime-
ters, since the beam width of FG5(X) gravimeters with the fibre optics looks different already
at first glance. Further, as shown by the camera method, the beam quality plays an important
role, too.

Table 2. Effects of the effective wavenumber on measurements with gravimeters in µGal according to the fol-
lowing methods: 1) Monchalin’s approach in [1] for measured beam waists of the measuring beam; the results
correspond approximately to the knife-edge method [4] carried out at the position of beam waist; 2) the method
with an iris diaphragm (Section 2 and 3) the method with a profiling camera (Section 3) where the diffractive
term and the total effect are tabulated. Further, the average values from three methods (using the total effect of

camera method) are shown.

Monchalin Iris method Camera method Average

gravimeter (12) in [1] from (4) diffractive, (17) total effect, (18)

FG5-215 −2.72 −1.71 −2.36 −2.64 −2.36

FG5X-251 orig. collimator −1.54 −2.51 −2.04 −2.35 −2.13

FG5X-251 new collimator −2.34 −1.78 −1.90 −2.72 −2.28
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5. Conclusions

Two methods for determination of the effective wavenumber in absolute gravimeters have
been presented.

The method based on the iris diaphragm is easy to apply if the photodetector of a gravimeter
is equipped with mounting threads. The method works well for good quality Gaussian beams
and the diffraction correction is evaluated directly from g-values measured in situ. During the
evaluation, only the iris diaphragm opening is altered between the measurements and thus this
method minimizes the influence of other effects. Nevertheless, we have to note that the zero-
crossing detection system of a gravimeter must be independent of the fringe size, since the fringes
are significantly changed by opening/closing the diaphragm. As shown in [13] the original system
of FG5(X) does not meet such requirements but, for example, a new system discussed in [13]
might be used [14] for any FG5(X). If both systems are running in parallel and the diaphragm
is mounted on the new system, the effective wavenumber correction can be evaluated well from
300 free-falls. Therefore, the method can be easily repeated and the laboratory conditions are
not required. In the case of low quality beams, as detected for FG5X-251, we would recommend
to replace the original collimator by e.g. Thorlabs TC25APC-633 that is helpful also due to its
pre-aligned and fixed collimation.

The camera method is time-consuming, difficult to be applied outside the laboratory and
requires a careful and accurate evaluation of beam images. However, the method itself is more
general and can be also applied to lower quality beams. Nevertheless, the beam quality can be
simply improved by using better optical elements.

Comparing the results of both methods, we should also note that we expected better agree-
ment of the two methods. Larger effects can be expected from the camera method, because the
beam quality is taken into account. However, this assumption is not valid for lower quality beams,
as it can be seen from Table 2. Further investigations are planned on this topic.
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