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structures

Abstract: Recognition of geological structures often requires understanding the causes of diverse kinetic phenomenon and its 
underlying foundations. This pertains, e.g., to the phenomenon of mass movement within a rock formation leading to fault 
formation. We discuss here the possibility that variational calculus may be an important tool for investigating this problem.
Analysis of variations may yield important information concerning a physical phenomenon. Here we will neglect 
the best known problems of extremals in the analysis of variations and will focus our attention on electromagnetic 
and physico-mechanical problems.
Adaptation of a Hamiltonian as an entropy operator may serve, not only for the problems of singular crystalline 
structures, but also geological singularities such as faults, oleate impermeabilities, deep-seated eruptions as well 
as in problems of seismology, vulcanology and earthquakes.
This paper is an attempt to initiate a discussion about the possible development of the ideas presented. It might 
be that the formulae presented will be useful for the solution of other geophysical problems in future.
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O wariacyjnym podejściu do problemu osobliwych struktur geologicznych

Streszczenie: Poznanie geologicznych struktur często wymaga zrozumienia przyczyn kinetyki zjawiska przy uwzględ-
nieniu jego zasadniczych podstaw. Takie ujęcie umożliwia nam powiązanie skutków procesów z przyczynami 
je warunkującymi. Dotyczy to wielu zjawisk, na przykład transportu masy wewnątrz górotworu prowadzącego 
do powstania uskoku. Rozważamy możliwość zastosowania rachunku wariacyjnego w rozwiązywaniu wspo-
mnianego zagadnienia, zachęcając jednocześnie do krytycznego oglądu i własnych przemyśleń. Przy pomocy 
analiz wariacyjnych uzyskać możemy wiele informacji o zjawisku fizycznym. Wyłączeniu ulegną najbardziej 
znane problemy ekstremali, które zostaną w znacznej części pominięte, natomiast całkowicie skupimy się na 
zagadnieniach elektromagnetycznych i mechanicznych.
adaptacja hamiltonianu jako operatora entropijnego służyć może nie tylko problematyce osobliwych struktur 
krystalicznych, ale również problematyce osobliwych struktur geologicznych, takich jak uskoki, pułapki naftowe, 
erupcje wgłębne czy w zagadnieniach sejsmologii, wulkanologii czy trzęsień ziemi.
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Niniejsza praca jest próbą zachęty do dyskusji nad rozwinięciem tego zagadnienia.
Trzeba też zauważyć, że rachunek wariacyjny może okazać się przydatny w rozwiązywaniu innych problemów 
geofizycznych, co nastąpi w nieodległej przyszłości.

Słowa kluczowe: rachunek wariacyjny, tworzenie uskoku

Introduction

The search for the optimal structures, such as the best trajectories, the shortest distances, 
surfaces of stable potentials, constant speed, depth &c. that accomplish some physical pro-
cesses, resulted within the last 200 years in development of calculus of variations.

Hamiltonian Ha was the result of transformation of Newton’s equations. The equations 
transforming Newton’s equations were invented by Lagrange. Hamilton, in turn, transfor-
med Lagrange’s equations, obtaining the equations called later Hamilton’s equations. They 
are equivalent to Euler’s equations for variance problems, and concern the point dynamics. 
Later on, the variance calculus was used for description of other phenomena, not related to 
point dynamics, and the function yielding results was called ”Hamiltonian” without rela-
tions with dynamic phenomena. At this point, the contact between the problems of variance 
analysis and point dynamics became loosened.

The present epistemological questions create new problems to be solved by variation 
calculus. The problems discussed in this paper offer possibilities of prediction of the course 
of faults, so important in the prognosis of earthquakes, the problem particularly investigated 
by professor Teisseyre (Teisseyre 2006).

Let us begin from relatively simple problems, creating the ideology of the investigation.

1. Variational principle

Let us consider a functional φ. For a certain curve x(t) the functional φ can reach its 
extremum value (Elsgolc 1960)

 ( )( )
b

a
a

H x t ,t dt = extremumφ = ∫  (1)

and the variation calculus will be equal to zero;

	 δφ	=	0	 (2)

This notation denotes the search for such trajectory x(t) for which variance of the func-
tional φ becomes zero. In such situation this function Ha	 must	 fulfill	 the	 known	 Euler’s	
equation

 0a a

x

H Hd =
x dt

∂ ∂
−

∂ ∂
 (3)
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Generally the functional problem is expanded to multiparameter problem, because of 
the problem is connected with many derivatives of the optimal function. In the cases of 
variable areas in the space, the original Euler’s equation can become other equation (e.g., 
Euler – Ostrogradsky equation).

To elucidate the ideology of the functional variation we shall quote simple examples of 
variation calculus from the Elsgolc textbook ”Calculus of Variations” (Elsgolc 1951).

Examples
Example 1. A material point of unitary mass slides down from the point A(0, 0) to point 

B(x1, y1). Find the shortest time and trajectory of sliding.
As the potential energy is transformed without loss into kinetic energy, the velocity of 

the point at the height of y equals

 2ds = gy
dt  (4)

where:
s – path,
t – time,
g – gravity constant.

 
2

1 dyds = + dx
dx

 
 
 

 (5)

 
21 1

2
dydt = + dx
dxgy

 
 
 

 (6)

After bilateral integration the time of sliding is given by a functional with border con-
ditions y(0)	=	0,	y(x1)	=	y1

 
1

2

0

1 1 1 '
2

x

t = + y dx
g y∫  (7)

where:

21 1 y
y

′+  – is the so-called Hamiltonian.

Writing the Euler’s equation (3) for the problem we receive differential equation

 ( )
2 2

2
1 '

1 '

'+ y y = C
y y + y

−  (8)

The solution of this equation yields trajectory y =	y(x).
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Example 2:
On which curves the functional

 ( ) ( )2 2

0

2
'F y x = y y dx

π

 −    
 ∫  (9)

may obtain extremal.

The border conditions for the curve solving the problem are

 y	(0)	=	0,	 	 	 1
2

y =π 
 
 

 

Answer: The form of Euler’s equation is y″ + y	=	0.	Its	y	=	C1cosx + C2sinx. From the 
border conditions, we receive C1 =	0,	C2 =	1,	and	hence	the	extremal	may	be	reached	only	
on the curve: y	=	sin	x.

Example 3:
Find the shortest line connecting two given points on the surface Z

 ( ) 0x, y,z =ϕ  (10)

According	to	the	literature	we	should	find	the	minimum	of	functional	L

 
2

2 2

1

1
x

x
L = + y + z dx∫  (11)

This problem was solved in 1697 by Jan Bernoulli, but the general method was presented 
only in the works of Euler and Lagrange.

Time t(y, x) of traveling along the each of the curves y(x) is a functional of type

 ( ) ( )

22

1

1

x

x
+ y

t y,x = dx
v y∫  (12)

Reasons for the shape of the functional

 ( ) ( ) ( )

21+ yds ds= v y dt = = dx
dt v y v y

→  (13)

Calculation	permits	to	find	extremals,	and	the	speed	of	point	movement	depends	only	on	
the y. The extremals are the straight lines.
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1. Application of variational methods to description of some geological 
phenomena

Analysis by means of variational methods may yield important information about geo-
logical structures or phenomena. We shall not consider here the most classical problems 
using variational principles, but shall focus our attention on electromagnetic and mechanical 
problems.

Thus, let us consider the general functional φ (Hestens 1966)

 ,,( , ( ), ( ), ( )...),
a i i i

D
= H x y x y x y x dx = extremumϕ ∫  (14)

 1n+x R∈  

where D is a certain domain in which the variation δφ becomes zero

 0=δφ  (15)

where the difference of the functional φ at yi and yi + hi is

 ( ) ( )i i iy + h y =φ − φ δφ  (16)

hi is a variation of yi (hi	=	δh).

For a function Ha which is:

a) Hamiltonian Ha

 a kin potH = E E−  (17)

where:
Ekin and Epot are the kinetic and potential energy respectively of a material particle, from 

the variation of functional of the Euler-Lagrange equations we obtain

 
1

1
0

n+

y 'yr rkk=
H H =

x
∂

−
∂∑  (18)

leading eventually to the equations of dynamics for a material particle.

b) The Noether operator (unfortunately, often also called ”Hamiltonian”) Ha

 
2

aH
2

v= m eV e− − Av  (19)
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where:
A – vector potential,
V – scalar potential,
e – electron charge,
v – particle speed,
m – particle mass

we obtain Maxwell’s equations (Morse and Feshbach 1953)

 0+ rot =
t

∂
∂
H E  (20)

 3 1 3:R R R× →E  

 + rot = J
t

∂
−
∂
E H  (21)

 3 1 3:R R R× →H  

where:
E – vector of the electric intensity,
H – vector of the magnetic intensity,
J – vector of current density.

Maxwell’s	equations	describe	the	electromagnetic	field	that	is	used	in	geophysics.	These	
equations are used for propagation of the electromagnetic wave in the medium.

c) Brunacci’s operator

 2( )aH = V∇  (22)

where V is a scalar potential, we obtain the Laplace equation (Lauwerier 1966)

 ∇V	=	0	 (23)

d) Operator

 
2

( )
2 2a
h hH V
m i t t

∂ψ ∂ψ
= − ∇ψ ⋅∇ψ − ψ −ψ −ψ ψ

∂ ∂
 (24)

where:
h – Planck’s constant,
m – particle mass,
V – potential, acting on the particle,
ψ	 – Born’s function
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we obtain a Schrödinger equation (Ławrynowicz	1977)

 i V
t

∂ψ
= ∆ψ + ψ

∂
 (25)

e) Wójcik’s operator of entropy density

 Ha	=	s	=	flnf (26)

where:
s – entropy density,
f – stationary solution of Boltzmann’s equation. The entropy density is to be consi- 

	 	 	 dered	as	entropy.		At	first	approximation	it	is	the	distribution	density	beta	B:	 	
   6E(1 – E), where: E denotes the total energy.

Thus, one obtains differential equations for singular crystalline structures that are impor-
tant in the area of nanomechanics (Wójcik 2005). Only Wójcik’s Hamiltonian has a physical 
justification,	as	it	is	the	movement	of	a	particle	in	the	field	of	energy	probability	given	by	
Boltzman’s distribution.

2. Considering geological problems

Stresses in rock masses produce different kinds of deformations. Thanks to geophysical 
measurements such as for example electricity survey, one can predict a certain of rock mass 
deformations. The apparent resistivity changes are considered to be precursors related to 
earthquakes (XueBin Du 2011). Changes in electrical resistivity were observed as a function 
of stress in a variety of rocks before earthquake (Brace et al. 1968).

In order to investigate the relationship between the evolution of strain induced by exter-
nal stress and electrical resistivity laboratory tests were made. The samples were compressed 
triaxially until destruction occurred. The dependence of the electrical resistivity and differen-
tial stress on the strain force were carried out at the laboratory of Geophysical Department 
AGH (Fig. 1) (Tomecka-Suchoń	1997).

Despite	 the	 field	 experiments	 are	 in	 approximate	 agreement	with	 laboratory	measure-
ments,	field	experiments	have	had	much	less	success.	In	some	cases,	no	precursors	occurred	
prior to earthquakes (Park et al. 1993). In predicting events such as the formation of sink-
holes or faults creation, in addition to the geophysical methods used so far, it could be used 
variation calculus. Variation calculus will require obtaining precise data about deformations 
in the area under investigation. Geodetic measurements of the solid Earth integrated with 
interferometric synthetic aperture radar provide spatially continuous observations of defor-
mation with sub-centimeter accuracy (Tralli et al. 2005).

In order to be able to predict fault creation by measuring electrical resistivity changes it wo-
uld be useful to know the rock-mass strain. This can be calculating using variations calculus.
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Theoretical seismology has been used to develop ground motion simulation methods that 
can predict these ground motion variations (Somerville 2004).To reduce the uncertainty in 
the estimation of seismic hazard ground motion models are needed that can predict these 
site-to site variations.

Models can explain variations in ground motions that depend on the orientation and 
geometry of the fault. Seismological ground motion prediction can reduce the uncertainty 
in ground motion prediction.

Adaptation of a Hamiltonian as an entropy operator may serve, not only for the problems 
of singular crystalline structures, but also geological singularities such as faults, plate im-
permeabilities, deep-seated eruptions as well as in problems of seismology and volcanology.

By means of geological considerations, we may obtain the structure of a fault by analysis 
of	the	Hamiltonian	considering	the	set	of	lines	forming	it.	For	each	line	we	can	find	a	va-
riation of the respective functional φ set by the Hamiltonian H as a difference between the 
kinetic energy and an appropriately chosen potential energy V(x,a). The Hamiltonian then 
takes the form

 ( ) ( )2 2
2

x
mH = + y V x, y,a−  (27)

 e.g., for (x, y) ∈ R2 

where:
V – potential of interaction of masses in the orogen,
m – the mass of the element,
a – parameter.
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Fig.	1.	 Changes	of	resistivity	in	specimen	under	triaxial	stress	(Tomecka-Suchoń	et	al.	1997)

Rys.	1.	Zmiany	rezystancji	w	próbce	w	trójosiowym	stanie	naprężenia	(Tomecka-Suchoń	et.	al.	1997)
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Let us write Euler’s equation (3) for the above presented problem

 aH
0aHd =

x dt x
∂ ∂

−
∂ ∂

 (28)

 0a aH Hd =
y dt y

∂ ∂
−

∂ ∂
 (29)

or

 ( ) 0V d+ mx =
x dt

∂
−
∂

  (30)

 ( ) 0dV d+ my =
y dt

−
∂

  (31)

where:
x(t), y(t) – coordinates of the trajectory of a particle,
m   – particle mass.

We therefore may derive a dynamic equation of the second order

 0Vmx =
x

∂
−
∂

  (32)

 0Vmy
y

∂
− =
∂

  (33)

where: 
2 2

2 2,x yx y
t t

∂ ∂
= =
∂ ∂

 

Let us consider a case

 ( ) ( ) ( )1 2V x, y;a = V x;a +V y;a  (34)

The Euler equation for x(t) is

 2 2 1dVmxx = x
dx

   (35)

Hence

 ( )2 1dV x
x = ± xdt

m dx∫   (36)

or

 ( )1
2x = ± V x
m

  (37)
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Therefore

 
( )1

2
dx = dt

± V x
m

 (38)

for which we have two solutions (therefore, depending on the boundary conditions, the 
trajectory may not be smooth

 
( )1

12
m dxt +C =

V x∫  (39)

and

 ( )1
12

m dxt +C =
V x

− ∫  (40)

As seen, we obtained the solution for the inverse function.
We did not consider here the possibility that the potential V may depend on a parameter 

a,	but	we	must	remember	that	the	presence	of	such	a	parameter	may	appreciably	influence	
the solution.

In some cases and for certain boundary conditions, the functions φ(t) are singular. Therefore, 
we may obtain a description of functions corresponding to geomorphic changes such as faults.

It is known (from the appropriate theorem) that if Hamiltonian depends only on x , the 
trajectories are straight lines of different slopes dependent on border conditions (and thus 
on the speed of the process).

Conclusions

This paper is an attempt to initiate a discussion about the possible development of the 
application of the variation calculus functional in the geology. We expect that the formulae 
presented here will be useful for the solution of diverse geophysical problems in future.

If the Hamiltonian H depends only on one dimension, the solution are straight lines that 
determine the singularity, in which the potential V is discontinuous.

The fundamental premise of calculations is determination of border conditions that de-
scribe the situation of the border of the area. They may depend, among other, on com-
pactness of the ground, mass distribution, gravitational interactions, and viscosity. Some 
considerations presented by Jose M. Carcione may serve as a background for analysis of 
potential distribution in geological medium (Carcione 2000).

After proper determination of border conditions and solving Laplace’s equation ∆V	=	0	
we obtain the answer concerning the potential within the area.

The paper was the review of theoretical basics of the problem. In real situation we must 
examine, using geological and geophysical methods, all occurring physical parameters le-
ading to solution of Laplace’s equation against singularities of potentials.



Following the determination of border conditions we solve the Laplace’s equation which 
is	a	prerequisite	of	finding	of	potential	as	a	discontinuous	function’s.	The	final	form	of	the	
answer on the fundamental question is the result of the solution of Euler’s differential equ-
ation, which yields the description of the trajectory of the event.

The research was supported by AGH University of Science and Technology as a science project
no. 11.11.140.766.
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